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ABSTRACT 
This  paper  addresses the  problem of coordinat ing  a group 
of agents involved in a team. To achieve flexible team- 
work, agents  should synchronize their work and  moni tor  
their performance  to avoid r e d u n d a n t  work_ General ized 
Par t ia l  Global  P l a n n i n g  ( G P G P )  is one of the most  common 
techniques used in coordina t ing  cooperative agents, how- 
ever, no technique is wi thout  l imita t ions .  Our  work adopts 
some concepts of S T E A M  to overcome some of G P G P  limi- 
tat ions.  In  par t icular ,  we suggest adding coordinat ion mech- 
anisms to G P G P  and  ex tending  TAEMS,  the model under-  
lying G P G P ,  to facilitate such mechanisms.  The  work has 
successfully been implemented  using J A F  architecture.  The  
coordinat ion mechanisms are wr i t t en  as Soar rules where we 
implemented  a J A F  componen t  tha t  implements  the Soar 
engine. Analysis  of s case s tudy  is presented along with 
exper imenta l  results  to i l lustrate  the power of the proposed 
work. 

Categories and Subject Descriptors 
H.4.m [ I n f o r n a a t i o n  Sys tenaa] :  Miscellaneous 

General Terms 
Algori thms,  Design, Reliability, Languages 

Keywords 
Coordinat ion ,  To~Lmwork, G P G P ,  STEAM,  SOAR. 

1. INTRODUCTION 
The  need to coordinate  different agents in order to reduce 

r e d u n d a n t  work, maximize  ut i l iza t ion of shared resources, 
increase rel iabil i ty of the system and  enhance  characteristics 
of the overall solut ion is one of the  ma in  issues of mul t i -agent  
systems research. Cooperat ive  agents have shared goals tha t  
they  p lan  to achieve. Generalized Part ial  Global P l ann ing  
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( G P G P )  [3] is one of the techniques t ha t  provide coordina- 
t ion among  cooperat ive agents. It  consists of modula r  coor- 
d ina t ion  mechanisms tha t  use TA EMS  model  (Task Anal-  
ysis, Env i ronmen t  Modeling, and  Simula t ion)  [2] to reason 
about  the env i ronment .  The  result  of coordina t ion  is a set 
of conLrainsts tha t  modu la t e  the  opera t ion  of the agent 's  
local scheduler. However, the G P G P  mechanisms do no t  
address special coordina t ion  needs in ease of agents form- 
ing explicit teams.  T a m b e  argued tha t  to ob ta in  flexibility 
and  reliability in teamwork,  explicit  teamwork model ing is 
required [11]. His implemented  teamwork  model,  STEAM,  
implements  a hybr id  of jo in t  in ten t ions  [4] and  SharedPlan  
theories [9]. 

In this work we suggest adding  several coordinat ion  mech- 
anisms, which implemen t  some of the concepts  in t roduced  
in S T E A M ,  to GPGP-  Some modif icat ions of some of the 
G P G P  s t anda rd  mechanisms are also proposed. These ex- 
tensions cause be t t e r  synchroniza t ion  between te~rn mem-  
bers a nd  reduce redundamt teamwork. Th roughou t  this pa- 
per we will use a simple case s tudy  for i l lustrat ion,  the At- 
tack City domain .  I t  is required to a t tack a city by an army 
consist ing of two teams: air team with N members ,  emd 
ground team with M members .  The  a t tack has two forms: 
air a t tack and  ground at tack.  Air a t tack is unde r t aken  by 
the air team. The  air a t tack  mission consists of three sub-  
tasks: fly to city, a t tack city mi l i ta ry  points ,  and  finally 
re tu rn  back go base. G r o u n d  at tack is unde r t aken  by the 
ground team and  is divided into two subtasks:  move to city, 
and takeover city. Air a t tack facilitates the mission of the 
ground team by  e l imina t ing  much of possible resistance (i.e. 
air a t tack should complete  before the s tar t  of ground a t tack 
to increase ground a t tack  probabi l i ty  of success; however, 
the ground team might  s tar t  its attar, k before air a t tack 
complet ion with more  risk). 

