
Using Graph Analysis to Study Networks of Adaptive
Agent

Sherief Abdallah
British University in Dubai, United Arab Emirates

University of Edinburgh, United Kingdom
shario@ieee.org

ABSTRACT
Experimental analysis of networks of cooperative learning
agents (to verify certain properties such as the system’s sta-
bility) has been commonly used due to the complexity of
theoretical analysis in such cases. Due to the large number
of parameters to analyze, researchers used metrics that sum-
marize the system in few parameters. Since in cooperative
system the ultimate goal is to optimize some global metric,
researchers typically analyzed the evolution of the global
performance metric over time to verify system properties.
For example, if the global metric improves and eventually
stabilizes, it is considered a reasonable verification of the
system’s stability.
The global performance metric, however, overlooks an im-

portant aspect of the system: the network structure. We
show an experimental case study where the convergence of
the global performance metric is deceiving, hiding an under-
lying instability in the system that later leads to a significant
drop in performance. To expose such instability, we pro-
pose the use of the graph analysis methodology, where the
network structure is summarized using some network mea-
sures. We develop a new network measure that summarizes
an agent’s interaction with its neighbors and takes the dis-
parity of these interactions into account. The new measure
is applied to our case study, clearly exposing the instabil-
ity that was previously hidden by the global performance
metric.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial

Intelligence]: Distributed Artificial Intelligence

General Terms
Experimentation

Keywords
Simulation and Experimental Verification, Agent Networks,
Multi-agent Learning, Network Analysis

1. INTRODUCTION
Cite as: Using Graph Analysis to Study Networks of Adaptive Agent,
Sherief Abdallah,Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Organizing agents in a network is a common approach
to achieve scalability in multi-agent systems [1]. Restrict-
ing an agent to interact only with its neighbors simplifies
the agent’s decision making problem (the problem becomes
independent of the overall system size). To cope with an en-
vironment that keeps changing or that is not known a prior,
learning algorithms have been used to optimize performance
in agent networks [2, 3, 1]. Multi-agent learning algorithms
allow agents to optimize their decisions based on their in-
teractions with both the environment and their neighbors
in the network. Analyzing the dynamics of such a system
(consisting of networked adaptive agents) over time is a non-
trivial task, due to the large number of system parameters
(each agent maintains a set of local parameters controlling
its behavior), the concurrency by which these parameters
change (agents acting independently), and the delay in the
effect/consequence of parameter changes (because of com-
munication delay between agents and the time it takes for
learning algorithms to adapt).

A researcher studying a large-scale system of adaptive
agents needed some metrics to summarize this system (with
its large number of parameters) into a few numbers that are
more manageable. In cooperative MAS, the natural choice
was the global performance metric(s) the system is trying to
optimize (e.g. payoff). Researchers inspected the evolution
of some global performance metrics as a rough approxima-
tion to the internal dynamics of the adaptive agent network.
[2, 3, 1]. For example, if the global metric improved over
time and eventually appeared to stabilize, it was usually con-
sidered a reasonable verification of convergence. Examples
of global performance metrics include the percentage of total
number of delivered packets in routing problems [4], the av-
erage turn around time of tasks in task allocation problems
[5], or the average reward (received by agents) in general [6].

The global performance metric, however, overlooks an im-
portant aspect of the system: the network structure. We
present in this paper an experimental case study where the
stability of the global performance metric can hide an un-
derlying instability in the system. The hidden instability
later leads to a significant drop in the global performance
metric itself, but after some period of (fake) stability.

We propose the use of graph analysis to study the dy-
namics of networked adaptive agents. Graph analysis is an
interdisciplinary research field that studies interesting graph
properties in real-world networks. In recent years graph
analysis received significant attention due to the explosive
growth of social networks and the discovery of common pat-
terns that govern a wide-range of real world networks [7, 8].

