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ABSTRACT
Several important complex network measures that helped discover-
ing common patterns across real-world networks ignore edge weights,
an important information in real-world networks. We propose a
new methodology for generalizing measures of unweighted net-
works through a generalization of the cardinality concept of a set
of weights. The key observation here is that many measures of un-
weighted networks use the cardinality (the size) of some subset of
edges in their computation. For example, the node degree is the
number of edges incident to a node. We define theeffective cardi-
nality, a new metric that quantifies how many edges are effectively
being used, assuming that an edge’s weight reflects the amount of
interaction across that edge.

We prove that a generalized measure, using our proposed effec-
tive cardinality metric, reduces to the original unweighted measure
if there is no disparity between weights. This property ensures that
laws that govern the original unweighted measure will also govern
the generalized measure when weights are equal. We also prove
that our generalization ensures a partial ordering among sets of
weighted edges that is consistent with the original unweighted mea-
sure, unlike previously developed generalizations. We illustrate
the applicability of our method by generalizing four unweighted
network measures: the node degree, the clustering coefficient, the
dyadicity, and the heterophilicity. As a case study, we analyze four
real-world, weighted, social networks using one of our generalized
measures: the C-degree. The analysis shows that the distribution
of the generalized degree follows a similar pattern to the traditional
degree but with steeper decline. There is also a common pattern
governing the ratio between the generalized degree and the tradi-
tional degree.

1. INTRODUCTION
Several important complex network measures that helped dis-

covering patterns common in real-world networks [17, 3, 16] ig-
nore edge weights, an important information in real-world networks.
We propose here a new methodology for generalizing measures of
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unweighted networks through a generalization of the cardinality
concept of a set of weighted edges. The key observation here is
that many measures of unweighted networks use the cardinality
(the size) of some subset of edges in their computation. For ex-
ample, the node degree is the number of edges incident to a node.
The clustering coefficient of a node is the ratio between the num-
ber of edges between its neighbors and the number of all possible
edges among the neighbors.1 We propose here theeffective cardi-
nality metric, which quantifies how many edges are effectively be-
ing used among a set of weighted edges. By simply replacing the
traditional cardinality with the effective cardinality, one can gener-
alize unweighted network measures to take weights into account.
The central assumption here is that an edge’s weight reflects the
amount of interaction across that edge.

A generalization of unweighted network measures that still up-
holds the properties of unweighted network measures (as we prove
regarding our generalization) is significant, because it bridges the
gap between the extensive research made using the unweighted net-
work measures and the research on weighted networks. Further-
more, it allows more accurate analysis of the networks that were
previously analyzed using unweighted network measures. For ex-
ample, it is known that the degree distributions of several real world
networks are consistent with the power law [7]. However, if one
takes the disparity of interactions into account, will theeffective
degree distributions of these networks be consistent with the power
law?

There have been several attempts to generalize the measures of
unweighted networks (or at least some of them) to account for
weights [4, 5, 1, 15]. Most of the previous work focused on gen-
eralizing individual measures, such as the clustering coefficients
[4, 15]. Perhaps the most related work in generalizing unweighted
network measures is the ensemble approach [1]. The first step
in the ensemble approach was randomly generating a collection
of unweighted networks from the original weighted network (an
edge was generated proportional to its weight). The desired (un-
weighted) measure was computed for each network in the ensemble
and then averaged to produce the generalized measure.

We provide here a generalization methodology that applies to a
large number of unweighted measures. More importantly, unlike
the previous attempts, we prove that our generalized measures be-
come identical to the original unweighted measures if there is no
disparity between weights (i.e. all weights are equal). This prop-
erty ensures that all the results that applies for an unweighted mea-
sure directly follows for our generalization of the same measure if
the weights are equal. We also prove that the effective cardinality,
the heart of our generalization, imposes a partial ordering among

1Other examples include heterophilicity and dyadicity. We de-
scribe these measures in further detail later.



sets of weighted edges that is consistent with the traditional cardi-
nality. Intuitively this means that the smaller the disparity between
weights, the closer the generalized measure is to the unweighted
measure. This point will become clearer in Section 3 where we
discuss in detail the different properties of the effective cardinality.