In  the following sections we hackle this  case s tudy  using 
both  G P G P  and  S T E A M  frameworks, i l lus t ra t ing the  ma in  
l imi ta t ions  of each. Section 2 presents an overview of G P G P  
and its under ly ing  model,  TAEMS followed by some of its 
l imi ta t ions .  Section 3 describes briefly S T E A M  Framework 
along with its ma in  l imitat ions.  I mp l e me n ted  extensions 
to G P G P  are discussed in section 4. Empir ical  results  are 
presented in section 5 followed by the conclusion and  future  
work directions. 

2. GPGP 
G P G P  defines a set of modu la r  coordinat ion  mechanisms 

using a domain  independen t  model ,  TAEMS.  These  mech- 
anisms can be  used in any combina t ion  depending  on the 
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domain of concern. The next subsections describes briefly 
TAEMS and GPOP mechanisms along with their limita- 
tions. 

2.1 T A E M S  
TAEMS model is composed of tasks and subtasks orga- 

nized in a tank ,tructure hierarchy (also called task group). 
The leaves of the hierarchy are the methods, which are exe- 
cutable actions. Each method is characterized by three di- 
mensions: duration, cost, and quality. Duration is the time 
spent executing the method. Cost represents the penalties 
of executing the method. Quality is an abstract measure to 
quantify the success of the method. Uncertainty of the three 
climensions is modeled through discrete probability distri- 
butions. Tasks consist of subtasks. Ouality accumulation 
functions (QAFs) define how the quedities of subtasks relate 
to the super task quality, e.g., q_sum QAF means the qual- 
ity of the super task is the summation of subtasks'  qualities. 
Tasks are linked by interrelationJhipa (also called non-local 
effects) that model interdependencies between tasks [2, 7, 
8]. Figure 1 shows a simplified TAEMS model for Attack 
City domain. Tasks are shown as rounded edge rectangles 
(e.g. attack city) while methods are shown as rectangles (e.g. 
fly_l). QAFs are indicated below tasks' rounded rectangles 
(e.g. Attack_City task has q_max QAF). Two types of non- 
local effects are shown, ]aci|ilatea (e.g. the dashed arrow 
from Air_Attack task to Ground_Attack task), and enables 
(e.g the solid arrow from Fly_to_City to Attack_Targets). 
Enables interrelationship means that affecting task (source 
of the arrow) must complete successfully before the start 
of the affected task (destination of the arrow). Facilitates 
means it is advantageous for the affecting task to complete 
before the start of the affected task though not necessary. 

"~1_2~ " ~ ~ - - ~ ' -  ~ ~ ~-_, 

Figurm 1, T A E M S  m o d e l  for A t t a c k  C i t y  d o m a i n  

2.2 C o o r d i n a t i o n  M e c h a n i s m s  
Based on TAEMS model five coordination mechanisms 

were defined. The purpose of these coordination mecha- 
nisms is to recognize tasks' interdependencies and create 
corresponding commitments and constraints, which in turn 
is passed to the local scheduler to produce globally better 
schedules [3, 7]. The first mechanism deals with exchang- 
ing private views in order to construct a more global view. 
The second mechanism handles simple redundancy where a 
task's quality is the maximum of its subtasks'  qualities and 
the.so subtasks are also methods. Third mechanism tackles 
results exchange. Fourth and fifth mechanisms create com- 
mi tments  in response to the presence of interrelationships 
(mainly enables and facilitates). 

2.3 L i m i t a t i o n s  o f  GPGP 
The main limitations of G P G P  are as follows: 

• Representing the contribution of each member (agent), 
in a given team task, by a subtask is inconvenient for 
large team~ consisting of hundreds and even thousands 
of agents (e.g. the number  of leaves in figure 1 grows 
as number  of members per team increases). 

• TAEMS does not provide an explicit way to express 
achievement of tasks performed by teams. For in- 
stance, for the subtask attack_targets, it might be suf- 
ficient, to successfully destroy 70% of the targets. The 
lack of capability of expressing achievement conditions 
of overall team task might result in team members try- 
ing to complete their part  in an already achieved task. 

