Monitoring and Synchronization for Teamwork in GPGP

Sherief Abdallah
Computer Science Dept.
Facully of Computers and
Information
Cairo University, Egypt

shario@cs.umass.edu

ABSTRACT

This paper addresses the problem of coordinating a group
of agents involved in a team. To achieve flexible team-
work, agents should synchromize their work and monitor
their performance to avoid redundant work. Generalized
Partial Global Planning (GPGP) is one of the most common
techniques used in coordinating cooperative agents, how-
ever, no technigue is without limitations. Our work adopts
some concepts of STEAM to overcome some of GPGP limi-
tations. In particular, we suggest adding coordination mech-
anisms to GPGP and extending TAEMS, the model under-
lying GPGP, to facilitate such mechanisms. The work has
successfully been implemented using JAF architecture. The
coordination mechanisms are written as Soar rules where we
implemented a JAF component that implements the Soar
engine. Analysis of a case study is presented along with
experimental results to illustrate the power of the proposed
work.

Categories and Subject Descriptors

H.4.m [Information Systemas]|: Miscellaneous

General Terms
Algorithms, Design, Reliability, Languages

Keywords
Coordination, Teamwork, GPGP, STEAM, SOAR.

1. INTRODUCTION

The need to coordinate different agents in order to reduce
redundant work, maximize utilization of shared resources,
increase reliability of the system and enhance characteristics
of the overall solution is one of the main issues of multi-agent
systems research. Cooperative agents have shared goals that
they plan to achieve. Generalized Partial Global Planning

Permission 1o make digital or hard copies of all or part of this work for
personal or classroom use is granied without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002 Madrid, Spain

Copyright 2002 ACM 0-58113-445-2/02/03 ...$5.00.

288

Nevin Darwish
Compuler Engineering Dept.
Faculty of Engineering
Cairo’University, Egypt

ndarwish@alpha1-
eng.cairo.eun.eg

Osman Hegazy
Information Systems Dept.
Faculty of Computers and

Information
Cairo University, Egypt

Ohegazy@idsc.net.eg

(GPGP) [3] is one of the techniques that provide coordina-
tion among cooperative agents. It consists of modular coor-
dination mechanisms that use TAEMS model (Task Anal-
ysis, Environment Modeling, and Simulation) [2] to reason
about the environment. The result of coordination is a set
of contrainsts that modulate the operation of the agent’s
local scheduler. However, the GPGP mechanisms do not
address special coordination needs in case of agents form-
ing explicit teams. Tambe argued that to obtain flexibility
and reliability in teamwork, explicit teamwork modeling is
required [11]. His implemented teamwork model, STEAM,
implements a hybrid of joint intentions [4] and SharedPlan
theories [9].

In this work we suggest adding several coordination mech-
anisms, which implement some of the concepts introduced
in STEAM, to GPGP. Some modifications of some of the
GPGP standard mechanisms are also proposed. These ex-
tensions cause better synchronization between team mem-
bers and reduce redundant teamwork. Throughout this pa-
per we will use a simple case study for illustration, the At-
tack City domain. It is required to attack a city by an army
consisting of two teams: air team with N members, and
ground team with M members. The attack has two forms:
air attack and ground attack. Air attack is undertaken by
the air team. The air attack mission consists of three sub-
tasks: fly to city, attack city military points, and finally
return back to base. Ground attack is undertaken by the
ground team and is divided into two subtasks: move to city,
and takeover city. Air attack facilitates the mission of the
ground team by eliminating much of possible resistance (i.e.
air attack should complete before the start of ground attack
to increase ground attack probability of success; however,
the ground team might start its attack before air attack
completion with more risk).

In the following sections we tackle this case study using
both GPGP and STEAM frameworks, illustrating the main
limitations of each. Section 2 presents an averview of GPGP
and its underlying model, TAEMS followed by some of its
limitations. Section 3 describes briely STEAM framework
along with its main limitations. Implemented extensions
to GPGP are discussed in section 4. Empirical results are
presented in section 5 followed by the conclusion and future
work directions.

