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ABSTRACT
Mediation is the process of decomposing a task into subtasks, find-
ing agents suitable for these subtasks and negotiating with agents
to obtain commitments to execute these subtasks. This process in-
volves several decisions to be made by a mediator including which
tasks to mediate, when to interrupt the current task mediation to
pursue a better task, etc. The main contribution of this work is in-
tegrating the different aspects of a mediator decision problem into
one coherent and simple decision theoretic model. This model is
then used to learn an optimal policy for a mediator.

We propose a generalization of the original Semi-MDP (SMDP)
model, which allows efficient representation of the mediator deci-
sion problem. Also the concurrent action model (CAM) is extended
to allow better performing policies to be found. Experimental re-
sults are presented showing how our model outperforms the origi-
nal SMDP and CAM models.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Reinforcement Learning, Multiagent Systems, Task Allocation, Markov
Decision Process

1. INTRODUCTION
Task allocation is a problem common to most multi-agent systems.
An agent discovers a task that it can not accomplish by itself. The
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agent then finds other agents with the right capabilities and assigns
the task, or parts of it, to those agents. We use the term mediation
to refer to the process of decomposing a task into subtasks, finding
agents suitable for these subtasks and negotiating with agents to ob-
tain commitments to execute these subtasks. This process involves
several decisions to be made by a mediator including which tasks to
mediate (when more than one task is available), when to interrupt
the current task mediation to pursue a better task, which agent to
assign to which subtask, etc. Mediation does not, necessarily, sac-
rifice an agent’s autonomy for efficiency. A mediator may assign a
task to an agent but this agent may reject this assignment if there is
a more profitable course of action.

The main distinguishing characteristic of a mediator decision prob-
lem is that tasks appear randomly. This means the set of actions
available to a mediator (associated with these tasks) changes non-
deterministically from time to time. We refer to this property as
the randomly available actions property. As we show in this paper,
existing MDP models fail to exploit this property, which makes ex-
isting models both non-scalable and suboptimal. The main contri-
bution of this work is integrating the different aspects of a mediator
decision problem into one coherent and simple decision theoretic
model. In doing so we extend existing SMDP models to exploit the
randomly available actions property. We then show how our model
can be used to learn a mediator’s policy that outperforms policies
learned using existing models.

The details of the underlying negotiation protocol are not the focus
of this work. A mediation process will be abstracted by an action
with non-deterministic behavior. All that matters is the outcome
of that action. For example, the contract net protocol [6] can be
used as an underlying negotiation protocol. A mediator’s action in
that case would be to contract a task to an agent. What matters,
from this work’s perspective, are the final outcomes of that action:
its duration, the costs incurred, and whether it succeeded or failed.
This work does not worry about the fine details of the contract net
protocol (e.g., sending a bid, receiving a counter bid, and so on until
the negotiation either succeeds or fails). Instead, the focus is on
the higher-level decision of whether to start contracting a specific
task and when to abort mediating a high-level task even if some
subtasks have already been committed. Note that from our model’s
perspective, it does not matter whether an action abstracts just the
mediation of a task or the completion of both the task’s mediation
and then the task itself.

To more deeply understand the decisions that a mediator needs to
make, let us first revisit the mediation process in more detail. A
mediator receives task announcements. Each announced task has



an associated payoff. Tasks can be decomposed into a set of sub-
tasks. Subtasks are independent from one another but all subtasks
must succeed for a mediator to receive the promised payoff. Dif-
ferent agents have different capabilities, hence subtasks may take
different durations (depending on the agents assigned to them). The
duration is also stochastic (though its mean may depend on the as-
signed agent). Subtasks also incur costs that need to be covered by
the overall payoff for the total task to be profitable. The goal of the
mediator is to maximize its net profit (maximizing payoff and min-
imizing cost). In general, mediators may interact with each other in
the system, as shown in Figure 1. However, from a mediator’s per-
spective, it receives task announcements and contracts out subtasks
to neighboring agents, independent of whether the other agents are
mediators or not.

agent

Task

Task
Task

mediator

Task

Figure 1: A network of mediators for assigning agents to tasks.