0.25

0.25

0.25

0.25

0.325

0.325

0.325

0.025

0.483

0.4

0.912

0.025

0.997

0.001

0.001

0.001

4

1

3

2

time

generalized

degree
(continuous)

Figure 1: Example showing the evolution of a node’s

interaction with its neighbors over time (top) and the

corresponding continuous degree of that node over time.

The core of graph analysis is network measures: functions
that summarize a graph to simpler numeric values which are
then more manageable to analyze.
One can abstract a networked MAS at any point in time as

a weighted graph, where an edge weight reflects the amount
of interaction over that edge (e.g. the number of messages
exchanged). Figure 4(a) shows an example network of 4
agents. We can then apply some network measures that were
developed in graph analysis to summarize these weighted
graphs into meaningful more manageable parameters. How-
ever, the bulk of the measures previously developed in graph
analysis focused on unweighted graphs [9]. The lack of
weighted network measures is due, at least in part, to the
difficulty of quantifying such weights in real-world networks
(e.g. social networks). Even if quantified, the accuracy of
such weights are at best debatable. In our case here net-
works are artificial and weights can be quantified precisely.
In fact, weights can not be ignored, because they provide
crucial insights into the learning process going on inside the
network of agents.
We propose a new network measure, which we call the con-

tinuous degree. The new measure takes weights into account
to determine how many neighbors are effectively being used
by an agent in the network. Figure 1 illustrates how our
new measure summarizes the evolution of a node’s interac-
tion over time. When initially the agent interacts uniformly
with all its neighbors, the continuous degree equals 4, the
number of neighbors. At the other extreme when the agent
interacts mostly with one neighbor, the continuous degree
equals 1. We prove interesting properties of our proposed
measure, including its connection to the traditional node
degree and its ability to capture the disparity of interaction
among neighbors. We use our measure to expose and explain
the instability reported in the case study we mentioned ear-
lier.
In summary, this paper makes the following contributions:

• presents a case study illustrating the risk of relying
on global performance metrics to analyze networks of
adaptive agents.

• proposes the use of graph analysis to analyze networks
of adaptive agents, and develops a new network mea-
sure that takes the disparity of interaction among agents
into account

• illustrates how graph analysis can be used to explain
the observed behavior in our case study.

The paper is organized as follows. Section 2 describes the
case study we will be using throughout the paper. Section 3
presents our proposed measure, the continuous degree. Sec-
tion 4 revisits the case study, illustrating how the continu-
ous degree exposes the instability in the system. Section 5
analyzes our proposed measure and proves some of its prop-
erties. Section 6 discusses the related work. We conclude in
Section 7.

2. CASE STUDY: DISTRIBUTED TASK AL-
LOCATION PROBLEM (DTAP)

We use a simplified version of the distributed task allo-
cation domain (DTAP) [5], where the goal of the system is
to assign tasks to agents such that the service time of each
task is minimized. For illustration, consider the example
scenario depicted in Figure 2. Agent A0 receives task T1,
which can be executed by any of the agents A0, A1, A2, A3,
and A4. All agents other than agent A4 are overloaded, and
therefore the best option for agent A0 is to forward task T1
to agent A2 which in turn forwards the task to its left neigh-
bor (A5) until task T1 reaches agent A4. Although agent
A0 does not know that A4 is under-loaded (because agent
A0 interacts only with its immediate neighbors), agent A0
should eventually learn (through experience and interaction
with its neighbors) that sending task T1 to agent A2 is the
best action without even knowing that agent A4 exists.

A2

A0

A1

A3

A4

T1

A5

Figure 2: Task allocation using a network of agents.

Each time unit, agents make decisions regarding all task
requests received during this time unit. For each task, the
agent can either execute the task locally or send the task to
a neighboring agent. If an agent decides to execute the task
locally, the agent adds the task to its local queue, where
tasks are executed on a first come first serve basis, with
unlimited queue length.