2. GPGP

GPGP defines a set of modular coordination mechanisms
using a domain independent model, TAEMS. These mech-
anisms can be used in any combination depending on the



domain of concern. The next subsections describes briefly
TAEMS and GPGP mechanisms along with their limita-
tions.

2.1 TAEMS

TAEMS model is composed of tasks and subtasks orga-
nized in a {ask siructure hierarchy (also called task group).
The leaves of the hierarchy are the methods, which are exe-
cutable actions. Each method is characterized by three di-
mensions: duration, cost, and quality. Duration is the time
spent executing the method. Cost represents the penalties
of executing the method. Quality is an abstract measure to
quantify the success of the method. Uncertainty of the three
dimensions is modeled through discrete probability distri-
butions. Tasks consist of subtasks. Qualily accumulation
Junctions (QAF's) define how the qualities of subtasks relate
to the super task quality, e.g., g.sum QAF means the qual-
ity of the super task is the summation of subtasks’ qualities.
Tasks are linked by interrelationships (also called non-local
effects) that model interdependencies between tasks [2, 7,
8]. Figure 1 shows a simplified TAEMS model for Attack
City domain. Tasks are shown as rounded edge rectangles
(e-g- attack city) while methods are shown as rectangles (e.g-
fly_1). QAFs are indicated below tasks’ rounded rectangles
(eg- Attack City task has g_max QAF). Two types of non-
local effects are shown, facililales (e.g. the dashed arrow
from Air_Attack task to Ground_Attack task), and enables
(e.g the solid arrow from Fly_to_City to Attack_Targets).
Enables interrelationship means that affecting task (source
of the arrow) must complete successfully before the start
of the affected task (destination of the arrow). Facilitates
means it is advantageous for the affecting task to complete
before the start of the affected task though not necessary.

——lp Irebles

— P Pelllca

Figure 1: TAEMS model for Attack City domain

2.2 Coordination Mechanisms

Based on TAEMS model five coordination mechanisms
were defined. The purpose of these coordination mecha-
nisms is to recognize tasks’ interdependencies and create
corresponding commitments and constraints, which in turn
is passed to the local scheduler to produce globally better
schedules [3, 7]. The first mechanism deals with exchang-
ing private views in order to construct a more global view.
The second mechanism handles simple redundancy where a
task’s quality is the maximum of its subtasks' qualities and
these subtasks are also methods. Third mechanism tackles
results exchange. Fourth and fifth mechanisms create com-
mitments in response to the presence of interrelationships
(mainly enables and farilitates).

2.3 Limitations of GPGP

The main limitations of GPGP are as follows:

289

e Representing the contribution of each member (agent),
in a given team task, by a subtask is inconvenient for
large teams consisting of hundreds and even thousands
of agents (e.g. the number of leaves in figure 1 grows
as number of members per team increases).

TAEMS does not provide an explicit way to express
achievement of tasks performed by teams. For in-
stance, for the subtask attack_targets, it might be suf-
ficient to successfully destroy 70% of the targets. The
lack of capability of expressing achievement conditions
of overall team task might result in team members try-
ing to complete their part in an already achieved task.

Predefined GPGP mechanisms neither support syn-
chronization of team members nor handle teamwork
redundancy. Miss-synchronizing team members may
cause severe penalties on teamwork. For instance, if
an air agent started flying to city without making sure
that other air agents also started flying to city, there
is a large threat that the impatient air agent will be
destroyed. Redundancy in teamwork is essential and
is required all through the execution of the team task,
and until the successful completion of the team task.
In GPGP, redundancy avoidance occurs before start-
ing the execution. Moreover, this simple mechanism
deals with tasks having QAF max, i.e. only one sub-
task is necessary. In teamwork domains, redundancy
is observed in tasks with QAF sum, i.e. each subtask
(controlled by a member of the team) contribute some-
how to the overall team’s task and as more subtasks
succeed, the guality of the team task increases.

