
ID#727: Learning Task Allocation via Multi-level
Policy Gradient Algorithm with Dynamic

Learning Rate

Sherief Abdallah Victor Lesser
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003
{shario,lesser}@aaai.org

April 12, 2005

Abstract

Task allocation is the process of assigning tasks to appropriate
resources. To achieve scalability, it is common to use a network of
agents (also called mediators) that handles task allocation. This work
proposes a novel multi-level policy gradient algorithm to solve the lo-
cal decision problem at each mediator agent. The higher level policy
stochastically chooses a task decomposition. The lower level policy as-
signs subtasks to neighboring agents also stochastically. Agents learn
autonomously, cooperatively, and concurrently to increase system per-
formance. No state information is used except for the task being al-
located. Furthermore, the algorithm dynamically adjusts the learning
rate, to speed up convergence, using the ratio of action values. Experi-
mental results show how our proposed solution outperforms other de-
terministic approaches by balancing the load over resources and con-
verging faster to better policies.

1 Introduction

Task allocation is the process of assigning tasks to appropriate resources. The problem
appears in many real applications like the Grid, web services, sensor nets and other
domains[?]. Consider the web services as an example. In that domain there are servers
distributed over the web. Each server provides a set of services for applications. Users
may appear anywhere in the web asking for a composition of services (also called a
task) that requires more than one server. Any server can work on more than one task at
a time. However, the cost of executing a task increases in proportion to the total number
of tasks being serviced by the server. Since users usually do not know where servers
are, a network of agents (also called mediators) that know about different servers is

1

used. Such agents take requests from users and reply to users with the appropriate set
of servers.

This work illustrates how agents in such a network can learn to work cooperatively
in order to optimize the task allocation problem. In particular, this work proposes a
novel multi-level policy gradient algorithm to optimize the local decision of each agent
in the network. The higher level policy stochastically chooses a task decomposition.
The lower level policy stochastically assigns subtasks to neighboring agents. Agents
learn autonomously, cooperatively, and concurrently to minimize the cost of executing
tasks. The algorithm does not use any state information except the type of the task being
allocated and estimates of the cost for assigning task types to neighbors. Furthermore,
to speed up convergence, our proposed algorithm dynamically changes the learning
rate in proportion to the cost of choosing an action (whether this action is choosing a
decomposition or assigning a task to a neighbor).

Two factors make the problem both interesting and challenging: the limited local
view of each agent and the need for load balancing. In large distributed systems, having
a global view of the system’s state is impossible from practical point of view. Agents
usually rely on their limited local view and use communication to augment this view.
This is a trade-off between optimality and scalability. In our system, the only a priori
knowledge known by an agent (as will be described shortly) is the addresses of its
direct neighbors. Furthermore, agents do not communicate their states, but rely solely
on the statistical outcomes of interacting with neighboring agents. In other words, agent
A’s knowledge about its neighbor agent B is summarized via a statistical average of
previous outcomes when A tried assigning a task to B.

What makes load balancing needed in many real systems is the nonlinear increase
of task execution cost with respect to the increase in load. Cost here is a signal of the
system’s performance. For example, cost may increase due to an increase in task wait-
ing time to indicate a reduction in users’ satisfaction. Therefore, in real systems, it is al-
most always better to divide the load as fairly as possible among servers and resources.
The algorithm presented in this paper aims at balancing the load over servers/resources.
Experimental results show how our algorithm significantly outperforms deterministic
approaches that ignore load balancing.

The paper is organized as follows. The rest of this section presents a motivating
example. Then a formal problem definition is presented, followed by a description of
local agent decision problem. Next a description of our algorithm that optimizes the
local agent decision is given. Experimental results are then presented and discussed,
showing how our algorithm outperforms other deterministic approaches. Then a dis-
cussion of related work is given. We finally conclude and lay out our future directions.

1.1 Motivating Example

To get a better insight into the complexity of the decision making of each agent, con-
sider the example in Figure 1. This system consists of three agents, MA, MD, and
MF . Each agent is connected to two resources. There are two main types of resources,
A and B. Resource Ai is of type A and can undertake only task type TA. Similarly, re-
source Bi is of type B and can only undertake task type TB. Resources Af and Bf are
of types A and B respectively but they are fast resources that need half the time of other

2

resources to finish their tasks. Task TAB is a more complex task that has three alter-
native decompositions: {TA, TA}, {TB, TB} and {TA, TB}. However, only agent
MD knows how to decompose task TAB.