The main goal of DTAP is to reduce the total service time,

averaged over tasks, ATST =
∑

T∈Tτ
TST (T)

|Tτ |
, where T τ is

the set of task requests received during a time period τ and
TST (T) is the total time a task T spends in the system. The
TST (T) time consists of the time for routing a task request
through the network, the time the task request spends in
the local queue, and the time of actually executing the task.

Agents interact via two types of messages. A REQUEST
message 〈i, j, T 〉 indicates a request sent from agent i to
agent j requesting the execution of task T . An UPDATE

message 〈i, j, T,R〉 indicates a feedback (reward signal) from
agent i to agent j that task T took R time steps to complete
(the time steps are computed from the time agent i received
T ’s request).
Communication delay is an important property of our ver-

sion of DTAP. Each agent has a physical location and the
communication delay between two agents is proportional to
the Euclidean distance between them (one time unit per dis-
tance unit). Due to communication delay, the effect of an
action does not appear immediately because it is communi-
cated via messages and messages take time to route. Not
only is the reward delayed but so is any change in the sys-
tem’s state. A consequence of communication delay is par-
tial observability: an agent can not observe the full system
state (the queues at every other agent, messages on links
and in queues, etc.).
Although the underlying simulator has different underly-

ing states (tasks at local agent queues, messages in transit
over communication links, etc.), we made agents oblivious
to these states. The only feedback an agent gets is its own
reward. This simplifies the agent’s decision problem and re-
emphasizes partial observability: agents collectively learn a
joint policy that makes a good compromise over the differ-
ent unobserved states. The following section gives a brief
overview of the multi-agent learning (MAL) algorithms that
we evaluate in our case study and discusses the issue of con-
vergence with respect to MAL.

2.1 Multiagent Learning
A large number of multi-agent learning algorithms were

proposed that vary in their underlying assumptions and tar-
get domains [10]. The experimental results and the analysis
we report here focus on two (gradient-ascent) multi-agent
learning algorithms: GIGA-WoLF [11] and WPL [5], but
our methodology can be used with other algorithms as well.
These two learning algorithms allow agents to learn stochas-
tic policies, which are better suited for partially-observable
domains [1]. The specifics of WPL and GIGA-WoLF (such
as their update equations, the underlying intuition, their dif-
ferences and similarities) are neither relevant to the purpose
of this paper nor needed to follow our analysis in Section 4.
Nevertheless, and for completeness, we mention below (very
briefly) the equations for updating the policy for the two al-
gorithms. Further details regarding the two algorithms can
be found elsewhere [11, 5].
The term convergence, in the reinforcement learning con-

text, refers to the stability of the learning process (and the
underlying model) over time. Similar to single agent rein-
forcement learning algorithms (such as Q-learning [12]), the
convergence of a multi-agent reinforcement learning (MARL)
algorithm is an important property that received consider-
able attention [13, 11, 14, 15, 16, 5]. However, proving the
convergence of a MARL algorithm via theoretical analysis
is significantly more challenging than proving the conver-
gence in the single agent case. The presence of other agents
that are also learning deem the environment non-stationary,
therefore violating a foundational assumption in single agent
learning. In fact, proving the convergence of a MARL algo-
rithm even in 2-player-2-action single-stage games (arguably
the simplest class of multi-agent systems domains) has been
challenging [13, 14, 5].
An agent i using WPL updates its policy πi according to

the following equations:

∀j ∈ neighbors(i) :∆πt+1
i (j)←

∂V t
i (π)

∂πt
i(j)

· η ·

{

πt
i(j) if

∂V t
i (π)

∂πt
i
(j)

< 0

1− πt
i(j) otherwise

πt+1
i ← projection(πt

i +∆πt+1
i)

where η is a small learning constant and Vi(π) is the ex-
pected reward agent i would get if all agents (including agent
i) follow the joint policy π (agent i’s part of π is its own pol-
icy πi). The projection function ensures that after adding
the gradient ∆πi to the policy, the resulting policy is still
valid.