3. STEAM

STEAM assumes the presence of a common team plan
shared by members of the team. The plan is presented as
a hierarchy of operators. Figure 2 shows aperator hierarchy
for the Attack City domain. The key novelty of STEAM is
the introduction of team operators. Team operators define
operators that should be performed by a team not individu-
als. These operators require special tLreatment in that mem-
bers must synchronize before starting execution and once
synchronized a member can not stop executing the opera-
tor until ensuring mutual, synchronized termination for all
members. This is done through establishing a commitment
protocol. A team task is considered terminated if it is be-
lieved to be achieved, unachievable, or irrelevant. STEAM
attach termination conditions, which when evaluates to true
the team task is believed to be terminated. Main limitations
of STEAM are as follows:

e Roles relationships, introduced in STEAM, provide
limited expressiveness. For instance, partial ordering
between fly_to_city and attack_targets subtasks (fly_to_
city precedes attack_targets) can only be modeled im-
plicitly in the preconditions of the team operators:
fly_to_ city and attack_targets.

Uncertainty is not modeled explicitly except for com-
munication. This limits the agents’ ability to reason
about ’risky’ alternatives that might, exceptionally,
lead to great advantages.

Reactive nature of this model provides flexibility in
responding to unexpected events. However, it is not



straightforward to use this model in reasoning about
temporal constraints (deadlines, earliest start time, . ..
etc.) in a straightforward way.

The establish commitments protocol coordination cost
(communication and processing) is proportional to n?
where n is number of agents in a team. This disadvan-
tage is more severe for domains using point to point
communication.

[Attach_Ciry
TAIn_Attach - (Grommd_Attack-
IFly_te_Cln} [m_rgh‘wmm_b-= [Move_te city  Takoover_Chy
Fly Armch Mwlv:
Figure 2: STEAM operator hierarchy for Attack
City domain

4. PROPOSED EXTENSIONS TO GPGP

It is noted that GPGP solves most of STEAM limita-
tions. First, the GPGP framework is more expressive in
describing interdependencies between tasks than STEAM.
Second, TAEMS provides an explicit model of uncertainty
(through probability distributions of quality, duration, and
cost), which enables agents to reason about risky tasks hav-
ing high profits, against safe tasks with lower profits. Third,
in GPGP agent’s actions are scheduled, enabling agents to
reason about duration and imposed deadlines. Hence, we
have chosen the GPGP framework as the basis of our work.
We present some extensions to GPGP mechanisms and its
underlying TAEMS model, and then give a brief overview
of our implemented agent architecture.

4.1 TAEMS Extensions

The proposed extensions to TAEMS are two: modeling
organizational information and defining monitoring condi-
tions.

4.1.1 Modeling Organizational Information

TAEMS specification [8] does not provide a compact way
of representing teams and the comtribution of each team
member in a team task (first limitation). We suggest a new
TAEMS object, template. A template is any TAEMS object
defined over a whole team not only a single agent. In gen-
eral, this extension drops the number of objects required to
define a task structure to a fixed number of templates. For
example, in task fly_to_city, each agent A; contributes by
executing his method Fly.i. A template Fly_tmpl replaces
methods Fly_1, ..., and Fly_N. As shown in figure 3 the
number of nodes at the lowest level in the task hierarchy
has dropped from (3N + 2M) to only 5 nodes. Method
templates are shown as circles .