Although this work’s focus is on formalizing the decision process
of a single mediator, this is done in a multi-mediator context. In
particular, when a mediator m1 asks another mediator m2 to do
a task T1, m2 needs to decide as soon as possible whether to ac-
cept or reject T1 so that m1 can also decide its course of action.
Consequently, a mediator cannot defer its decision about a task and
queue it for consideration later. This constraint makes the mediator
decision problem more challenging as the mediator needs to make
a decision now that may affect its future profit. With this in mind,
our work provides a formal decision theoretic model that enables a
mediator to evaluate quantitatively the following three decisions.

• How a mediator should select among available tasks, where
their subtasks are contracted out concurrently. The media-
tor should take into account that subtasks may have different
durations depending on the agents assigned to the subtasks.
Furthermore, no reward will be given until all subtasks are
complete.

• The mediator needs to decide between committing now to a
task or waiting for a better task to arrive in the future. This
decision is particularly important if the mediator cannot de-
commit a task once committed. The mediator needs to take
into account the payoff of currently available tasks, their du-
ration, and the likelihood of a better task arriving before any
of the current tasks finish.

• If decommitment is allowed, and the mediator receives a new
task announcement, it needs to decide whether it is better to
continue with an old task or decommit from the old task and
start a new one. This decision needs to take into account the
costs already accrued for performing the old task, the payoff
for its completion, the expected time for the old task to finish,

the payoff for the newer task and its expected duration and
cost.

The decisions above are further complicated by the fact that sub-
tasks’ costs and durations are stochastic with a distribution that
is not known to the mediator a prior. We show how to model
these decisions efficiently by generalizing the Semi-MDP model
(SMDP)[8] and extending the Concurrent Action Model (CAM)[5].
We also present an algorithm that uses this model and reinforce-
ment learning techniques to learn an optimal policy for a mediator.

Section 2 presents an example to illustrate the mediator decision
problem. Section 3 briefly describes the SMDP model and how it
can be used to model serialized mediation. Section 4 shows how
the SMDP model can be generalized to efficiently model randomly
available actions. Section 5 describes how CAM can be extended
to model concurrent mediation of subtasks. Section 6 shows ex-
perimental results illustrating how our model outperforms existing
models when used to learn an optimal policy.

2. EXAMPLE
Let us consider a simple mediator example illustrated in Figure 2.
A mediator m can negotiate with four agents a0, a1, a2, and a3.
Each agent ai can execute a single subtask Tai

. The duration and
the cost of a subtask Tai

are stochastic and unknown to the media-
tor (but they depend on agent ai). They are represented by random
variables Dai

and Cai
respectively. At any given time, there is a

set of available tasks T = {T0, ..., Tn} available to m to choose
from to mediate. Each task Tk can be decomposed into a set of
subtasks Tk = {Tai

, Taj
, ...} and has a promised reward Rk (both

are known to the mediator).

Figure 2: The experiment scenario

The probability that a task of type Tk is available for mediation (at
any point of time) is pTk

. If a task type is not selected for mediation
it may or may not be available at the next time step depending on
pTk

. For simplicity, assume the mediator can only mediate one
task at a time. Consider an example scenario involving two tasks
T0 = {Ta0

, Ta1
} and T4 = {Ta1

, Ta3
}. At time 0 task T0 is the

only available task. m starts mediating T0 with agents a0 and a1.
At time 5 mediation about Ta1

finishes with cost ca1
. At time 7

another task T4 arrives while the mediation about subtask Ta0
has

not finished yet. What should m do?

If decommitment is allowed then m needs to consider whether to
drop T0 and start T4. Ignoring the effect of duration, m should drop
T0 if the profit of T4 is higher, i.e., R0 − ca1

− E{Ca0
} < R4 −

E{Ca1
} − E{Ca3

}, where E{X} is the expectation of random
variable X . The above decision rule is not actually optimal as it
ignores the effect of duration. For example, if the expected duration
of Ta3

is 20 while the expected duration of Ta0
is 10, it would be

better for m to stick with T0 even if the profit is lower as this will
free m to accept another task earlier.