We illustrate the applicability of our method by generalizing four
unweighted network measures that has been used in the literature to
discover interesting network patterns: the node degree, the cluster-
ing coefficient, the dyadicity, and the heterophilicity. Furthermore,
as a case study, we analyze four real world weighted networks using
our generalization of the degree measure and show that the power-
law still holds for the generalized degree but with steeper decline
than the traditional degree distribution. We also report an interest-
ing pattern that govern the ratio between the generalized degree and
the traditional degree.

The paper is organized as follows. Section 2 describes our pro-
posed effective cardinality metric. Section 3 discusses and proves
interesting properties of our proposed metric. Then in section 4 we
describe some unweighted network measures and show how they
can be generalized using the effective cardinality. In Section 5 we
discuss in more detail our generalization of the degree measure and
analyze four real world weighted networks. We conclude in Section
6.

2. THE EFFECTIVE CARDINALITY
Let E′ = {e1, ..., en} ⊆ E be the subset of edges used by a par-

ticular network measure, wheren = |E′| is the cardinality of this
subset andE is the set of all network edges. Letw(e) be the weight
corresponding to edgee ∈ E. We assume∀e ∈ E : w(e) ≥ ǫ > 0.
The heart of our methodology is a generalized definition of the car-
dinality of edges that takes weights into account, which we call the
effective cardinality:

c(E′) =

{

0 if E′ is empty

2

(

∑

e∈E′
w(e)

∑

o∈E′ w(o)
log2

∑

o∈E′ w(o)

w(e)

)

otherwise

The effective cardinality, by definition, is a real number (not dis-
crete as the traditional cardinality). Intuitively, the quantity w(e)

∑

o∈E′ w(o)

represents the probability of an interaction over an edgee among

all the edges inE′. The set
{

w(e)
∑

o∈E′ w(o)
: e ∈ E′

}

is a probability

distribution and the quantity
∑

e∈E′

[

w(e)
∑

o∈E′ w(o)
log2

∑

o∈E′ w(o)

w(e)

]

is the entropy of this probability distribution, which measures the
disparity between the weights: the more uniform the weights are,
the higher the entropy and vice versa. The purpose of the power 2
is to convert the entropy back to the number of edges that are effec-
tively being used. The following section discusses and proves the
distinguishing characteristics of the effective cardinality metric.

3. PROPERTIES OF THE EFFECTIVE CAR-
DINALITY

The effective cardinality satisfies three intuitive properties (proofs
are given shortly after):

1. Preserving maximum cardinality: ∀E′ : c(E′) ≤ |E′|.
Furthermore,c(E′) = |E′| iff ∀e ∈ E′ : w(e) = C, where
C is some constant. In other words, the effective cardinality
is maximum when all weights are equal.

2. Preserving minimum cardinality: c(E′) = 0 iff E′ is an
empty set. Furthermore,c(E′) is close to 1 iff∃u ∈ E′ :

w(u) >> ǫ and∀v 6= u : w(v) = ǫ. In other words, the
effective cardinality is almost one when all edges, except one
edge, have almost zero weights.

3. Consistent partial order over weighted sets:any function
that maps a set of real numbers (weights) to a single real
number imposes an implicit partial order. The effective car-
dinality imposes, arguably, the simplest partial order that is
consistent with the above two properties. If the two sets of
weighted edges have the same size, the same strength, and
their individual weights are the same except for two edges,
then set with more uniform weights has higher effective car-
dinality. More formal definition of the property is given in
the proof section.

The intuition of the three properties can be clarified through the
following example. Suppose there are four sets of edges with corre-
sponding sets of weightsW1 = {5, 5, 5, 5}, W2 = {9, 5, 5, 1}, W3 =
{9, 8, 2, 1} andW4 = {20−3ǫ, ǫ, ǫ, ǫ}. The above properties then
require the effective cardinality measure to impose the following
ordering: |W1| = c(W1) > c(W2) > c(W3) > c(W4) ≈ 1. We
prove each of these properties in the remainder of this section. Note
that the ensemble approach [1] made no guarantees with regard to
the partial order over sets of weighted edges. For example, the two
set of weightsW2 = {9, 5, 5, 1} andW3 = {9, 8, 2, 1} will have
the same generalized degree under the ensemble method. Using the
effective cardinality, the generalized degree (described in detail in
Section 5) ofW2 is strictly higher than the generalized degree of
W3.

LEMMA 1. The effective cardinality satisfies the maximum car-
dinality property.