4.1.2 Defining Achievement and Unachievability Con-
ditions for Team Tasks
TAEMS specification does not define conditions of achieve-
ment and/or unachievability for a task. In standard TAEMS,
there is only one (implicit) achievement condition applied

290

Figure 3: TAEMS model fo Attack City domain with
templates introduced

to all tasks: task quality is greater than zero. However,
"TAEMS still provides us with abstract measures (referred to
afterwards as monitoring terms) that can be used to spec-
ify achievement and/or unachievability conditions of a team
task, such as:

o Expected distributions® of quality, duration, cost, start
time and finish time.

e Uncertainty represented in probability distributions of
quality, duration, .etc.

e Current (actual) values of quality, duration, cost, start
time and finish time.

For example, the following condition specifies that a task
T is unachievable if average expected quality is less than
100, average expected cost greater than 10 and probability
that T misses deadline is greater than 0.7: [q(T) j 100 AND
c(T) ; 10 AND p(F(T);dI(T)) ; 0.7] where q(T) and ¢(T)
are average expected quality and cost (respectively) of task
T , f(T) is expected distribution of finish time of T, dI{T)
is deadline constraint over T.

This clear and formal definition of monitoring terms can
be contrasted to the approach used in STEAM where moni-
toring conditions can be of any form. The lack of formal def-
inition degrades the reusability of coordination mechanisms
that respond to a specific monitoring condition. For in-
stance, we can define a coordination mechanism that warns
team members when the probability that their team task
becomes unchaievable goes above 0.6.

4.2 GPGP Extensions

We suggest three extensions to GPGP mechanisms: a new
synchronization mechanism, a new monitoring framewoark,
and modifying the "communicate results” existing mecha-
nism. We have implemented the three suggested extensions.

4.2.1 Adding Synchronization mechanisms

We added a new GPGP mechanism to ensure synchro-
nization between team members, which is based on estab-
lish commitments protocol (ECP). Figure 4 shows part of
the protocol as a finite state machine. It is noted that the
complete protocol has two roles: the team leader and a nor-
mal member of the team. There is a similar mechanism for
terminating team tasks. Apparent from figure 4 the leader
role is critical (in synchromization and other mechanisms);
hence we added a recovery mechanism that detects leader

The expected probaility distribution given the current be-
liefs of the agent (e.g. schedules, commitments, ... etc.)



failure (using timeouts) and replaces the failing leader with
a functioning agent (according to a static leadership hierar-
chy).

LCP confirmation mcisage recicved

fincrement nambcr sfeon fymed memben

.n/)'/\
/

/1end LCP mitiation mersnge
la themwembers M sl icam @
and wait for conlamution

sad sct timcr

sz

( :z!‘

slarialatcam Il:..-—-\_’n )

limeouy
/wnrk ponconfrmingagents a3 nonfunciionl

Figure 41 FSM representing leader role in joint com-
mitment protocol

4.2.2 Adding Monitoring Framework

We also added a monitoring framework to monitor team
task termination. Once an agent believes either its team has
achieved the currently executing task or the currently exe-
cuting task is unachievable, the agent terminates its part of
it. Our monitoring framework differs from STEAM's moni-
toring framework in the use of monitoring terms. It should
be noted that we did not implement recovery mechanisms
introduced in STEAM. Currently, once an agent recognizes
the task is unachievable it terminates it and goes on exe-
cuting any remaining, achievable task. We plan to add a
comprehensive recovery capability in the foture.

4.2.3 Modifying Communicating Results

In GPGP second mechanism for communicating results,
each affecting agent (committed to execute an affecting task)
is responsible for communicating results to each affected
agent (executing an affected task). For instance, for the
attack_targets task each air agent is responsible for commu-
nicating the success (or failure) of his mission to:

e Each air agent, due to the enables interrelationship
between attack_targets and return_to_base, resulting
in N? messages.

e Each ground agent, due to the facilitates interrelation-
ship between air_attack and ground.attack, resulting
in M »x N messages.