Suppose agent MA receives many tasks of type TA. If MA always chooses A1 to
assign TA to (i.e. deterministic policy), then A1 will be overloaded and its cost rapidly
increases. After several trials, MA will not see A1 as appealing and will switch its
policy to another neighbor. As the other neighbor gets overloaded MA will switch
again and so on. This means that MA will not converge on a deterministic policy and
will keep oscillating after spikes of high costs due to overloading. One would expect a
stochastic policy, where MA chooses each neighbor with a certain probability, would
perform better. Similarly, suppose agent MD receives a task of type TAB. MD then
needs to choose among the three possible decompositions of TAB. Each decompo-
sition imposes certain load patterns on the system. For example, always choosing the
decomposition {TA, TB}means there will be equal load on both resource types A and
B.

Figure 1: A network of agents that are responsible for assigning resources to incoming tasks.

2 Problem Definition

Let T = {T1, ..., T|T |} be the set of task types. Different instances of tasks types
appear randomly at different agents. Each task instance Ij is defined by an arrival
time tIj

, a task type TIj
∈ T , and a payoff OIj

. A decomposition function D(Ti) =
{d1, ..., d|D(Ti)|} associates with each task a set of decompositions, where di ⊆ T

(hence D(Ti) provides alternative ways to do task Ti). The system has a set of resources
R = {R1, ..., R|R|}. A resource Ri can undertake a set of task types HRi

⊆ T . ∀Tj ∈
HRi

: FRi
(Tj) > 0 is the time resource Ri needs to finish a task of type Tj . The cost of

executing a task Tj at resource Ri at time t is Ct(Tj , Ri). The cost is time-dependent
because it depends on the total load on resource Ri at that time. The goal is to optimize
the allocation of tasks to appropriate resources such that net profit (which is payoff
reduced by total cost) over period of time ∆ is maximized. More formally, the global
system goal is to maximize the objective function Γ defined as follows.

Γ =
∑

I:tI∈∆

OI −
∑

〈Ti,Rj〉∈A

CtI (Ti, Rj)

3

where A = {a1, ..., a|A|} is a set of task-resource assignments, where ai = 〈Ti, Ri〉.
However, because there is not any centralized entity that has a global view of the whole
system, evaluating and optimizing Γ is practically impossible. Instead, one needs a
local objective function ΓMx

that each agent Mx attempts to optimize. Let M =
{M1, ...,M|M |} be the set of agents interconnecting the set of resources R. Each agent
Mx has a set of neighbors N(Mx) ⊆ M ∪ R. Each agent knows of a set of decom-
positions DMx

, where DMx
(Tj) ⊆ D(Tj). The goal of each agent Mx is to allocate

incoming task instance I = 〈tI , TI , OI〉 to neighboring agents such that ΓMx
(I) is

maximized, where

ΓMx
(I) = OI −

∑

〈Ti,nj〉∈AMx (I,d)

CtI (Ti, nj)

where AMx
(I, d) = {ak : ak = 〈Ti, nj〉} is a set of task-neighbor assignments, where

nj ∈ N(Mx) and Ti ∈ d ∈ DMx
(TI). CtI (Ti, nj) is the cost of assigning task Ti

to neighbor nj . In other words, agent Mi needs to find both a decomposition d and an
assignment of neighbors to each of the subtask types in d such that the total estimated
cost of executing I is minimized. The cost CtI (Ti, nj) is only an estimation because it
depends on how agent nj will conduct the allocation of Ti. For example, if nj is still
learning then it is likely that the cost will be higher than the real cost (e.g. because nj is
allocating Ti poorly). As agents interact with each other, one would hope that the local
agent policies converge to good (if not optimal) collective policy. Therefore, the local
objective function at each agent ΓMi

only approximates the global objective function
Γ. However, as the results in this paper show, using our algorithm agents successfully
converge and learn cooperate in allocating tasks. The following section presents our
algorithm

3 Multi-level policy gradient algorithm

An agent, in a task allocation framework, makes its decision in a two-step process.
First, it chooses a decomposition from the set of alternative decompositions. Then
for each subtask in the chosen decomposition the agent chooses one of its neigh-
bors to assign. Formally, each agent needs to learn two policies: πhigh(Ti, dj) and
πlow(Ti, nj). πhigh(Ti, dj) is the probability of choosing decomposition dj ∈ D(Ti),
while πlow(Ti, nj) is the probability of choosing neighbor nj to assign to task Ti. Any
of the two policies (or both) can be deterministic (e.g. ∀Ti∃nj : π(Ti, nj) = 1). How-
ever, one would expect deterministic policies to be suboptimal as they can not balance
the load as well as stochastic policies.