An agent i using GIGA-WoLF updates its policy πi ac-
cording to the following equations:

π̂t+1
i = projection(πt

i + ηV t
i (π)

t)

zt+1
i = projection(πt

i + ηV t
i (π)/3)

δt+1
i = min

(

1,
||zt+1

i − zti ||

zt+1
i − π̂t

i

)

πt+1
i = π̂t+1

i + δt+1
i (zt+1

i − π̂t+1
i)

The following section evaluates both WPL and GIGA-
WoLF in DTAP using ATST as the metric of evaluation.

2.2 Stability Under the Global Metric Results
We have evaluated the performance of WPL and GIGA

WoLF using the following setting.100 agents are organized
in a 10x10 grid. Communication delay between two adjacent
agents is two time units. Tasks arrive at the 4x4 sub-grid
(i.e. the 16 agents at the center) at the center at rate 0.5
tasks per agent per time unit. All agents can execute a
task with a rate of 0.1 task/time unit (both task arrival and
service durations follow an exponential distribution).

Figure 3 plots the global performance (measured in terms
of ATST) of the two multi-agent learning algorithms in the
DTAP domain. Just by looking at the ATST plot, it is rel-
atively safe to conclude that WPL converges quickly while
GIGA-WoLF converges after about 75,000 time steps. This
is consistent with previously reported results that were con-
ducted on a much simpler version of DTAP (only 5 agents
with no communication delay) [17]. The following section
presents a new network measure that we later use to dis-
cover that the apparent stability of GIGA-WoLF is actually
misleading.

0 50000 100000 150000 200000

0

200

400

600

800

1000

1200

1400

1600

1800
WPL

GIGA−WoLF

Figure 3: Comparing the average total service time for

200,000 time steps of the DTAP problem for WPL and

GIGA-WoLF.

3. THE CONTINUOUS DEGREE (C-DEGREE)
A key measurement that has been used extensively in an-

alyzing networks is the degree of a node. A node’s degree
is the number of edges incident to that node. Intuitively, a
node’s degree reflects how connected the node is. This sim-
ple measure (along with other network measures) allowed
the discovery of patterns common in many real world net-
works, such as the power law of the degree distribution [18].
To put it more formally, a network (graph) is defined as

N = 〈V,E〉, where V is the set of network nodes (vertices)
and E is the set of edges (links) connecting these nodes.
The degree of a node v ∈ V is k(v) = |E(v)|, where E(v)
is the set of edges incident to node v. For a weighted net-
work, we define the function w(e) which returns the weight
of edge e ∈ E. Also for convenience, we define the func-
tion W (v) = {W (e) : e ∈ E(v)}, i.e. the multiset of
weights incident to node v. The degree distribution P (k)
measures the frequency of a particular degree k in a net-
work (P (k = u) = |{v : v ∈ V ∧ k(v) = u}|) and serves
as a common method for summarizing and characterizing
networks.
One of the limitations of the degree measure is that it ig-

nores any disparity in the interaction between a node and
its neighbors. In other words, the degree measure assumes
uniform interaction across each node’s neighbors. This can
result in giving an incorrect perception of the effective node
degree. For example, an agent may have 10 or more neigh-
bors but mainly interacts with only two of them. Should
that agent be considered 2 times more connected than an
agent with only 5 neighbors but also interacting primarily
with two of them?
We introduce in this paper a new measure for analyzing

weighted networks: the continuous degree, or the C-degree.