PROOF. When all the weights are equal to a constantC we have

∀e ∈ E′ :
w(e)

∑

o∈E′ w(o)
=

C

C|E′|
=

1

|E′|

We then have

c(E′) = 2
∑

e∈E′
1

|E′|
log2(|E′|)

= 2log2(|E′|)

= |E′|

In other words, both the cardinality and the effective cardinality
of a weighted set of edges become equivalent when the weights
are uniform. The effective cardinality is also maximum in this
case, because the exponent is the entropy of the weight probabil-
ity distribution (which is maximum when weights are uniform over
edges).

LEMMA 2. The effective cardinality satisfies the minimum car-
dinality property.

PROOF. When the set of edges is empty, then the effective car-
dinality is zero by definition. When all weights are close to zero
except only one weight that is much bigger than zero, then weight
probability distribution is almost deterministic and the entropy is
close to zero, therefore the effective cardinality will be close to
1.

LEMMA 3. The effective cardinality satisfies the consistent par-
tial order property.

PROOF. LetE′
1 andE′

2 be two (edge) sets such that|E′
1| = |E′

2|
(both have the same cardinality). LetW1 andW2 be the corre-
sponding sets of weights, where

∑

e1∈E′
1
w(e1) =

∑

e2∈E′
2
w(e2) =



S (the total weights are equal). Furthermore, let|W1

⋂

W2| =
n − 2, {w11, w12} = W1 − W2, {w21, w22} = W2 − W1, where
the ’−’ operator is the "set difference" operator (the two sets share
the same weights except for two elements in each set), and|w11 −
w12| < |w21 − w22| (the weights ofW1 are more uniform than
the weights ofW2). Without loss of generality, we can assume that
w11 ≥ w12 andw21 ≥ w22, thereforew11 − w12 < w21 − w22.
We then have

w11 + w12

S
= 1 −

∑

w∈W1
⋂

W2

w

S
=

w21 + w22

S
= L

, therefore

L ≥
w21

S
>

w11

S
≥

L

2
≥ L −

w11

S
> L −

w21

S

wherew12
S

= L− w11
S

and w22
S

= L− w21
S

. Then from Lemma 4
we haveh(L, w11

S
) > h(L, w21

S
), or

−
w11

S
lg(

w11

S
) − (L −

w11

S
) lg(c −

w11

S
) >

−
w21

S
lg(

w21

S
) − (L −

w21

S
) lg(c −

w21

S
)

ThereforeH(E1) > H(E2), because the rest of the entropy terms
(corresponding toW1

⋂

W2) are equal, and consequentlyc(E1) >
c(E2).

LEMMA 4. The quantityh(C, x) = −x lg(x)−(C−x) lg(C−
x) is symmetric around and maximized atx = C

2
for C ≥ x > 0.

PROOF. Symmetry aroundc/2: h(C, C
2
+δ) = −(C

2
+δ) lg(C

2
+

δ)−(C
2
−δ) lg(C

2
−δ) = h(C, C

2
−δ). Maximum atc/2: h(C, x)

is maximized when∂h(C,x)
∂x

= 0 = −1 − lg x + 1 + lg(C − x),
thereforex = C − x = C

2
.

4. GENERALIZING UNWEIGHTED
NETWORK MEASURES

In principal, any unweighted network measure which uses the
cardinality of some subset of edges can be generalized using the
effective cardinality. Furthermore, the resulting generalized mea-
sures will inherit the three properties of the effective cardinality.
We here present four example generalizations of unweighted net-
work measures: the degree, the clustering coefficient, the dyadicity,
and the heterophilicity.

A node’s degree is the number of edges incident to the node,
or |Ei|, whereEi is the set of edges incident to nodei. Using the
effective cardinality metric, a generalization of the degree is simply
c(Ei). The following section presents a detailed analysis of four
real world networks using the generalized degree and discusses its
relationship to the traditional degree.

The clustering coefficient is a measure that quantifies the clus-
tering or connectivity among a node’s neighbors. When averaged
over all nodes, the clustering coefficient represents the connectivity
of the whole network. The clustering coefficient was an important
property for identifying small world networks [17] and is given by

the equation
|EN(i)|

CLIQUE(|N(i)|)
, whereN(i) is the set of neighbor-

ing nodes to nodei, EN(i) is the set of edges between the nodes in
N(i), and the functionCLIQUE returns the number of edges in
a clique of size|N(i)|). The generalized clustering coefficient of a

nodei using the effective cardinality is simply
c(EN(i))

CLIQUE(|N(i)|)
.