While πlow could have been conditioned on the chosen composition (i.e. πdk

low(Ti, nj),
where dk is the chosen decomposition by πhigh) we opted to make both πhigh and πlow

independent. This speeds up learning, because a single πlow is shared across decompo-
sitions and across tasks, but is not always optimal. For example, consider again the sce-
nario in Figure 1. Let agent MA receives task TAB and assume MA can decompose
TAB to {TA, TA}. Now the cost of assigning one task TA to A1 is not independent
of the decomposition. The cost depends on how the other task is assigned (if both are

4

assigned to the same agent then the cost should be higher). Nevertheless, in most cases
this is a valid approximation as verified by our results.

Agents communicate with each other using messages. There are only two types of
messages: REQUEST and RESPONSE. A agent Msender sends a REQUEST message
to agent Mreceiver asking it to accomplish certain task. Mreceiver estimates the cost
for accomplishing the requested task (as will be described shortly) and sends a RE-
SPONSE message, with the estimated cost, back to Msender. Therefore, the operation
of each agent is driven by received messages (i.e. event driven) and is divided into two
algorithms for processing each message type. Algorithm 1 is where decision making
occurs (deciding how to decompose a task and assign subtasks) while Algorithm 2 is
where learning takes place.

Algorithm 1: Process REQUEST message
Input: REQUEST from Msender to Mreceiver to do task Ti

begin1.1

Choose a decomposition d∗ uniformly at random proportional to πhigh(Ti, dj),1.2

∀dj ∈ D(Ti).
for each task Tk ∈ d∗ choose a neighbor nl uniformly at random proportional to1.3

πlow(Tk, nl), ∀nl ∈ N(Mreceiver). Let A = {a1, ..., a|d∗|} be the chosen set of
assignments for each subtask of d∗, where ak = 〈Tak

, nak
〉.

Send a RESPONSE message to Msender with the estimated cost of A,1.4

CTi
=

∑
〈Ti,nj〉∈A

C(Ti, nj).

Send REQUEST messages to neighbors according to A.1.5

end1.6

Algorithm 2: Process RESPONSE message
Input: RESPONSE from neighbor nj regarding task Ti with estimated cost C

begin2.1

Let n∗ = argminnj
C(Ti, nj).2.2

update the cost C(Ti, nj)← (1− α)C(Ti, nj) + αC.2.3

update policy (either deterministically or stochastically as described shortly)2.4

end2.5

3.1 Learning

Learning a stochastic policy is usually slower and more difficult than learning a de-
terministic policy (Q-learning [?] is a well known and understood learning algorithm
for deterministic policies). Learning a stochastic policy usually involves some sort of
policy gradient algorithms as described in Algorithm 2. The main unknown variable
for each agent is the cost of assigning a certain task type to a neighbor. This nega-
tive value can be learned using a simple update equation derived from Q-routing [?]:
C(Ti, nj) ← (1 − α)C(Ti, nj) + αCnew(Ti, nj). The equation merges previous cost

5

estimate, C(Ti, nj) , with a newly received cost estimate, Cnew(Ti, nj), using a weight
parameter α.

Updating policies πlow and πhigh can be done either deterministically using Q-
routing-based [?] approach or stochastically using policy gradient approach. Algorithm
3 shows the deterministic approach while Algorithm 4 shows the policy gradient ap-
proach. Experimental results compares both extremes and hybrids of them.