• Predefined GPGP mechanisms neither support syn- 
chronization of team members nor handle teamwork 
redundancy. Mis,q-synchronizing team members may 
cause severe penalties on teamwork. For instance, if 
an air agent started flying to city without making sure 
that  other air agents also started flying to city, there 
is a large threat that the impatient air agent will be 
destroyed. Redundancy in teamwork is essential and 
is required all through the execution of the team task, 
and until  the successful completion of the team task. 
In GPGP, redundancy avoidance occurs before start- 
ing the execution. Moreover, this simple mechanism 
deals with tasks having QAF max, i.e. only one sub- 
task is necessary. In teamwork domains, redundancy 
is observed in tasks with QAF sum, i.e. each subtask 
(controlled by a member of the team) contribute some- 
how to the overall ~.eam's task and as more subtasks 
succeed, the quality of the team task increases. 

3. S T E A M  
STEAM assumes the presence of a common team plan 

shared by members of the team. The plan is presented as 
a hierarchy of operators. Figure 2 shows operator hierarchy 
for the Attack City domain. The key novelty of STEAM is 
the introduction of tp~rn operators. Team operators define 
operators that should be performed by a team not individu- 
ais. These operators require special t reatment in that  mem- 
bers must  synchronize before starting execution and once 
synchronized a member can not stop executing the opera- 
tor until ensuring mutual,  synchronized termination for all 
members. This is done through establishing a commitment 
protocol. A team task is considered terminated if it is be- 
lieved to be achieved, unachievable, or irrelevant. STEAM 
attach termination conditions, which when eveduates to true 
the team task is believed to be terminated. Main limitations 
of STEAM are as follows: 

• Roles relationships, introduced in STEAM, provide 
limited expressiveness. For instance, partied ordering 
between fly_to_city and attack_targets subtasks (fly_to_ 
city precedes attack_targets) can only be modeled im- 
plicitly in the preconditions of the team operators: 
fly_to_ city and attack_targets. 

• Uncertainty is not modeled explicitly except for com- 
munication. This limits the agents' ability to reason 
about 'risky' alternatives that  might, exceptionedly, 
lead to great advantages. 

• Reactive nature  of this model provides flexibility in 
responding to unexpected events. However, it is not 
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s t r a igh t fo rward  to use this  m o d e l  in reasoning  a b o u t  
t e m p o r a l  cons t ra in t s  (deadl ines ,  ear l ies t  s t a r t  t i m e , . . .  
e tc .)  in a s t r a igh t fo rward  way. 

• T h e  es tabl ish  c o m m i t m e n t s  p ro toco l  coo rd ina t ion  cost  
(communic&tion a n d  process ing)  is p ropo r t i ona l  to n a 
where  n is n u m b e r  of  agents  in a t eam.  This  d i sadvan-  
t age  is more  severe  for doma ins  us ing  po in t  to  po in t  
communica t i on .  

IAt mdt_Cttd 
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F i g u r e  2:  S T E A M  o p e r a t o r  h i e r a r c h y  f o r  A t t a c k  
C i t y  dorn ,d ,~  

4 .  P R O P O S E D  E X T E N S I O N S  T O  G P G P  

I t  is n o t e d  t h a t  G P G P  solves mos t  of S T E A M  l imi ta -  
t ions.  F i r s t ,  the  G P G P  f ramework  is more  express ive  in 
descr ib ing  in t e rdependenc ie s  be tween  t a sks  t h a n  S T E A M .  
Second,  T A E M S  provides  am expl ic i t  mode l  of  u n c e r t a i n t y  
( t h rough  p r o b a b i l i t y  d i s t r i bu t i ons  of  qual i ty ,  dura t ion ,  a n d  
cos t ) ,  which enables  agents  to  reason a b o u t  r i sky  tasks  hav-  
ing h igh  profi ts ,  aga ins t  safe tasks  wi th  lower profi ts .  T h i r d ,  
in G P G P  agen t ' s  ac t ions  are  scheduled,  enab l ing  agents  to  
reason  a b o u t  d~Lration a n d  i m p o s e d  deadl ines .  Hence,  we 
have chosen the  G P G P  f ramework  as the  bas is  of  our  work. 
We presen t  some ex tens ions  to  G P G P  mechmaisms a n d  i ts  
unde r ly ing  T A E M S  model ,  a n d  t hen  give a br ie f  overview 
of  our  i m p l e m e n t e d  agent  a rch i tec ture .  

