Today’s Lecture

- Quick Review of First Part of Exam
- Hidden Markov Processes

General Comments

- I will grade the exam based on 91 points total rather than 100 points. So many people were unprepared to answer question 1F. The grade on the answer to this question can be thought of as extra credit.

Question 1A

Suppose you had two admissible A* heuristics \(h_1 \) and \(h_2 \) for a specific problem application and there was respectively cost \(c_1 \) and \(c_2 \) every time you applied the heuristic in a search. How would you go about deciding which heuristic to use for the entire class of problems?

Run experiments on a number of comparison cases using each of the heuristics to get the average time for each search with different heuristics. The heuristic whose average search time over the set of examples is the lowest would be the one chosen. Another way to do think about it is get the average number of nodes expanded in each search. Then it would be \(E[h_1] \times c_1 \) (average number of nodes expanded \(N_1 \)) and similarly for \(h_2 \). The formula that gave the lowest value would determine what heuristic to choose. Obviously, if \(h_2 \) dominates \(h_1 \) and the cost of applying \(h_1 \) \(c_2 \) has lower cost than \(c_1 \), you would choose heuristic \(h_2 \) for all problems and no experimentation is necessary. In my answer, I did not think of trying experimentally the case of max \(h_1, h_2 \) which incurs the cost of applying both heuristics in each search node expanded. However, in some cases that could be the best choice but I suspect it is very rare. Further in considering which heuristic to choose for a class of problems, I was only considering which would lead to the smallest expected search cost for solving a problem. Another criterion could be to minimize the number of nodes expanded: this would lead to a slightly different reasoning about which heuristic to choose. Very few people noticed that the number of nodes searched was key!
Question 1B
What are the similarities and differences between Anytime A* and RTA*?

Both are doing an approximate search given a fixed amount of time that can be used. They both exploit an admissible and monotonically increasing h^* heuristic. However, their search strategies are very different. RTA* uses a limited (based on a fixed horizon) depth-first search to get a better approximation of a node's f value to make a decision what operator to apply next. There is some interesting pruning going on in how the f value's at the horizon are backed-up – but that was not important for the answer. It then applies after each search the chosen operator in the real world and then repeats the procedure to choose the next operator after the move is completed.

Anytime A* in contrast is doing a complete search trying to get an acceptable solution quickly and then over time improving the solution. When it is finally terminated either because of time limits or an optimal solution is found, the best (lowest cost) complete path/plan that has been encountered is chosen. I was surprised that people talked about Anytime A* in terms of a non-admissible heuristic; the h heuristic is in fact admissible and this is exploited in the pruning.

Question 1C
What are the similarities and differences between SMA* and RBFS?

Both exploit the fact that f is monotonically increasing and there is a remembrance of the f values of previously encountered partial solutions to focus what node should be next (re)expanded; they also both are trying to reduce the amount of memory necessary for the search, and for that reason both may generate repeatedly the same node. In the case of SMA*, it deletes nodes due to fixed memory limitations while RBFS may delete nodes because it keeps a very restricted open list based on a depth-first type of search. SMA* needs to have as much memory as the length of the optimal path otherwise it will be able to find this optimal path.

Question 1D
Explain the common reason/principle for the use of the techniques of beam search in Genetic Algorithms and random restart in GSAT. Could you apply beam search to GSAT?

Both search techniques are trying to avoid getting stuck in local minima. The beam search has the potential advantage over random restart since it is able to constantly readjust what solutions are in the beam according to the quality and potentially the diversity of these solutions, and to be able to take parts of one solution and combine with parts of another solution in the beam to create a new solution. Maybe, the beam search could be applied to GSAT, it is interesting question of how often in GSAT do you need to do random restarts versus paying the overhead of concurrently processing multiple solutions (this is general problem with the beam search in contrast to random restart). To really exploit the beam search idea in GSAT, you would in some sense need to alter the basic search strategy of GSAT so that there was more than one next solution generated at each iteration. In this way, at each stage, the beam could be narrowed back to k width based on “fitness” of the current solutions in the beam. I am not sure whether this will be effective?

Question 1E
What would be your explanation for why GSAT does not exploit a specialized procedure to generate a "good" initial assignment for the truth values of the literals?

One possible explanation is that the cost of getting a good initial solution is quite expensive and it is better just searching based on a random initial solution and if that is not progressing well just try another random initial solution. It also may be that there are no general heuristics for getting a good initial solution for an arbitrary problem though there may be good heuristics for a specific class of problems. – This was a think question and generally everyone got it right.
The HEARSAY-II speech understanding system as described in class is not based on the A* search because of the difficult of constructing an admissible and effective heuristic. However, it uses a termination procedure resembling Anytime A*. When Hearsay-II search found a complete solution that was above a certain rating, it could prune partial solutions (nodes) on the blackboard based on calculating a measure using all the words that had been constructed either through bottom-up or top-down processing at the point that a complete solution was generated. Explain the basis for the pruning and also why this approach could potentially lead to incorrectly pruning a correct partial solution though we never saw an example of this.