Now consider if m is not allowed to decommit a task once it started
mediation. The mediator still has an interesting decision to make:
whether to wait for a better task or not. For example in the previous
scenario, if E{Da0

} = 30 while E{Da3
} = 5, then m would be

better off not accepting T0 even if at the time m has nothing else
to do and wait for T4 to arrive. Clearly making such a decision
depends on the arrival rate of different tasks. For example, if T4

tasks arrives on average every 100 time units, m may be better not
waiting for it, while if it arrives every 10 time units it might be
worth the wait.

Integrating all these factors into one coherent and simple model is a
challenging task. The next section describes the Semi-MDP model
which we use as a basis for modeling the mediator’s decision.

3. SEMI MARKOV DECISION PROCESS,
SMDP

The Semi-MDP [8], or SMDP, provides a basis for modeling an
agent’s decision if the agent’s actions may take different durations.
An SMDP is defined by the tuple 〈S, A, P, R〉. S is the set of states,
A(s) is the set of actions available at a given state, P (s, a, N, s′) is
the probability of reaching state s′ after N time-steps of executing
action a at state s, and R(s, a) is the average reward if action a is
executed at state s.

The solution to an SMDP decision problem is an optimal policy
π∗(s) that specifies for every state s what is the best action to ex-
ecute. The optimal value of action a at state s, Q∗(s, a) is the
expected sum of rewards if the agent first execute action a then fol-
lows the optimal policy thereafter. Q∗(s, a) is given by Bellman’s
equation [8]:

Q
∗(s, a) = R(s, a) +

∑

N,s′

P (N, s
′|s, a)γN

maxa′Q
∗(s′, a′)

where γ is a learning parameter called the discount factor. Another
variant of this equation which is used in the Q-learning algorithm
[7] is Q∗(s, a)← (1− α)Q∗(s, a) + α[R(s, a) + γNmaxa′

Q∗(s′, a′)], where α is another learning parameter called the learn-
ing rate. Once the values of Q∗ are learned, the optimal policy can
be easily computed: π∗(s) = argmaxaQ∗(s, a).

The mediator decision problem can be formulated using an SMDP
as follows. The state s would be a combination of the states of
its neighboring agents (or some abstraction of it) and the status
of task(s) the mediator is pursuing. An action corresponds to the
process of assigning a subtask to an agent. The task payoff is the
reward received when the status of the pursued task is completed
successfully. This is true iff all subtasks complete successfully. Ev-
ery time-step a subtask may produce a reward r that is usually (but
not necessarily) negative to represent the cost of doing the subtask.

The SMDP model above can handle serialized contracting of sub-
tasks. It can correctly model mediations with variant durations.
However, this model does not explicitly handle concurrent actions
and therefore can not handle concurrent mediation of subtasks. Me-
diating subtasks in parallel means some of them may finish earlier
than others (since subtasks have variant durations). Shall the me-
diator wait for other subtasks to finish before making a new de-
cision or shall it reconsider its decision whenever a subtask fin-
ishes? CAM [5], addresses these issues for the Semi-MDP model
with concurrent actions. Section 5 briefly describes CAM and how
to extend it to account for stochastically changing set of avail-

able actions. The following section proposes a generalization of
the SMDP model that enables more efficient representation of the
class of decision problems where the set of actions changes non-
deterministically (i.e., the randomly available actions property).

4. RANDOMLY AVAILABLE ACTIONS
In the SMDP model, the set of available actions At at time t is de-
fined by a deterministic function A(st) where st is the state at time
t. In other words, the SMDP model requires the set of available
actions at any time to be deterministically defined by the agent’s
state.

In the task allocation decision problem, the set of available actions
At corresponds to the set of available tasks at time t. Because tasks
arrive in a non-deterministic fashion, the only way to satisfy the
SMDP model requirement of having a deterministic function A(s)
is to include the set of available tasks as part of the state. While
compatible with the traditional SMDP, this results in an exponential
explosion in the number of states that hinders learning.