4 . 1  T A E M S  E x t e n s i o n s  

T h e  p r o p o s e d  ex tens ions  to T A E M S  axe two: mode l ing  
o rgan iza t iona l  in fo rmat ion  and  defining mon i to r ing  condi-  
tions. 

4.1.1 Modeling OrganizationaI Information 
T A E M S  specif icat ion [8] does  no t  p rov ide  a c o m p a c t  way 

of  r ep resen t ing  t eams  a n d  the  con t r i bu t i on  of  each t eam 
m e m b e r  in a t e am t a sk  (first l imi t a t ion ) .  W e  suggest  a new 
T A E M S  objec t ,  t e m p l a t e .  A t e m p l a t e  is any  T A E M S  o b j e c t  
def ined over  a whole  t e a m  not  only  a single agent .  In  gen- 
eral ,  this  ex tens ion  d rops  the  n u m b e r  of ob j ec t s  r equ i red  to 
define a t a s k  s t r u c t u r e  to a f ixed n u m b e r  of  t empla te s .  For  
example ,  in t ask  flF_to_citF, each agent  Ai  con t r ibu t e s  b y  
execu t ing  his m e t h o d  Fly_i. A le tup | a t e  Fly_trap! replaces  
m e t h o d s  FIll-I, . . .  , and F!y_N. As shown in f igure 3 t h e  
n u m b e r  of  nodes  at  the  lowest level in the  t ask  h ie rarchy  
has  d r o p p e d  f rom (3N + 2 M )  to only  5 nodes.  M e t h o d  
t e m p l a t e s  a re  shown as circles . 

4.1.2 Defining Achievement  and Unachiet, ability Con- 
ditions f o r  Team Tasks 

T A E M S  speci f ica t ion does  not  define condi t ions  of  achieve- 
m e n t  a n d / o r  unach ievab i l i ty  for a task.  In s t a n d a r d  T A E M S ,  
there  is only  one ( impl ic i t )  ach ievement  condi t ion  app l ied  

lzm] 

F i g u r e  $: T A E M S  m o d e l  fo  A t t a c k  C i t y  d m n a i n  w i t h  
t e m p l a t e s  i n t r o d u c e d  

to  all tasks :  t a sk  qua l i ty  is g rea te r  t han  zero. However ,  
T A E M S  st i l l  p rov ides  us  wi th  a b s t r a c t  measu res  ( refer red  to  
a.Fterwards as monitoring tet'rnJ) t h a t  can  be  used  to  spec-  
ify ach ievement  a n d / o r  uum-h~evability cond i t ions  of  a t e a m  
task,  such as: 

• E x p e c t e d  d i s t r i bu t ions  I ofqualiLT, du ra t ion ,  cost ,  s t a r t  
t ime a n d  finish t lme .  

• U n c e r t a i n t y  r ep re sen t ed  in p r o b a b i l i t y  d i s t r i bu t ions  of 
qual i ty ,  du ra t ion ,  -.etc. 

• Cu r r e n t  (ac tua l )  values  of qual i ty ,  du ra t ion ,  cost ,  s t a r t  
t ime  and  finish t ime.  

For  example ,  t h e  following cond i t i on  specifies t ha t  a task  
T is unachievable  if  average e x p e c t e d  qua l i ty  is less t h a n  
100, average e x p e c t e d  cost  g rea te r  t han  I0  a n d  p robab i l i t y  
t h a t  T misses  dead l ine  is grea ter  t han  0.7: [q(T) [ 100 A N D  
c (T)  J. 10 A N D  p ( f t (T ) / . d l (T ) )  Z 0.7] where  q (T)  a n d  c (T)  
are  average e x p e c t e d  qua l i ty  a n d  cost  ( respec t ive ly)  o f  task  
T , f t (T)  is e x p e c t e d  d i s t r i bu t ion  o f  finish t ime  of  T,  d l (T)  
is dead l ine  cons t r a in t  over T .  