Definition 1. The C-degree of a node v in a network is
r(v), where

r(v) =

{

0 if v is disconnected

2

(

∑

e∈E(v)
w(e)
s(v)

log2
s(v)
w(e)

)

otherwise

Where s(v) =
∑

w∈W (v) w is called the strength of node

v. Intuitively, the quantity w(e)
s(v)

represents the probability of

an interaction over an edge e. The set
{

(e, w(e)
s(v)

) : e ∈ E(v)
}

is the interaction probability distribution for node v. The

quantity H(v) =
∑

e∈E(v)

[

w(e)
s(v)

log2
s(v)
w(e)

]

is then the en-

tropy of the interaction probability distribution, or how many
bits are needed to encode the interaction probability distri-
bution. The entropy quantifies the disparity in the interac-
tion distribution: the more uniform the interaction distribu-
tion is, the higher the entropy and vice versa.1 The purpose
of the power 2 is to convert the entropy back to the number
of neighbors that are effectively being used.
Figure 4 compares the continuous degree distribution to

the (discrete) degree distribution in a simple weighted net-
work of four nodes. A node on the boundary has an out
degree of 1, while an internal node has an out degree of 2.
Intuitively, however, only one of the internal nodes is fully
utilizing its degree of 2 (the one to the left), while the other

1This is in contrast to the Y measure, which decreases if
the interaction distribution becomes more uniform. A brief
discussion of the Y-measure is given in Section 6

Figure 4: Continuous vs discrete degree distributions.

node (to the right) is mostly using one neighbor only. The
C-degree measure captures this and shows that only one in-
ternal node has a C-degree of 2 while the other internal node
has a C-degree of 1.38.

What sets our measure apart from previous work in graph
analysis is that it is a continuous generalization of the de-
gree measure that captures the disparity of interaction (the
difference in weights) among the neighbors of a node. In par-
ticular, if every node interacts with all its neighbors equally,
then the C-degree becomes identical to traditional (discrete)
degree measure of the same node. However, if there is a dis-
parity in a node’s interaction with its neighbors, then the
C-degree will capture such disparity, unlike the traditional
degree measure. We prove these properties of the C-degree
in Section 5, but before doing so, let us illustrate how the
C-degree can help in verifying the stability of a network of
adaptive agents.

4. VERIFYING STABILITY USING C-DEGREE
Returning to our case study (refer to Section 2), Figure

5 plots the average C-degree over the 100 agents against
time. When agents are using WPL, the C-degree do stabi-
lize. When agents use GIGA-WoLF, however, the C-degree
does not converge and continues to decrease. This observa-
tion suggests that we need to run the simulation for a longer
time period in order to verify GIGA-WoLF’s stability.

Figure 5: The average C-degree of WPL and GIGA-

WoLF for 200,000 time steps.

When the simulator is allowed to run for 600,000 time

steps, the global performance metric (the ATST in the case
of DTAP) of GIGA-WoLF starts slowly to diverge after
250,000 time steps and the corresponding C-degree contin-
ues to decrease. WPL’s C-degree remains stable, consistent
with WPL’s the global performance metric.

0 100000 200000 300000 400000 500000 600000

0

500

1000

1500

2000

2500

3000

3500
WPL

GIGA−WoLF

Figure 6: Comparing the ATST for 600,000 time steps

of the DTAP problem for WPL and GIGA-WoLF.

Figure 7: The average C-degree of WPL and GIGA-

WoLF for 600,000 time steps.

The plot of the C-degree tells us that GIGA-WoLF learns
as a slower pace than WPL. Furthermore, while agents us-
ing WPL continue to effectively use (at least) two neighbors,
agents using GIGA-WoLF almost learn a deterministic pol-
icy (interacting primarily with only one neighbor). It is
interesting to note that the average payoff for GIGA-WoLF
starts to diverge when the average C-degree of GIGA-WoLF
falls below the average C-degree of WPL. GIGA-WoLF’s di-
vergence in this case study is not surprising in itself, since
GIGA-WoLF’s convergence was proved only for 2-player-2-
action games and GIGA-WoLF was reported to diverge in
some games with larger number of either players or actions
[11, 19]. A more in-depth analysis that take the specifics of
GIGA-WoLF into account is needed to fully explain the root
of GIGA-WoLF’s divergence in the DTAP domain. Such an
analysis is beyond the scope of this paper and should not
distract from the main point we are trying to make: the
common practice of using a global performance metric to
verify the stability of an adaptive MAS is not reliable and
can hide threatening instability. Graph analysis can pro-
vide useful insights in that respect when equipped with in-
formative network measures, such as the measure we have
presented.