Based on an analysis of the word lattice, a measure can be constructed for the highest ranking word in each segment of the speech signal. This rating can be used to construct the "highest" possible score that a partial solution could get when it is completed. This is not totally accurate because in expanding a partial solution, it is possible that new higher rated words could be generated as a result the top-down word verification process. For this reason, the heuristic is not admissible and thus could lead to pruning of a partial solution that could have created a higher score than the current best solution.

Part-of-speech tags, examples

- **PART-OF-SPEECH**
- **TAG**
- **EXAMPLES**

- Adjective
- JJ
- happy, lead

- Adjective, comparative
- JJR
- happier, worse

- Adjective, cardinal number
- CD
- 3, fifteen

- Adverb
- RB
- often, particularly

- Conjunction, coordination
- CC
- and, or

- Conjunction, subordinating
- IN
- although, when

- Determiner
- DT
- this, each, other, the, a, some

- Determiner, postdeterminer
- JJ
- many, some

- Noun
- NN
- aircraft, data

- Noun, plural
- NNS
- women, books

- Noun, proper, singular
- NNP
- London, Michael

- Pronoun, personal
- PRP
- you, we, she, it

- Pronoun, question
- WP
- who, whoever

- Verb, base present form
- VBP
- take, live

- Verb, base form
- VBZ
- is

- Verb, 3rd person singular present
- VBP
- is

- Verb, plural
- VBZ
- are

- Verb, proper, singular
- NNP
- Australias, Melbourne

- Preposition, prepositional
- PP
- on, in, to, the, at

- Preposition, subordinating
- IN
- for, since, while

- Preposition, transitive
- IN
- for, since, while

Fed raises interest rates 0.5% in effort to control inflation

(Hidden) Markov Model

- View sequence of states/tags as a Markov chain. Assumptions:
 - **Limited horizon**
 \[P(x_{t+1}|x_1, \ldots, x_t) = P(x_{t+1}|x_t) \]
 - **Time invariant (stationary)**
 \[P(x_{t+1}|x_t) = P(x_2|x_1) \]
 - We assume that a word’s tag only depends on the previous tag (limited horizon) and that his dependency does not change over time (time invariance)
 - A state (part of speech) generates an output (word). We assume it depends only on the state.
 \[P(o_t|x_1, \ldots, x_T, o_1, \ldots, o_{t-1}) = P(o_t|x_t) \]
A Possible Path Thru the Network

- Top row is unobserved states, interpreted as POS tags
- Bottom row is observed output observations (words)
- What is the likelihood of this path??

Applications of HMMs

- NLP
 - Part-of-speech tagging
 - Word segmentation
 - Information extraction
 - Optical Character Recognition (OCR)
- Speech recognition
 - Modeling acoustics
- Computer Vision
 - Gesture recognition
- Biology
 - Gene finding
 - Protein structure prediction
- Economics, Climatology, Communications, Robotics…

(One) Standard HMM formalism

- \((X, O, \pi, A, B)\) are all variables. Model \(\mu = (A, B)\)
- \(X\) is state sequence of length \(T\), \(O\) is observation seq.
- \(\pi\) is a designated start state (with no incoming transitions).
- \(A\) is matrix of transition probabilities (each row is a conditional probability table (ConditionalProbabilityTable))
- \(B\) is matrix of output probabilities (vertical CPTs)

\[
P(X, O|\mu) = \prod_{t=1}^{T} a(x_t|x_{t-1}) b(o_t|x_t)
\]

- HMM is a probabilistic (nondeterministic) finite state automaton, with probabilistic outputs (from vertices, not arcs, in the simple case)

Review of POMDP Model

Augmenting the completely observable MDP with the following elements:

- \(O\) – a finite set of observations
- \(P(o|s',a)\) – observation function: the probability that \(o\) is observed after taking action \(a\) resulting in a transition to state \(s'\)
- A discrete probability distribution over starting states (the initial belief state):

\[
b_0 = \{b_0(0), b_0(1), \ldots, b_0(1 | S | -1)\}
\]
Connection Between HMM and POMDP

- Similar set up but different problem being solved
 - Given an observation sequence, find the most likely hidden state sequence (tagging)
 - No actions and rewards in HMM – thus you are not trying to find an optimal policy
 - Length of sequence of observations in HMM is finite
 - Start out with well-defined initial state