Th is  clear  emd formal  def ini t ion of  mon i to r i ng  t e rms  can 
b e  c on t r a s t e d  to the  a p p r o a c h  used  in S T E A M  where  moni-  
t o r ing  condi t ions  can  b e  of  any  form. T h e  lack of  formal  def- 
in i t ion  degrades  t h e  r eusab i l i t y  of  coo rd ina t ion  mechan i sms  
t h a t  r e s p o n d  to  a specific mon i to r ing  condi t ion .  For  in- 
s tance ,  we can  define a coo rd ina t i on  m e c h a n i s m  t h a t  warns  
t e a m  m e m b e r s  when the  p r o b a b i l i t y  t ha t  thei r  t eam task 
becomes  uncha ievah le  goes above  0.6. 

4 . 2  G P G P  E x t e n s i o n s  

We suggest  th ree  ex tens ions  to G P G P  mechan i sms :  a new 
synchron iza t ion  mechan i sm,  a new m o n i t o r i n g  f ramework,  
and  mod i fy ing  the  "communi , -~ te  resu l t s  ~ exis t ing  mecha-  
n ism.  We have i m p l e m e n t e d  t h e  t h r e e  sugges ted  extens ions .  

4.2.1 Adding Synchronization mechanisms 
W e  a d d e d  a new G P G P  mechan i sm to ensure  synchro-  

n iza t ion  be tween  t eam m e m b e r s ,  which is b a s e d  on eJtab- 
iiJh c~nmitmentJ pro toco l  ( E C P ) .  F i g u r e  4 shows p a r t  of  
the  p ro toco l  as a f ini te  s t a t e  machine .  I t  is n o t e d  t h a t  the  
comple t e  pro tocol  has  two roles:  t h e  t e am leader  and  a nor-  
rea l  m e m b e r  of  the  t eam.  T h e r e  is a s imi la r  m e c h a n i s m  for 
t e r m i n a t i n g  t e am tasks.  A p p a r e n t  f rom figure 4 the  leader  
role  is cr i t ica l  (in synchron iza t ion  a n d  o t h e r  mechan i sms) ;  
hence  we a d d e d  a recovery mechan i sm t h a t  de t ec t s  l eader  

SThe e x p e c t e d  p roba i l i t y  d i s t r i bu t ion  given t h e  cu r ren t  be-  
liefs of t he  agent  (e.g. schedules ,  c o m m i t m e n t s ,  . . .  e tc . )  
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failure (using t.imeouts) and replaces the failing leader with 
a functioning agent (according to a static leadership hierax- 
chy). 
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m i t m e n t  p r o t o c o l  

4.2.2 Add ing  Moni tor ing Frameworl¢ 

We also arlded a monitoring framework to monitor team 
task termination. Once an agent believes either its ~eam has 
achieved the currently executing task or the currently exe- 
cuting task is unachievable, the agent terminates its par~ of 
it. Our monitoring framework differs from STEAM's  moni- 
toring framework in the use of monit.oring terms. It should 
be noted that  we did not implement recovery mechanisms 
introduced in STEAM. Currently, once an agent recognizes 
the task is unachievable it terminates it and goes on exe- 
cuting any remaining, achievable task. We plan to add a 
comprehensive recovery capability in the future. 

4.2.3 Modi fy ing Communicat ing  Resul ts  
In G P G P  second mechanism for communicating results, 

each affecting agent (committed to execute an affecting task) 
is responsible for communicat ing results to each affected 
agent (exemtting an affected task). For instance, for the 
attack_targets task each air agent is responsible for commu- 
nicating the success (or failure) of his mission to: 

• Each air agent, due to the enables interrelationship 
between attack_targets and return_to_base, resulting 
in N z messages. 

• Each ground agent, due to the facilitates interrelation- 
ship between sir_attack and ground_attack, resulting 
in M x IV messages. 