Algorithm 3: Deterministic Policy Update
Input: task Ti

begin3.1

∀nj : πlow(Ti, nj)← 1 iff nj = argmaxkCnk
(Ti)3.2

otherwise πlow(Ti, nj)← 03.3

∀Tl, dj s.t. Ti ∈ dj and dj ∈ D(Tl) : πhigh(Tl, dj)← 1 iff3.4

dj = argmaxk

∑
Tu∈dk

maxmCnm(Tu)

otherwise πhigh(Tl, dj)← 03.5

end3.6

Algorithm 4: Policy Gradient Update
Input: task Ti and neighbor nj

begin4.1

πlow(Ti, nj)← πlow(Ti, nj) + δ iff nj = argmaxkCnk
(Ti)4.2

otherwise πlow(Ti, nj)← π(Ti, nj)− δ4.3

normalize πlow s.t.
∑

nj
π(Ti, nj) = 14.4

∀Tk, dl s.t. dl ∈ D(Tk) and Ti ∈ dl : πhigh(Tk, dl)← πhigh(Tk, dl) + δ if dl is the4.5

best decomposition for Tk

otherwise πhigh(Tk, dl)← π(Tk, dl)− δ4.74.7

normalize πhigh s.t.
∑

dj
π(Ti, dj) = 14.8

end4.9

The policy gradient algorithm above uses a fixed learning rate δ. The smaller δ is
the more careful our algorithm explores the policy space, and hence the more likely
it will converge to an optimal policy. However, the smaller the δ is the slower the
convergence. In this work we propose using dynamic learning rates that are derived
from learned costs. The use of different learning rate of an agent depending on the
agent’s performance has been proposed before [?]. However, previous work only used
two fixed values of learning rates. We propose taking advantage of the consistency of
the cost estimates (all are non positives) and scales δ accordingly. In particular, line
4.7 is modified to “otherwise πhigh(Tk, dl) ← π(Tk, dl) − δ

C(Tk,dl)
maxdu C(Tk,du)”, where

C(Tk, du) is the minimum cost of allocating Tk if decomposition du ∈ Tk is cho-
sen; i.e. C(Tk, du) =

∑
Ti∈du

minnj
C(Ti, nj). To prevent spikes in learning rate,

especially in the beginning of learning, the learning rate is not allowed to surpass a
threshold δmax.

6

3.2 Cycles

Like any routing algorithm, it is possible to have cyclic policies. For example, two
neighboring agents may send the same task back and forth between each other. Such
a policy is undesirable as it wastes system resources without getting any real work
done. This problem has two aspects. The first is detecting such a cycle. The second is
choosing an appropriate reinforcement signal to penalize such behavior.

There are two known methods to detect cycles. The first method assigns a unique
identifier for each task. Each agent then keeps track of task identifiers it had seen. A
cycle is detected once a task identifier is seen twice. Two problems make this approach
unappealing: ensuring the uniqueness of task identifiers across the distributed network
and deciding for how long to keep task identifiers. A simpler yet approximate approach
is to use the age of a task to detect a cycle. If a task has been floating in the system for
too long, then it is likely that there is a cycle. What makes this approach approximate
is defining the maximum age. Optimally, maximum age should be the diameter of the
network. However, in an open and dynamic system, it is unlikely that any agent would
know the diameter of the network. We use the second approach in our experiments.

Once a cycle is detected at an agent, the system faces the credit assignment prob-
lem: determining who is/are responsible and penalizing them. Several factors make this
problem difficult: use of stochastic policies, partial observability, and using task age for
detecting cycles. All these factors add uncertainty to determining who is/are responsi-
ble for the cycle. For example, the agent that received an old task may not even be part
of the cycle. The work in [?] used a global penalty signal (i.e. all agents are penalized
once a cycle is detected). Their approach does not scale to a large open system. Our
work on the other hand uses a local penalty: the agent who received a too old task
sends a high negative penalty to the sender of that task. Experimental results show the
effectiveness of this approach in conjunction with our learning algorithm.

4 Experimental Results

The first part of our results evaluate the performance using the example scenario in
Figure 1. This helps in getting better understanding of how our approach works. The
second part evaluates the scalability of the approach using the scenario in Figure 2.
Both parts aim at evaluating the benefit of both multi-leveled policies and the dynamic
learning rate.