- Most likely hidden state sequence

 - Given $O = (o_1, \ldots, o_T)$ and model $\mu = (A, B)$
 - We want to find
 \[
 \arg \max_X P(X, O|\mu) = \arg \max_X P(X|O, \mu) = \arg \max_X P(X|O) \approx \arg \max_X P(X|O)
 \]
 - $P(X, O|\mu) = P(O|X, \mu) P(X|\mu)$
 - $P(O|X, \mu) = b[o_1|x_1] b[o_2|x_2] \ldots b[o_T|x_T]$
 - $P(X|\mu) = a[x_2|x_1] a[x_3|x_2] \ldots a[x_T|x_{T-1}]$
 - $\arg \max_X P(X, O|\mu) = \arg \max_x x_1, x_2, \ldots x_T P(X, O|\mu)$
 - **Problem:** $\arg \max$ is exponential in sequence length

Representation for Paths: Trellis

States: X_1, X_2, X_3, X_4

Time: 1, 2, 3, 4, ..., T
Exploit Markov Assumption to Cut Down Exponential Search Space

Finding Probability of Most Likely Path using Dynamic Programming

- Efficient computation of max over all states
- Intuition: Probability of the first \(t \) observations is the same for all possible \(t+1 \) length sequences.
- Define forward score:
 \[
 \delta_j(t) = \max_{x_{t-1}} P(x_1, \ldots, x_t | \omega_1, \ldots, \omega_t) = \max_{x_{t-1}} P(x_1, \ldots, x_t = i | \omega_1, \ldots, \omega_t)
 \]
- Compute it recursively from the beginning
- (Then must remember best paths to get arg max.)

Finding the Most Likely State Path with the Viterbi Algorithm [Viterbi 1967]

- Used to efficiently find the state sequence that gives the highest probability to the observed outputs
- Maintains two dynamic programming tables:
 - The probability of the best path (max)
 \[
 \delta_j(t+1) = \max_{i=1\ldots N} \delta_i(t) a[x_j | x_i] b[q_{t+1} | x_j]
 \]
 - The state transitions of the best path (arg) - allows for backtracing
 \[
 \psi_j(t+1) = \arg \max_{i=1\ldots N} \delta_i(t) a[x_j | x_i] b[q_{t+1} | x_j]
 \]
- Note that this is different from finding the most likely tag for each time \(t \) - you are instead looking for the optimal sequence of tags

Viterbi Recipe

- Initialization
 \[
 \delta_j(0) = 1 \text{ if } x_j = x_k, \quad \delta_j(0) = 0 \text{ otherwise.}
 \]
- Induction
 \[
 \delta_j(t+1) = \max_{i=1\ldots N} \delta_i(t) a[x_j | x_i] b[q_{t+1} | x_j]
 \]
- Store backtrace
 \[
 \psi_j(t+1) = \arg \max_{i=1\ldots N} \delta_i(t) a[x_j | x_i] b[q_{t+1} | x_j]
 \]
- Termination and path readout at terminal states
 \[
 \delta(T) = \max_{i=1\ldots N} \delta_i(T) \quad \text{Probability of entire best seq.}
 \]
 \[
 \hat{x} = \psi_{\tau(T)} \quad \text{Probability of entire best seq.}
 \]
Acceptable Paths for “Give Me...”

How is the Network Constructed

- Grammatical Knowledge
 - BNF Grammar that doesn’t contain substrings of the form
 ... A B C ...
 ... A’ B C’ ...
 where B is a non-terminal, and B is recursive

- Lexical Knowledge
 - Finite-state “phoneme” network with duration information

- Contextual Knowledge
 - Juncture rules and juncture “phonemes”
Given a segmented acoustic signal with probabilities for each phone at each segment and a network how do we search it?

Each State in the Network
- Phoneme (from either phonetic dictionary or word juncture phonemes)
- Word
- Unique ID number
- Duration information
- A list of successor/previous states

Network Search Algorithm

\[P_{i,t} = A_{i,t} \cdot \max \left(P_{j,t-1} \cdot T_{j,i} \right) \]

Where
- \(T_{j,i} \) is the probability of transitioning from state \(j \) to \(i \)
 - based on network (0,1)
 - duration of being in state \(j \)
- \(A_{i,t} \) is the probability of being in state \(i \) given the acoustic event at time \(t \).

BEAM Search

Heuristic version of Viterbi Search to reduce computation
- Compute probability for each Active State in segment \(i \):
 - keep pointer to state in segment \((i-1) \) that is max transaction to each active state
- Prune list of active states and normalize problem
- Compute list of active states for segment \(i+1 \)
- Repeat 1-3 until no more segments
- Backtrace
Next Lecture

- Introduction to Uncertainty