We took advantage of the teams' organization and modi- 
fied the mechanism such that only the leader communicates 
results on behalf  of his team to aJYected agent.s that are not 
members of the team (members of the team have the same 
knowledge of the team leader). So in the Attack City case 
study, each air agent will be responsible for communicating 
the success (or failure) of its mission to each air agent, due to 
being member of the air team, still resulting in N 2 messages. 
However, only the leader of the air team is responsible for 
communicat ing the results of the sir .at tack task, after its 
termination, to each ground agent, resulting in M messages 
instead of 3M x N messages. 

4 .3  I m p l e m e n t a t i o n  

We used JAF [5] framework as basis for our implemen- 
tation. We used some of the s tandard JAF components,  
e.g- the scheduler component (to schedule the tasks given 

the new contrainsts), the communicat ion component (to en- 
able agents to communicate together), . . .  etc. We im- 
plemented a coordination component,  which provides basic 
functionality for coordination mechanisms through a com- 
mon subs,rate.  Coordination mechanisms themselves are 
implemented as Soar rules [6]. Recent work, namely GPGP2  
[12], implemented this substrate as a Fini te  State Machine 
engine. Coordination mechanisms were defined in terms of 
finite machine scripts tha t  is parsed and  compiled and linked 
to the substrate java code. We took a completely dilTerent 
approach. Our coordination substrate encapsulates a Soar 
[6] compiler and run- t ime engine. This provides more flexi- 
bility as coordination mechanisms can be writ ten in the form 
of production rules. Furthermore, caching of partial match- 
ing results is supported (through K E T E  network). This par- 
ticular property is impor tant  to facilitate the monitoring of 
achievement and unachievability conditions, which is con- 
tinually changing throughout  the execution. Figure 5 shows 
the anatomy of the module_ A brief description of each com- 
ponent  of the module is given below. 

• Soar Engine. This is the core of the coordination mod- 
ule. It  implements Rote network algorithm []0] and 
the Soar architecture. Coordination mechanisms are 
writt.en as Soar product.ion rules that is compiled and 
executed by our implemented engine. More details 
about our implementat ion can be found in [1]. 

• Soar/Java T r a ,  la,or. This component translates data 
structures from java classes to the corresponding Soar 
working memory elements (WMEs) and vice versa. It  
is used whenever a data  structure should be transferred 
to/from the Soar engine. 

• Message Liatener. This component  allows coordina- 
tion rules (mechanisms) to register the message header(s) 
they are interested in. This is impor tant  to avoid 
translating unimpor tan t  messages. When a message 
with a registered header is received, the message is 
translated and passed to the Soar Engine. 

• Property Listener. Through this component,  coordina- 
tion mechanisms can register the names of the prop- 
erties they axe interested in. Whenever a registered 
property is added, changed, or removed, the event is 
translated and passed to the Soar Engine. 

• Command. The command component encapsulates in- 
terface with other JAF components.  When  a Soar rule 
requires to schedule a task structure,  terminate cur- 
rently executing action, . . .  et.c. it asks the Command 
components. 

S|Ju r  P r l l b | em  . qp l~©r  
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5. RESULTS 
In  our results we explore the relationships between uncer-  

ta inty  emd teamwork miscoordinaLion. Three coordin&Lion 
approaches that  rely on the G P G P  framework are consid- 
ered. In  the first approach, both  the moni tor ing  framework 
and  the  synchronizat ion mechanism are disabled. The  see- 
ond  approach is same as the  first approach b u t  with the syn- 
chronizat ion mechanism added. The  third approach, which 
is our  proposed approach, has both,  the synchronizat ion 
mechanism and  the moni to r ing  framework, enabled. Us- 
ing the At tack City case study, the  three approaches were 
tes ted unde r  different degrees of uncer ta in ty  (to be described 
shortly) and  at different team sizes. For each combinat ion  
( team size and  degree of uncer ta in ty)  10 s imulat ion runs  
were executed emd averaged to compute  different measures. 
Firs t  we will define two terms:  degrees of uncer ta in ty  and  
teamwork miss-synchronizat ion.  Next we present  the re- 
suits, which ensure the need for a moni to r ing  framework in 
arldition to synchronizat ion.  