We took advantage of the teams’ organization and modi-
fied the mechanism such that only the leader communicates
results on behalf of his team to affected agents that are not
members of the team (members of the team have the same
knowledge of the team leader). So in the Attack City case
study, each air agent will be responsible for communicating
the success (or failure) of its mission to each air agent, due to
being member of the air team, still resulting in N2 messages.
However, only the leader of the air team is responsible for
communicating the results of the air_attack task, after its
termination, to each ground agent, resulting in M messages
instead of 3M »x N messages.

4.3 Implementation

We used JAF [5] kFamework as basis for our implemen-
tation. We used some of the standard JAF components,
e.g. the scheduler component (to schedule the tasks given

2901

the new contrainsts), the communication component (to en-
able agents to communicate together), ... etc. We im-
plemented a coordination component, which provides basic
functionality for coordination mechanisms through a com-
mon substrate. Coordination mechanisms themselves are
implemented as Soar rules [6]. Recent work, namely GPGP2
[12], implemented this substrate as a Finite State Machine
engine. Coordination mechanisms were defined in terms of
finite machine scripts that is parsed and compiled and linked
to the substrate java code. We took a completely different
approach. Our coordination substrate encapsulates a Soar
[6] compiler and run-time engine. This provides more fexi-
bility as coordination mechanisms can be written in the form
of production rules. Furthermore, caching of partial match-
ing results is supported (through RETE network). This par-
ticular property is important to facilitate the monitoring of
achievement and unachievability conditions, which is con-
tinually changing throughout the execution. Figure 5 shows
the anatomy of the module. A brief description of each com-
ponent of the module is given below.

e Soar Engine. This is the core of the coordination mod-
ule. It implements Rete network algorithm [10] and
the Soar architecture. Coordination mechanisms are
written as Soar production rules that is compiled and
executed by our implemented engine. More details
about our implementation can be found in [1].

Soar/Java Translator. This component translates data
structures from java classes to the corresponding Soar
working memory elements (WMEs) and vice versa. It
is used whenever a data structure should be transferred
to/from the Soar emgine.

Message Listener. This component allows coordina-
tion rules (mechanisms) to register the message header(s)
they are interested in. This is important to avoid
translating unimportant messages. When a message
with a registered header is received, the message is
translated and passed to the Soar Engine.

Property Listener. Through this component, coordina-
tion mechanisms can register the names of the prop-
erties they are interested in. Whenever a registered
property is added, changed, or removed, the event is
translated and passed to the Soar Engine.

Command. The command component encapsulates in-
terface with other JAF components. When a Soar rule
requires to schedule a task structure, terminate cur-
rently executing action, ... etc. it asks the Command
components.

Sour Prublem Splver

Mennuge
Lictener

Prupeny
Lintener

et tam
Rates

Commund

Fropeiy changed
WU Emae= -

Figure 5: Components of the coordination module



5. RESULTS

In our results we explore the relationships between uncer-
tainty and teamwork miscoordination. Three coordination
approaches that rely on the GPGP Framework are consid-
ered. In the first approach, both the monitoring framework
and the synchronization mechanism are disabled. The sec-
ond approach is same as the first approach but with the syn~
chronization mechanism added. The third approach, which
is our proposed approach, has both, the synchronization
mechanism and the monitoring framework, enabled. Us-
ing the Attack City case study, the three approaches were
tested under different degrees of uncertainty (to be described
shortly) and at different team sizes. For each combination
(team size and degree of uncertainty) 10 simulation runs
were executed and averaged to compute different measures.
First we will define two terms: degrees of uncertainty and
teamwork miss-synchronization. Next we present the re-
sults, which ensure the need for a monitoring framework in
addition to synchronization.

5.1 Degrees of Uncertainty

In TAMES, uncertainty is modeled through the probabil-
ity distributions of quality, cost, and duration. We will focus
our attention on duration uncertainty as one of the major
causes of teamwork miscoordination. We tested different co-
ordination approaches against four duration distributions:

e Distribution A: P(5)=1 (i.e. the probability that the
method duration takes 5 time units equal 1)

e Distribution B: P(4)=0.9 and P(14)=0.1
e Distribution C: P(4)=0.8 and P(9)=0.2
» Distribution D: P(3)=0.5 and P(7)=0.5

We deliberately adjusted each distribution such that the
average duration remains constant, 5, to focus attention on
the uncertainty.