However, it is intuitive that in some domains the value of an ac-
tion is independent of other available actions (we prove this below).
However, requiring the set of available actions to be a determinis-
tic function of the current state is over constraining. We propose
a generalization of the SMDP model, ℘-SMDP, which allows the
set of available actions At at time t to be non-deterministically de-
pendent on the current state of the agent. As we show below, this
generalized model allows exponential savings in the state space.

℘-SMDP is defined by the tuple 〈S, ℘, P, R〉, where S, P, and R are
as described in the previous section, while ℘(A|s) is the probability
that the set of actions A is available at state s. The ℘(A|s) replaces
the traditional A(s) function allowing more flexibility in the model.
Mapping a traditional SMDP to ℘-SMDP is straightforward. S, P,

and R are the same. ℘(A(s)|s) = 1 and ∀A 6= A(s) ℘(A|s) =
0. For clarity, we will use the symbol ℘ to refer to probabilities
associated with actions. For example, ℘(At+N = A′|st+N =
s′, st = s) is the probability that the set of available actions at time
t + N is A given that the state at time t + N is s′ and the state at
time t is s. We will also omit random variables when possible, i.e.
℘(At+N = A′|st+N = s′, st = s) = ℘(A′|s′, s).

The real benefit of ℘-SMDP over the original SMDP is not its gen-
erality, but that under certain assumptions ℘-SMDP leads to a more
compact representation of the Bellman equations as we show be-
low. In particular, it is possible in the ℘-SMDP to factor the set of
available actions out of the state. This leads to exponential savings
in the state space and hence reduces the memory and time required
to learn an optimal policy.

Let s be the state with the set of available actions factored out while
〈A, s〉 be the state with the set of available actions factored in. Let
A and A′ be the set of available actions at time t and t+N respec-
tively. Also s and s′ are the state at t and t + N respectively; and
a and a′ are actions at t and t + N .

THEOREM 1. : If the following is true:

• action independence: the set of available actions at time t

can be dependent only on the current state, and is indepen-
dent of all other variables given the current state. So for
example, ℘(A′|N, s′, 〈A, s〉, ai) = ℘(A′|s′).



• outcome independence: the outcome of applying an action
a in a given state s does not depend on the set of available
actions at that time, i.e. P (N, s′|A, s, a) = P (N, s′|s, a)

then the equation below is also true:

Q(〈A, s〉, ai) = Q(s, ai) = R(s) +
∑

N,A′,s′

℘(A′|s′)P (N, s
′|s, ai)γ

N
maxa′

i
∈A′Q(s′, a′

i)

PROOF. Using Bellman’s equation,

Q(〈A, s〉, ai) = R(s) +
∑

N,A′,s′

P (N, 〈A′
, s

′〉|〈A, s〉, ai)γ
N

maxa′

i
∈A′Q(〈A′

, s
′〉, a′

i)

but, using the Probability Product rule,

P (N, 〈A′
, s

′〉|〈A, s〉, ai) =

℘(A′|N, s
′
, 〈A, s〉, ai)P (N, s

′|〈A, s〉, a℘(A′|N, s
′
, 〈A, s〉, ai)

P (N, s
′|〈A, s〉, ai)i)

then, using the action independence assumption for the first part
and the outcome independence for the second part,

= ℘(A′|s′)P (N, s
′|s, ai)

and hence

Q(〈A, s〉, ai) = R(s) +
∑

N,A′,s′

℘(A′|s′)P (N, s
′|s, ai)γ

N
maxa′

i
∈A′Q(〈A′

, s
′〉, a′

i) (1)

where parameter A in Q(〈A, s〉, ai) does not appear in the r.h.s.,
therefore Q(〈A, s〉, ai) = Q(s, ai). Thus we can substitute
Q(〈A′, s′〉, a′

i) = Q(s′, a′

i) in (1).

Note that the action-independence and outcome-independence as-
sumptions are not as restrictive as it may first appear. The reason
is that we did not impose any restriction on the state definition, al-
lowing trade-off between compactness and accuracy. For example,
in many domains the set of available actions may include the ac-
tion the agent chose previously and is still executing (because the
agent may choose either to continue the currently executing action
or start a new action). In this case, it is sufficient to include the
currently executing action as part of the state.