5.1 D e g r e e s  of  U n c e r t a i n t y  
In  TAMES,  uncer ta in ty  is modeled through the probabil-  

ity dist.ribut.ions of quality, cost, and  durat ion.  We will focus 
our a t t en t ion  on dura t ion  uncer ta in ty  as one of the major  
causes of teamwork miscoordinat ion.  We tested different co. 
ord ina t ion  approaches against  ['our dura t ion  dis tr ibut ions:  

* Dis t r ibu t ion  A: P (5 )=1  (i.e. the probabi l i ty  that  the 
me thod  dura t ion  takes 5 t ime uni ts  equal 1) 

• Dis t r ibu t ion  B: P(4)=0 .9  and  P(14)=0.1 

• Distribution C: P(4)=0 .8  and  P(9)=0.2  

• Dis t r ibu t ion  D: P(3)=0-5  and  P(7)=0 .5  

We del iberately arUnsted each dis t r ibut ion such that  the 
average dura t ion  remains  constant ,  5, to focus a t ten t ion  on 
the uncer ta in ty .  

5.2 T e a m w o r k  M i s s - S y n c h r o n i z a t i o n  
In  order to evaluate teamwork coordinat ion mechanisms,  

we need to dei~ne a measure of teamwork miss-synchronizat ion.  
Previous  work of Taxnbe did not  define formal measure of 
teamwork miss-synchronizat ion (Tambe focused on commu- 
nica t ion costs). We propose below a scalar measurement  for 
teamwork miss-synchronizat ion (TMSM) based on heuris- 
tics. 

Teamwork miss-synchronizat ion occurs when members  M 
of team 6 ei ther  s ta r t  or t e rmina te  a team task 7',- at  differ- 
ent  times. In  other words, O split  into sub teams  S i l ,  ...qi~,, -, ~'ini 
where n l  is the n u m b e r  of sub teams  for 7"/. Func t ion  C ( e )  
re tu rns  carclinallty of a team O (number  or members) .  The  
proposed measure,  TM,.qM(Ti) ,  should satisfy the following 
cri teria for two tasks Tl and  TI performed by saxne temn O: 

• If  n ;  = I then T M S M ( T t )  = 0 

• I f  nx > 712 then T M S M ( T t )  > TMSM(T2)  

e If  n~ = n~ -- 71,, arid 3,q]i such tha t  Vj, I _< j _< 
n ,  G(Sxi) > (7(S~$) then T M S M ( T t )  < T M S M ( T z )  

We deline our measure of teamwork miss-synchronizat ion 
for task Ti  to be: 

( c(s,j) 
T M S M ( T , ) = I - -  .ffi ~, C ( e )  / 

This  meemure is domain  independen t  compared  to actual  
penal t ies  imposed on miss-synchronized team, which is do- 
ma in  specific. 

5.3 L o w e r  T e a m w o r k  M i s s - S y n c h r o n i z a t i o n  
Figure 6 shows average TMSM when synchronizat ion mech- 

anism is disabled (original G P G P ) .  Average T M S M  is plot- 
ted against  number  of agents per t eam a nd  for different de- 
grees of uncer ta inty .  Generally,  the uncer ta in ty  decreases 
from degree D down to degree A. T h e  curve M A X  shows 
the m a x i m u m  miss-synchroniT.ation (when all agents  s tar t  
as one team and  end  up with each agent cons i t i tu t ing  a 
seperate sub team) .  As expected, as n u m b e r  of agents in- 
creases, TMSM increases. I t  is less probable  tha t  all agents 
s tar t  a team task at  the same t ime as n u m b e r  of agents in- 
creases. This  observation becomes more  evident  from figure 
7, which shows the average possibil i ty (withoxlt explicit coor- 
d inat ion)  t ha t  all members  of a given task s t a r t / t e r m l n a t e  
their team task at the same time. In  addi t ion,  an eaxly 
miss-synchronizat ion will, usually, cause subsequent  mi.~- 
synchronizat ion in following t eam tasks (hence increasing 
the  overall average TMSM).  The  curve p lo t ted  for degree 
of uncer ta in ty  D is the closest to the  uppe r  b o u n d  ( M A X  
curve), confirming tha t  as unce r t a in ty  increases TMSM in- 
c r ~ .  W i t h  synchroniza t ion  mechanism enabled,  TMSM 
drops to zero assuming reliable communica t ion .  