Two recent measures were used to study the correlation between
the types of nodes (node classes) in a network and the network
structure: the dyadicity and heterophilicity [16]. The dyadicity of a

graph equalsc(Ewithin)
nwithin

, whereEwithin is the set of edges within
a set of nodes of the same type (a class of nodes) andnwithin is
the expected number of edges within the same class of nodes if
there was no correlation between the node class and the network
structure. Intuitively, the dyadicity measure quantifies the strength
of connections between nodes of the same type and whether it is
above average.2 The heterophilicity of a graph equalsc(Eacross)

nacross
,

whereEacross is the set of edges across two classes of nodes and
nacross is the expected number of edges across the two classes if
there was no correlation between the node class and the network
structure. The dyadicity can be generalized, using the effective car-
dinality, to be c(Ewithin)

nwithin
and similarly the heterophilicity can be

generalized to bec(Eacross)
nacross

.
The following section discusses in detail our generalization of

the degree measure, based on the effective cardinality, and analyzes
four real world networks using this generalization.

5. CASE STUDY: THE CONTINUOUS DE-
GREE, A GENERALIZATION OF THE DE-
GREE MEASURE

A key measurement that has been used extensively in analyz-
ing networks is the degree of a node. The degree distribution is a
common method for summarizing the degrees of all network nodes
into one measure that characterizes complex networks [3, 8, 7].
Implicitly, the degree measure assumes uniform interaction across
each node’s neighbors, similar to other measures of unweighted
networks that ignore any disparity in the weights. This can result
in giving an incorrect perception of theeffectivenode degree. For
example, a person may have 10 or more acquaintances but mainly
interacts with only two of them (friends). Should that person be
considered 2 times more connected than a person with only 5 ac-
quaintances but also interacting primarily with two of them?

Most of the previous work that used the degree measure de-
fined some cutoff threshold in order to either include or exclude a
weighted edge and then computed the degree distribution normally
[6, 9]. Such an approach, however, does not properly handle the
disparity of interaction among neighbors, but rather approximates
a weighted network with an unweighted network.

Surveying all network measures that were proposed to analyze
weighted networks and had some similarity to the degree measure
is beyond the scope of this paper. Instead, we focus on a sample
of these measures that are mostly related to our contribution (inter-
ested reader may refer to survey papers on the subject such as [5]).
Theweight distributionP (w) is similar to the degree distribution
except that it measures the frequency of a particular edge weight.
Thestrengthof a node is the summation of all weights incident to
a node and it becomes identical to the node’s degree if all weights
are equal to 1. A more recent work [10] analyzed a graph’s to-
tal weight,

∑

e∈E w(e), against the graph’s total number of edges,
|E|, over time. That work also analyzed the degree of a node,k(v),
against the node’s strength,s(v). While useful, none of these mea-
sures captured the disparity in interaction between a node and its

neighbors. The network measureY (v) =
∑

e∈E(v)

(

w(e)
s(v)

)2

suc-

cessfully captured the disparity of interaction within a nodev [2].
However, theY measure is not ageneralizationof the degree mea-
sure as it fails to satisfy the first two properties we define in Section
3. In other words, if the weights are equal, theY measure of a node

2There are other network measures that also quantified the strength
of connections within a class (community) of nodes, such as the
modularity measure [12].



Figure 1: Continuous vs discrete degree distributions.

does not become equal to the node’s degree.
Using our definition of effective cardinality, a generalization of

the degree measure, which we call the continuous degree or the
C-degree, is given by the following equation:

DEFINITION 5. TheC-degreeof a nodei in a network isr(i),
where

r(i) = c(Ei) =

{

0 if i is disconnected

2

(

∑

e∈Ei

w(e)
s(i)

log2
s(i)
w(e)

)

otherwise

WhereEi is the set of edges incident to nodei ands(i) is the
strength of nodei. Figure 1 compares the continuous degree dis-
tribution to the (discrete) degree distribution in a simple weighted
network of four nodes. A node on the boundary has an out degree
of 1, while an internal node has an out degree of 2. Intuitively, how-
ever, only one of the internal nodes is fully utilizing its degree of
2 (the one to the left), while the other node (to the right) is mostly
using one neighbor only. The C-degree measure captures this and
shows that only one internal node has a C-degree of 2 while the
other internal node has a C-degree of 1.38.