For the small scenario in Figure 1, in each time step a task of type TAB appear
at agent MF with probability 0.5 and at agent MA with probability 0.5. Agent MD,
the only agent who knows how to decompose TAB, does not receive any task directly.
The cost of any task at a resource R is −10× load(R)2, where load(R) is the number
of tasks currently being serviced at resource R. When a resource fails to accomplish
a task (e.g. when a resource of type A is assigned a task of type TB), a penalty of
-10000 is imposed as a cost. A task also fails if it reaches age 10 time units. The cost
of communicating a task to a neighbor is -1. Tasks takes 5 time units to execute on
resources of type A or B and only 3 time units to execute on either Af or Bf .

Figure 3 compares the performance of our algorithm for three settings of the learn-

7

Figure 2: A large scale network of 100 resources and 20 agents.

ing rate δ: dynamic between 0.0001 and 0.01, static at 0.01, and static at 0.0001. The
horizontal axis is the time steps while the vertical axis is the absolute sum of incurred
costs per 100 time steps, averaged over 10 simulation runs (lower is better). The static-
at-0.0001 is too slow and it did not converge even after 10000 times steps. As expected,
a larger static learning rate (0.01) leads to faster convergence. Using a dynamic learn-
ing rate strikes a balance by converging to a much better policy than static-at-0.01 (less
than 25% of its cost) in much less time than the static-at-0.0001. Although there might
be a static learning rate that achieves performance similar to that of the dynamic rate,
it is much harder to fine tune the learning rate to a fixed value than to specify the range
of the dynamic rate (we used δ = 0.0001 and δmax = 0.01).

steps
0 2000 4000 6000 8000 10000

co
st

0

200000

400000

600000

800000

1e+06

dynamic

static−0.0001

static−0.01

Figure 3: The effect of the dynamic learning rate.

Figure 4 compares the performance of our algorithm using four settings of the
policies πlow and πhigh: both are deterministic (deterministic), only πlow is stochastic
(low), only πhigh is stochastic (high), and both are stochastic (two-level). As expected,
two-level is the slowest to converge but achieves the lowest steady cost (about 80%
of the second lowest steady cost, low). On the other hand, and to our surprise, high
converges faster than deterministic (and achieves lower steady cost than deterministic,
which is expected). The reason is that even without any learning, πhigh selects a de-
composition uniformly at random. This slightly balances the load without paying the
price of slow convergence due to learning a stochastic πlow.

Figure 5 illustrates the evolution of stochastic policies in agents MD and MA

during a simulation run. The horizontal axis represents time steps. The vertical axis

8

steps
0 2000 4000 6000 8000 10000

co
st

0

200000

400000

600000

800000

1e+06

two−level

high

low

deterministic

Figure 4: The effect of two level stochastic policies on performance.

represents policies, i.e. the total 1.0 probability divided over actions (an action is a
neighbor in case of πlow and a decomposition in case of πhigh). Figure 5(a) shows πlow

of task TB at agent MD. There are four possible assignments of TB, to each neighbor
of MD. The probability of assigning A3, which is a resource of type A, quickly drops
to zero as expected. Also since MA is not directly controlling any resources of type B,
the probability of MD choosing MA also drops to zero but after a while (about 6000
steps). The reasons are cycles and indirect links. Initially MD may send a request for
a task of type TB to MA who in turn either sends it to MF or back to MD. However,
using the simple maximum task age mechanism, eventually MD learns to stop sending
tasks of type TB to MA. In the end, MD only chooses among two assignments for
TB: B1 and MF , with more probability of choosing MF . This what one would expect
to balance the load: faster resources get more tasks.

Figure 5(b) shows πlow(TB, .) for agent MA. After step 6000 we see the policy al-
most fixed. This is because MA is not receiving any tasks of type TB from agent MD,
therefore it stopped learning about it. Figure 5(c) shows how MD learns πhigh for dif-
ferent decompositions of task TB. Agent MD quickly learns to drop decomposition
{TA, TB}. The reason is that this decomposition requires equal numbers of resource
types A and B, while the system contains 4 A resources and only 2 B resources. MD

converges to an intuitive policy that produces more TA tasks than TB tasks.
The second part of the results show the scalability of our approach using the system