The theorem above leads to compact representation of action val-
ues by factoring out the set of available actions. In other words,
the values of all states that only differ in the set of available tasks
are considered equal. This may lead, as the experiments show,
to faster convergence using either dynamic programming meth-
ods (e.g. value iteration) or temporal difference methods (e.g. Q-
learning). For completeness, Algorithm 1 shows how the value
iteration algorithm [7] can be adopted (however, this work focuses
on Q-learning).

The corresponding update equation for Q-learning is Q(s, a) =
(1 − α)Q(s, a) + α(R(s, a) + γN ∗maxa′∈A′Q(s′, a′) and the
optimal policy π∗(A, s) = argmaxa∈AQ(s, a). Because the set
of available actions is factored out of the state, the optimal action at
any state is not unique. The optimal action depends also on the set

Algorithm 1: Value Iteration

begin
Initialize Q(s, a) arbitrarily, ∀a, s.
repeat

δ ← 0
for every state s and action a do

q ← Q(s, a)
Q(s, a)← R(s, a)+∑

N,A′,s′ ℘(A′|s′)P (N, s′|s, a)γNmaxa′∈A′Q(s′, a′)

δ ← max(δ, |Q(s, a)− q|)
end

until δ > ε (small positive number)
end

of available actions at that time. However, the optimal policy need
not be stored explicitly. Instead, the optimal action at time t can be
dynamically computed using Q(st, .) and At, where st and At is
the state and set of available actions at time t respectively.

Theorem 1 does not violate the conditions for convergence for Q-
learning. In particular, Q-learning will converge with enough sam-
pling of states and set of available actions, appropriately decaying
learning rate, and bounded rewards [3]. Also since SMDP is a more
generic model than MDP, the theorem holds for MDP.

4.1 The wait operator
Having a dynamic set of available actions that stochastically changes
over time raises an interesting decision question: whether an agent
(mediator) should wait for a better action (task) to be available in
the future or should the agent choose the best action (task) that is
available now. One would expect that the probability distribution of
the availability of actions (tasks), ℘, should affect such a decision.
Our experiments in Section 6 verify this intuition.

5. EXTENSION TO CONCURRENT ACTION
MODEL

The Concurrent Action Model (CAM) [5] allows concurrent ac-
tions with different durations. The model builds on the Semi-MDP
model. The action value equation of CAM is almost identical to
that of the original SMDP model:

Q(s, ā) = R(s, ā) +
∑

N,s′

P (s, ā, N, s
′)γN

maxā′Q(s′, ā′)

where the only difference is that ā here is a set of concurrent actions
(also called joint actions) instead of a single action. Thus using this
model a mediator can contract out all subtasks in parallel, and this
is considered a single joint action.

The main contribution of [5] is the introduction of termination
schemes which determine when the next decision cycle occurs. They
defined three termination schemes: τany , τall, and τcontinue. The
termination scheme τany means that an agent makes a new decision
if any concurrent action finishes, possibly decommiting some of
the unfinished actions (tasks). The termination scheme τcontinue is
similar to τany but without decommitting. Finally, in τall the agent
waits until all concurrent actions that started together to finish be-
fore making a new decision. It was proved that optimal policies
learned using τany dominates both τall, and τcontinue [5].

In our case, the set of available actions may change at any time
even if none of the currently executing actions have terminated.
None of the termination schemes proposed in [5] account for that.



We propose the τchange termination scheme, in which a decision
starts whenever an action terminates or the current state changes or
the set of available actions change. In the task allocation problem
τchange means a new decision is made when a mediation terminates
or a new task arrives.

τchange is more suitable for multiagent settings where the state ob-
served by an agent is not fully controlled by the actions of that
agent. Other agents may change the system’s state unexpectedly.
Next theorem compares the policy learned under τchange to a pol-
icy learned under other termination schemes proposed in [5]. Let
Q∗τ be the optimal action values learned using termination scheme
τ .