The C-degree inherits the three properties we described earlier
with respect to the traditional node degree. The C-degree of a
node is maximum and equals the traditional discrete degree when
all the weights incident to the node are equal. The C-degree of
a connected node is minimum and very close to one if all edges
incident to the node have weights that are almost zero except one
edge that has a weight much larger than zero. And finally, every-
thing else being equal, a node with more uniform weights incident
to it has higher C-degree than a node with less uniform weights
incident to it. As mentioned earlier, the three properties ensure
that the four sets of weightsW (v1) = {5, 5, 5, 5}, W (v2) =
{9, 5, 5, 1}, W (v3) = {9, 8, 2, 1} andW (v4) = {20− 3ǫ, ǫ, ǫ, ǫ}
will have corresponding C-degree respecting the following inequal-
ity k(v1) = r(v1) > r(v2) > r(v3) > r(v4) ≈ 1.

We have analyzed four real world weighted networks3 that cap-
ture coauthorships between scientists. Three of which were ex-
tracted from preprints on the E-Print Archive [13]: condensed mat-
ter (updated version of the original dataset that includes data be-
tween Jan 1, 1995 and March 31, 2005), astrophysics, and high-
energy theory. The fourth network represents coauthorship of sci-
entists in network theory and experiment [14]. The weight between

3Available through http://www-personal.umich.edu/ mejn/netdata/

two scientistsi andj reflects the strength of their collaboration and

is given by the equationwij =
∑

k

δk
i δk

j

nk−1
, whereδk

i = 1 if scien-
tist i was a co-author of paperk andnk is the number of co-authors
for paperk[11].

It was shown that the degree distribution of several real networks
is consistent with the power law [5, 12]. A degree distribution fol-
lows the power law ifP (k) ∝ k−α, whereα is a constant. Figure
2 displays the C-degree distribution (CDD) and the (discrete) de-
gree distribution (DD) for the four collaboration network. The fig-
ure uses log-log scale with the power law fit (based on [7]4). The
CDD preserves a behavior similar to the traditional degree, but with
steeper decline, which is consistent with Lemma 1.
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Figure 2: Comparing the discrete degree distribution (DD) with the
continuous degree distribution (CDD) for the four collaboration net-
works. The power law fit (PL fit) is also shown with the associated
power.

One would expect that as the degree of a node increases, the node
will interact primarily with a smaller subset of neighbors, particu-
larly in social networks where humans have limited communication
capacity. To verify this intuition, we define thedegree utilization
metric as the ratio between the C-degree and the degree of a node:
u(v) = r(v)

k(v)
. The degree utilization metric captures the percentage

of links that a node uses effectively, therefore we expect the degree
utilization to decrease as the degree increases. Figure 3 plots the
degree utilization against the (discrete) degree for the four collabo-
ration networks. A common pattern emerges in the four networks.
For low degrees, the degree utilization is relatively high (a node
with few links makes the best of them). For node degree greater
than some constant the bias towards high degree utilization dis-
appears. However, and to our surprise, aconeis observed, which
starts wide at low degrees and gets narrower as the degree increases
(the average degree utilization is plotted as a line in the figure). In
other words, for degrees above some threshold, nodes vary in their
utilization of their available links. However, this variation reduces
as the degree increases, while the mean remains relatively stable.

4Source code available from http://www.santafe.edu/ãaronc/powerlaws/
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(d) high-energy theory

Figure 3: Scatter plot of a node degree against its degree utilization
for the four collaboration networks. the average utilization per degree
is also plotted.

6. CONCLUSION
We proposed a new methodology for generalizing measures of

unweighted networks by defining theeffective cardinality, a new
metric which quantifies how many edges, of a particular subset of
edges, are effectively being used. We illustrated the applicability
of our method by generalizing four unweighted network measures:
the node degree, the clustering coefficient, the dyadicity, and the
heterophilicity. Furthermore, we compared the generalized degree
to the traditional degree using four real world networks and showed
that the power-law still holds for the generalized degree but with
steeper decline. We also investigated the ratio between the general-
ized degree and the traditional degree and showed that on average
the ratio is lower bounded, even for nodes with high-degree.
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