in Figure 2. This system consists of 100 resources (rectangles) and 20 agents (ellipses).
With probability 0.67 the resource is of type A, otherwise it of type B. Also with prob-
ability 0.67 the resource is normal, otherwise it is fast. Each agent has two neighboring
agents picked randomly from the set of agents. Each resource is connected randomly to
one of the agents. At each time step, tasks of type TAB appear at 11 agents (light gray)
with probability 0.5. The other 9 agents (dark gray) know how to decompose tasks of
type TAB. Other parameters are the same as the small scenario. Therefore, the aver-
age number of TAB tasks per 100 time steps is 0.5× 11× 100 = 550, which requires
(after decomposition) 1100 resources. A lower bound on the average cost, assuming
perfect knowledge and perfect distribution of load, is 11000. The highest average cost
(if all tasks allocated to the same resource) is Figures 6 and 7 show the performance
of the different approaches in the larger system. We can see significant savings of our
approach compared to the other approaches.

9

5 Related Work

In [?], a mediator serially allocates tasks to agents. That work used a Markov Decision
Process (MDP) model where actions are agent-task assignments and learned a deter-
ministic policy. This differs from our work where all subtasks are allocated concur-
rently and using two-level stochastic policy. That work also assumed the set of tasks
were fixed and arrived in fixed order, while we assume tasks arrive stochastically in
time and location. They also assumed agents with homogeneous capabilities, while our
model supports heterogeneous agents.

The work in [?] modeled the resource allocation problem as a constrained MDP, or
CMDP. A CMDP is an MDP augmented with a set of (resource) constraints. The set of
actions were assumed fixed and the policy was serial and deterministic. They also used
an offline algorithm which solved the problem assuming the transition probabilities are
known. We use an on-line algorithm without sharing state information among agents.

Task allocation can be viewed as a more complex and more general form of packet
routing. As in routing, each agent acts as a router, trying to route the packet through
the least costly path. Packets impose little load on the nodes (resources) as opposed to
tasks, which raises the issue of load balancing. Also task allocation involves alternative
decompositions while packets are routed as non-decomposable units. Most of the pre-
vious work in packet routing [?, ?] maps the routing problem to a set of local decision
problems for each agent. The work used reinforcement learning techniques to learn a
deterministic policy for each router. The goal was to minimize average packet delay.
Experimental results showed the effectiveness of the approach. More recently, a policy
gradient approach was used to solve the packet routing problem [?]. However, the work
ignored the load on the nodes and only focused on the capacity of links. Their policy
gradient also used a fixed learning rate, unlike the algorithm presented here.

6 Conclusion and Future Work

This paper presents a novel algorithm that allows agents in a network to learn cooper-
atively how to allocate a task. The algorithm learns two-level stochastic policies using
policy gradient. The high level policy selects a decomposition for an incoming task
while the low level policy assigns a neighboring agent to each task in the selected de-
composition. Experimental results show the benefit of introducing each of these levels
with more than four times saving in cost as compared to deterministic approaches. Our
algorithm also dynamically adjusts the learning rate. Experimental results show how
using a dynamic learning rate significantly speeds up convergence while outperforming
learners with fixed learning rate.

An interesting issue that was not covered in the paper is how to set up the network
connections, i.e. the neighborhood of each agent N . Optimally, the network should
reduce communication overhead by adapting to task arrival patterns. For example, an
agent that receives many tasks asking for resource Rx should be connected as closely
as possible to resources of that type. A related issue is how the system would perform
in the face of changes in the network (e.g. an agent or a resource leaving the system or
another agent or a resource entering.) Furthermore, this work models resource failures

10

implicitly using penalties. An explicit model of failure probability may allow agents to
learn better policies (e.g. preferring an agent with high probability of failure if its cost
is cheap and the task payoff is low, or vice versa).

11

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

MF

MA

B1

A3

(a) πlow(TB, .) for agent MD.

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

MD

MF

A2

A1

(b) πlow(TB, .) for agent MA.

steps
0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

{TA,TB}

{TB,TB}

{TA,TA}

(c) πhigh(TAB, .) for agent MD.

Figure 5: Policies of different agents.

12

steps
0 2000 4000 6000 8000 10000

co
st

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

dynamic

static−0.0001

static−0.01

Figure 6: The effect of dynamic learning rate in the large system scenario.

steps
0 2000 4000 6000 8000 10000

co
st

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

two−level

high

low

deterministic

Figure 7: The effect of two level policies in the large system scenario.

13