THEOREM 2. The optimal policy obtained using τchange has a
value that is higher than or equal to the value of the optimal pol-
icy using τany , or more formally: ∀s ∈ S, maxāQ∗any(s, ā) ≤
maxāQ∗change(s, ā)

PROOF. For every policy πany obtained using τany termination
scheme there exists a corresponding policy πchange using τchange

with the same value. πchange can be obtained from πany simply by
not changing the executed action unless an action terminates (i.e.
repeating the previous action if the decision epoch was initiated due
to a change in state or set of available actions).

In other words, the space of policies that can be learned using
τchange dominates that of τany which in turn dominates τcontinue

and τall. Figure 3 augments the figure in [5] with τchange policy
space. Results shown in Section 6 show that in practice, the policy
learned using τchange outperforms policies that use other termina-
tion schemes.

Figure 3: The relationship between policies learned using
τall,τcontinue,τany , and τchange

The following section outlines an algorithm for the decision of the
mediator. Part of the algorithm learns the optimal policy using the
update equation described in Section 4. This algorithm is used in
the experiments of Section 6.

5.1 Learning the Mediator’s Decision Process
Algorithm 2 illustrates how mediators make decisions and learn the
values of their actions. The main variables are: s, the current state,
slast, the previous state, and a∗

last, the action executed at slast.
Steps 2.1-2.4 correspond to Q-learning (using a factored state).
Steps 2.5-2.6 are the communication part, which can be modified if
more complex protocol is desired. Steps 2.7-2.10 update the main

variables of the algorithm. Algorithm 3 generate actions for the set
of available tasks.

Algorithm 2: Learning

begin2.1

Initialization. s← current state, ā∗

last ← null, and2.2

slast ← null

Let A← generateActions() be the set of actions2.3

available at this time step
with probability ε (small positive number) let2.4

ā∗ ← random action ∈ A and with probability
(1− ε) let ā∗ ← argmaxā∈AQ(s, ā).1 Let T ∗ be
the task associated with ā∗ , and R∗ be the reward
that will be gained if T ∗ is accomplished
If ā∗

last 6= null then learn: Q(slast, ā
∗

last) =2.5

(1− α)Q(slast, ā
∗

last) + α[R + γNQ(s, ā∗)]
Send negative response to rejected tasks: send2.6

reward Rfail to all but the originator of T ∗

Start mediating subtasks of T ∗ with their assigned2.7

agents/neighbors as specified by the selected set of
concurrent actions/assignments ā∗

Let R← 0 and wait for the termination scheme2.8

condition to be satisfied after N time-steps (i.e.,
wait for all subtasks to finish in case of τall, any
subtask to finish in case of τany , or any subtask to
finish or any new task to arrive in case of τchange)
For every received response with reward rk from a2.9

neighbor k, R← R + γNrk

If task T ∗ is accomplished (i.e. all subtasks2.10

succeed), then R← R + R∗

slast ← s, ā∗

last ← ā∗2.11

Goto 22.12

end2.13

5.2 Handling Multiple Tasks in Parallel
The concurrent action model can also be used to model a mediator
who can mediate multiple tasks (and their corresponding subtasks)
in parallel. Another level of joint actions is needed. Sub-actions in
that level are tasks which in turn are joint actions of subtask medi-
ations. For example, consider the scenario described in Section 2.
Corresponding to tasks T0 and T4 the mediator has the joint actions
āT0

= {aTa0
, aTa1

} and āT4
= {aTa1

, aTa3
} respectively, where

aTai
is the assignment 〈Tai

, ai〉. To allow the mediator to negoti-
ate about tasks T0 and T4 concurrently, another action needs to be
added to the pool of available actions: āT0,T4

= {āT0
, āT4
}.

Figure 4 illustrates the hierarchy of action āT0,T4
. A different ter-

mination scheme can be assigned to each level of this hierarchy of
joint actions. For example, the termination scheme for the subtasks
level may be τall (wait for all subtasks to finish) while the termi-
nation scheme for the tasks level may be τany (if any task finishes,
start mediating another one).