5.2 Teamwork Miss-Synchronization

In order to evaluate teamwork coordination mechanisms,
we need to define a measure of teamwork miss-synchronization.
Previous work of Tambe did not define formal measure of
teamwork miss-synchronization (Tambe focused on commu-
nication costs). We propase below a scalar measurement for
teamwork miss-synchronization (TMSM) based on heuris-
tics.

Teamwork miss-synchronization occurs when members M
of team O either start or terminate a team task T; at differ-
ent times. In other words, © split into subteams S;;, Sia, -, Sin;
where n; is the number of subteams for T;. Function C(©)
returns cardinality of a team © (number of members). The
proposed measure, TM SM (T:), should satisfy the following
criteria for two tasks T1 and Tz performed by same team ©:

e If n; =1 then TMSM(T;) =0
e If ny > n2 then TMSM(T)) > TMSM(T3)

e If n; = ny = n, and 3S); such that vj,1 < j <
n,C(S1:) > C(S2;) then TMSM(T1) < TMSM(T2)

We define our measure of teamwork miss-synchronization
for task Ti to be:

292

TMSM(T)=1- ; (_CC(_(%)I)

This measure is domain independent compared to actual
penalties imposed on miss-synchronized team, which is do-
main specific.

5.3 Lower Teamwork Miss-Synchronization

Figure 6 shows average TMSM when synchronization mech-
anism is disabled (original GPGP). Average TMSM is plot-
ted against number of agents per team and for different de-
grees of uncertainty. Generally, the uncertainty decreases
from degree D down to degree A. The curve M AX shows
the maximum miss-synchronization (when all agents start
as one team and end up with each agent consitituting a
seperate subteam). As expected, as number of agents in-
creases, TMSM increases. It is less probable that all agents
start a team task at the same time as number of agents in-
creases. This observation becomes more evident from figure
7, which shows the average possibility (without explicit coor-
dination) that all members of a given task start/terminate
their team task at the same time. In addition, an early
miss-synchronization will, usually, cause subsequent miss-
synchronization in following team tasks (hence increasing
the overall average TMSM). The curve plotted for degree
of uncertainty D is the closest to the upper bound (M AX
curve), confirming that as uncertainty increases TMSM in-
creases. With synchronization mechanism enabled, TMSM
drops to zero assuming reliable communication.

1
Y RS
os k- X

TMSM

number of agenta

Figure 6: TMSM without synchronization

—o—a
—%—-B
-.-*... c
—x—D

prohability of mins-synch.

1 2 3 4q S 6 7

Figure 7: Probability of joint start/termination
without synchronizing

5.4 Lower Average Execution Time

Figure 8 shows average execution time per method di-
vided by mean (for normalization) and compares the three
approaches under degree of uncertainty D. In this degree
of uncertainty, 50% of the time the task takes 3 cycles, i.e.



the agent finishes early. In the other 50%, the agent fin-
ishes late. By execution time we mean the time interval
since an agent starts executing a method in service of a
team task and until the same agent believes the team task of
service has completed. We ignored communication latency,
which is negligible compared to methods duration (flying to
a city, returning to base, ... etc.). For our approach (with
synchronization and monitoring enabled) a fixed achieve-
ment condition is used, team-task quality ge 9. We mod-
eled each agent’s contribution by 5 quality units; hence at
least two agents must complete the task before considering
it achieved. As expected, as number of agents per team
increases, redundancy increases and hence our proposed ap-
proach shows more savings (it becomes more likely that two
members of the team finishes early). With only synchroniza-
tion mechanism enabled, average execution time increases as
number of agents increases. This is mainly because agents
that finish early must wait for slower agents to finish. Using
only the GPGP’s original mechanism (with no synchrniza-
tion or monitoring), average execution time is independent
of the number of agents. This is because agents are inde-
pendent from each other. The upper limit of the average
execution time is 1.4, which is the maximum possible du-
ration of a method, 7, divided by the expected duration, 5.
Similarly, the lower limit of the average execution time is
0.8, which is the minimum possible duration of a method,
3, divided by the expected duration, 5.