| ~" .. ~" ~_~___~_- - - -x  ...... • ..... c 
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F i g u r e  6 :  T M S M  w i t h o u t  s y n c h r o n i z a t i o n  
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F i g u r e  7: P r o b a b i l i t y  o f  j o i n t  s t a r t / t e r m i n a t i o n  
w i t h o u t  s y n c h r o n i z i n g  

5.4 L o w e r  Ave rage  E x e c u t i o n  T i m e  
Figure 8 shows average execut ion t ime  per me thod  di- 

vided by  mean  (for normal iza t ion)  and  compares the three 
approaches under  degree of unc e r t s i n t y  D. In this degree 
of uncer ta inty ,  50% of the t ime  the  task takes 3 cycles, i.e. 
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the a~ent finishes early. In the other 50%, the agent fin- 
ishes late. By execution time we mean the time interval 
since an agent starts executing a method in service of a 
team task and until  the same agent believes the team task of 
service has completed. We ignored communication latency, 
which is negligible compared to methods duration (flying to 
a city, returning to base, . . .  etc.). For our approach (with 
synchronization and monitoring enabled) a fixed achieve- 
ment  condition is used, team-task quality go 9. We mod- 
eled each agent's contribution by 5 quality units; hence at 
least two agents must complete the task before considering 
it achieved. As expected, as number  of agents per team 
increases, redundancy increases and hence our proposed ap- 
proach shows more savings (it becomes more likely that two 
members of the team finishes early). With 0nly synchroniza- 
tion mechanism enabled, average execution t ime increases as 
number  of agents increases. This is mainly because agents 
that  finish early must  wait for slower agents to finish. Using 
only the GPGP ' s  original mechanism (with no synchrniza- 
tion or monitoring), average execution time is independent 
of the number  of agents. This is because agents are inde- 
pendent from each other. The upper limit of the average 
execution time is 1.4, which is the maximum possible du- 
ration of a method, 7, divided by the expected duration, 5. 
Similarly, the lower limit of the Average execution time is 
0.8, which is the min imum possible duration of a method, 
3, divided by the expected duration, 5. 

1.3 - "  "'-" " . . . . . . . . . . . .  • Original GPGP 

! i 6.5°"7 J - - - i - - -  GPGP with synch. 

- 0.3 .( GPGPwlth synch. 
o.1 and monitor. 

-o.1 2 3 4 S 8 7 
number of mgwnls 

F i g u r e  8T A v e r a g e  e x e c u t i o n  t i m e  for the  t h r e e  ap-  
proacJae- 

5.5 Conclusion 
This work illustrates how GPGP and its underlying model, 

TAEMS, can be used to reason about teamwork. It  takes 
STEAM as an example of teamwork oriented coordination 
framework, then illustrates how G P G P  along with TAEMS 
can be extended to provide xame capabilities. The imple- 
ment.ed coordination module substrate supports rule-based 
coordination mechanisms, thus providing more flexibilir.y in 
the design of coordination mechanisms. A new G P G P  mech- 
anism has been added to support synchronization between 
team members. We also proposed extensions of TAEMS to 
explicitly support achievement and unachievability condi- 
tions of tasks and implemented a framework supporting it 
to monitor team tasks performance. 

While achievement and unachievability conditions are orig- 
inally used for recognizing the termination of a task, how 
these conditions affect the scheduler performance is an in- 
teresting area of future work. Normal schedulers unaware of 
these conditions might prefer schedules that are unachiev- 
able from the start. This triggers the need for more flexible 
schedulers. 

For large teams with hundreds of members, scalability 
is a key issue. It is clear from the experiments that  im- 
posing a hierarchical organizational structure over TAEMS 
task structure is essential to cope with complexities. While 
the presented framework supports hierarchical organization 
of teams and subteams, we aim at testing our framework in 
large variety of domains to measure the generality, flexibil- 
it),, and reusability of our framework. 
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