6. RESULTS
We are interested in evaluating the performance of optimal policies
under different termination schemes, with and without the wait op-
erator, and under different distributions of loads. The experimental
settings are as follows. The scenario described in Section 2 and
pictured in Figure 2 is used. Data are averaged over 10 simulation
runs, each consisting of 100,000 episodes (trials). The duration of
each subtask is stochastic. With probability pi, agent i will finish



Algorithm 3: generateActions

begin3.1

Every available task (at the current time) Ti has a3.2

set of decompositions Di. Each decomposition
dj ∈ Di is a set of subtasks {T1, ..., Tn} (In the
simple example in Section 2, T0 has D0 = {d0},
i.e., single decomposition, where
d0 = {Ta0

, Ta1
})

A set of agent-subtask assignments, Adj
, is3.3

generated for every decomposition. Each subtask
assignment ā ∈ Adj

assigns every subtask in the
decomposition dj to a neighboring agent, i.e.,
a = {〈T1, a1〉, ..., 〈Tn, an〉}, where ai here refers
to an agent (in the example in the previous step,
Ad0

= {ā0} because every subtask can be
assigned to only one agent, and
ā0 = {〈Ta0

, a0〉, 〈Ta1
, a1〉}

A← ∪dj
Adj

)3.4

end3.5

Figure 4: The hierarchy of the joint action āT0,T4

its subtask at this time step, and with probability 1− pi it will not.
Agents a0 and a2 have p = 0.2 while a1 and a3 have p = 0.8 (i.e.
faster agents). Any subtask can take at most 10 time steps. Tasks,
arriving to the mediator at time t, are selected randomly from all
combinations of two subtasks (i.e. requiring two agents). Thus we
have six different tasks shown in table 1.

When any subtask is achieved the mediator gets a reward of -1
(cost). The wait operator has a reward of zero. When all subtasks
of any task are achieved the mediator gets a reward of 16. Follow-
ing our framework, contracting a task is modeled as a joint action
consisting of two sub-actions. Each sub-action corresponds to as-
signing a subtask to an agent. Thus, the mediator has at its disposal
6 joint actions corresponding to table 1, as well as the wait operator
which can be either enabled or disabled (described shortly).

Tasks a0 a1 a2 a3

T0 * *
T1 * *
T2 * *
T3 * *
T4 * *
T5 * *

Table 1: Types of Tasks

Although not required by our model, we deliberately chose that all
tasks and subtasks have the same reward so that the only criteria for
evaluating a “good” task is its duration. Task T4 is on average the
shortest as it consists of two subtasks that can be achieved by the
two fast agents. T4 is available at any time with probability pT4

.
Any other task is available with probability 0.2.

Defining the state strikes a balance between optimality and speed
of convergence. State consists of two parts. The first is the task
currently being mediated, which is null if the mediator is idle. The
second part is the actual progress of each action (i.e. the mediation
process of each subtask). For simplicity our implementation uses
the time elapsed while mediating each subtask. Although this state
is not the most compact but it allows us to measure the trade-off
between the optimality and the speed of convergence of different
termination schemes. Note that in Q-learning, an agent learns only
about states and actions the agent actually encounters. So for ex-
ample, using the τall termination scheme, an agent will only learn
about the first part of the state. The second part of the state is irrel-
evant because an agent makes its decision only when all subtasks
terminate (either successfully or unsuccessfully). Using τany an
agent will witness more states but not all of the states (e.g. at least
one action must have terminated). An agent using τchange can po-
tentially encounter all states and hence need to learn about all of
them.

Figure 5 shows the performance of different termination schemes
when pT4

= 0.6 and the wait operator is disabled. As shown, the
policy learned using τchange clearly outperforms those learned us-
ing τany or τall. It also converges faster. This was initially surpris-
ing as we expected the τchange policy to take more time to converge
as it tunes the policy with finer granularity. But the reason τchange

was able to quickly surpass the performance of τany and τall is that
the short task T4 appears so frequently. This gives clear advantage
to τchange which can interrupt an ongoing task (joint action) even
before any subtask (single action) terminates.
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Figure 5: The performance of different termination schemes when
pT4