15

i3 B

—e— Original GPGP
- GPGP with synch.

03 —#— GPGP with synch.
01 and monitor.

average enscution time
{normalizad)
-]
~

2 3 4 5 [ ] 7
number of agenis

Figure 8: Average execution time for the three ap-
proaches

5.5 Conclusion

This work illustrates how GPGP and its underlying model,
TAEMS, can be used to reason about teamwork. It takes
STEAM as an example of teamwork oriented coordination
framework, then illustrates how GPGP along with TAEMS
can be extended to provide same capabilities. The imple-
mented coordination module substrate supports rule-based
coordination mechanisms, thus providing more fexibility in
the design of coordination mechanisms. A new GPGP mech-
anism has been added to support synchronization between
team members. We also proposed extensions of TAEMS to
explicitly support achievement and unachievability condi-
tions of tasks and implemented a framework supporting it
to monitor team tasks performance.

‘While achievement and unachievability conditions are orig-
inally used for recognizing the termination of a task, how
these conditions affect the scheduler performance is an in-
teresting area of future work. Normal schedulers unaware of
these conditions might prefer schedules that are unachiev-
able from the start. This triggers the need for more flexible
schedulers.

293

For large teams with hundreds of members, scalability
is a key issue. It is clear from the experiments that im-
posing a hierarchical organizational structure over TAEMS
task structure is essential to cope with complexities. While
the presented framework supports hierarchical organization
of teams and subteams, we aim at testing our framework in
large variety of domains to measure the generality, flexibil-
ity, and reusability of our framework.

6. ADDITIONAL AUTHORS

Additional authors: Thab Talkhan (Computer Eng. Cairo
Universily, email: ihat@alphal-eng.caireo.eun.eg).

7. REFERENCES

[1] S. Abdallah. Soar2Java package. World Wide Web,
http://www.geocities.com/sharios/soar.htm, 2000.

(2] K. Decker. Environment Centered Analysis and Design
of Coordination Mechanisms. Ph.D. thesis, University

. of Massachusetts, 1995.

[3] K. Decker and V. Lesser. Designing a family of
coordination algorithms. In JCMAS, 1995.

[4] B. Grosz and S. Kraus. Collaborative plans for
complex group actions. Artificial Intelligence,
86(2):269-357, 1996.

(5] B. Horling. A Reusable Component Architecture for
Agent Construction. M.Sc. thesis, University of
Massachusetts, 1998.

[6] J. Laird, A. Newell, and Rosenbloom. Soar: An
architecture for general intelligence. Artificial
Intelligence, 33(1):1-64, 1987.

[7] V. Lesser and et al. Evolution of GPGP Domain
‘Independent Coordination Framework. Technical
Report 1998-5, University of Massachunsetts, 1998.

[8] V. Lesser and et al. TAEMS White Paper. World
Wide Web,
http://mas.cs.umass.edu/research/taems/white/,
1998.

[9] H. Levesque and et al. On acting together. In
AAAI-90, Boston, MA, 1991.

[10] P. Nayak and et al. Comparison of the rete and treat
production matchers for soar. In 4AAI-88, pages
693698, 1988.

[11] M. Tambe. Towards fiexible teamwork. Artificial
Intelligence Research, 7-83-124, 1997.

[12] T. Wagner and et al. Investigating Interactions
Between Agent Conversations and Agent Control
Components. Technical Report 1999-7, University of
Massachusetts, 1999.