= 0.6 and the wait operator is disabled

Figure 6 shows the performance of different termination schemes
when pT4

= 0.6 and the wait operator is enabled. The wait oper-
ator significantly improves the performance of the τall policy and
considerably improves the τany policy while slightly improves the
performance of the τchange. With τall the mediator learns to wait
for T4 type of tasks. The same is true for τany as it can decide to
wait if T4 is not available. However, for τchange having the wait
operator does not add much (as the mediator can interrupt a task
taking too long anyway if there is a better task). In contrast, adding



wait as an additional action slows convergence as the agent need to
learn about it as well.
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Figure 6: The performance of different termination schemes when
pT4

= 0.6 and the wait operator is enabled

Figure 7 compares the performance when pT4
= 0.1 and the wait

operator enabled. Though the policy using τchange still outper-
forms other termination schemes, its convergence is considerably
slower than the other two. The reason is that there are more de-
cision epochs and states visited by τchange than the other two ter-
mination schemes (which is the same reason why τany converges
slower than τall), while the benefit of τchange in interrupting an
ongoing task is reduced due to lower pT4

.
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Figure 7: The performance of different termination schemes when
pT4

= 0.1 and the wait operator is enabled

Figures 8 and 9 verify the theoretical results in Section 4. The con-
vergence of the learned policies with the set of available actions
factored out of the state (i.e. relying on ℘-SMDP model) is con-
siderably faster than the learned policies with the set of available
actions being part of the state. The reason is the size of the state
space. When the set of available actions is part of the state, the
mediator needs to learn about 32 times the number of states when
the set of available actions is factored out. This slows convergence
considerably, especially in the case of τchange (Figure 8) because
the size of the state space, even when the of set available actions
are factored out, is high.

7. RELATED WORK
The authors in [4] used an MDP model for the decision of a meta-
controller. This meta-controller chose among high-level actions of
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Figure 8: The performance of the policy learned using τchange with
available actions as part of the state (SMDP) and factored out of the
state (℘-SMDP).
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Figure 9: The performance of the policy learned using τall with avail-
able actions as part of the state (SMDP) and factored out of the state
(℘-SMDP).

the agent including: choosing a task to pursue among a set of avail-
able tasks, the detail with which to schedule a task, when to abort
a task, when to start and stop a negotiation (mediation) with an-
other agent. Though their decision problem is similar to ours, the
approach taken is considerably different. They used the traditional
MDP model, which is not scalable in the number of available tasks.
Therefore, they had to limit the number of available actions at any
time. Our ℘-SMDP model scales well with the number of available
tasks. Also their model only handled serialized actions, while our
model deals with concurrent actions.

In [2], a mediator serially allocate tasks to agents. They used an
MDP model where actions are agent-task assignments. This again
differs from our concurrent allocation model, with different action
durations. They also assumed that the set of tasks to be allocated
are fixed and arrive in fixed order, while we assume tasks arrive
stochastically. They also assumed agents with homogeneous capa-
bilities, while our model supports heterogeneous agents.

The work in [1] modeled the resource allocation problem as a con-
strained MDP, or CMDP. A CMDP is an MDP augmented with a
set of (resource) constraints. They did not support infinite horizon
decision processes, unlike our model. The set of actions were as-
sumed fixed and the policy was serial. They also used an offline
algorithm which solved the problem assuming the transition prob-
abilities are known.

8. CONCLUSION AND FUTURE WORK



We present in this work a single coherent Semi-MDP model of the
challenging mediator decision problem. We propose the ℘-SMDP
model, which is a generalization of the SMDP model, and we prove
that ℘-SMDP model can lead to exponential savings in the memory
and time required to learn an optimal policy. We also extended
the concurrent action model with a new termination scheme that
results in an optimal policy outperforming all previous termination
schemes.

This work lays the basic formal foundation for more interesting
questions to be answered in the future. This work’s focus is on
modeling the decision process of a single mediator. Evaluating
the performance of our model and our algorithm in systems with
a network of mediators is interesting and an ongoing work. The
issues we intend to address include: how the network connections
between mediators and agents affect performance, how the load of
tasks arriving at one mediator affect the performance at another me-
diator, and how load balancing can be incorporated in our model.

While our model can represent concurrent mediations as joint ac-
tions, the model is exponential in the size of the joint actions. This
is clearly not scalable. We are currently investigating under what
assumptions our model can be factored over tasks and how it affects
optimality.
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