5. PROPERTIES OF THE C-DEGREE
The C-degree satisfies three properties that establish its

connection to the original degree metric (first two proper-
ties) and its ability to capture the disparity of interactions
among the neighbors of a node (the third property).

1. Preserving maximum degree: ∀v ∈ V : r(v) ≤
k(v). Furthermore, r(v) = k(v) iff ∀e ∈ E(v) : w(e) =
C, where C is some constant. In other words, the
C-degree is maximum and equals the original degree
when there is no disparity between weights.

2. Preserving minimum degree: ∀v ∈ V : r(v) = 0
iff v is disconnected. Furthermore, r(v) = 1 iff ∃e ∈
E(v) : w(e) > 0 and ∀e′ ∈ E(v)∧e′ 6= e : w(e′) = 0. In
other words, the C-degree equals one when all edges,
except one edge, have zero weight.

3. Consistent partial order over nodes: The C-degree
imposes a simple partial order that is consistent with
the above two properties. If the two nodes have the
same number of neighbors, the same summation of
weights (strength), and the individual edge weights
are the same except for two edges, then the node with
more uniform weights has higher C-degree. A formal
definition of this property is given in Lemma 4.

The intuition of the three properties can be clarified through
the following numeric example. Let v1, v2, v3, and v4 be four
nodes whereW (v1) = {5, 5, 5, 5},W (v2) = {9, 5, 5, 1},W (v3) =
{9, 8, 2, 1} and W (v4) = {20, 0, 0, 0}. The third property
then guarantees that the C-degree imposes the ordering:
r(v1) > r(v2) > r(v3). All three properties guarantee that
k(v1) = r(v1) > r(v2) > r(v3) > r(v4) = 1. Below we prove
the three properties.

Lemma 2. The C-degree satisfies the minimum degree ax-
iom.

Proof. When all weights are zero except only one weight
that is greater than zero, then the entropy (the exponent of
the C-degree) is zero, and therefore the C-degree is 1.

Lemma 3. The C-degree satisfies the maximum degree ax-
iom.

Proof. Under uniform interaction, all the weights inci-
dent to a node v are equal to a constant Wv. Therefore

∀v ∈ V, e ∈ E(v) :
w(e)

s(v)
=

Wv
∑

e∈E(v) Wv

=
1

k(v)

We then have

∀v : r(v) = 2
∑

e∈E(v)
w(e)
s(v)

log2
s(v)
w(e)

= 2
∑

k(v)
1

k(v)
log2(k(v))

= 2log2(k(v))

= k(v)

In other words, both the degree and the C-degree of a node
become equivalent under uniform interaction. The C-degree
is also maximum in this case, because the exponent is the
entropy of the interaction distribution, which is maximum
when the interaction is uniform over edges.

Lemma 4. The C-degree satisfies the consistent partial
order property.

Proof. Let i, j be two nodes such that k(i) = k(j) =
n, s(i) = s(j) = s, |W (i)

⋂

W (j)| = n − 2, {wi1, wi2} =
W (i)−W (j), {wj1, wj2} = W (j)−W (i), and |wi1 −wi2| <
|wj1 −wj2|. Without loss of generality, we can assume that
wi1 ≥ wi2 and wj1 ≥ wj2, therefore wi1 − wi2 < wj1 − wj2.
We also have

wi1 + wi2

s
= 1−

∑

w∈W (i)
⋂

W (j)

w

s
=

wj1 + wj2

s
= c

, therefore

wj1

s
>

wi1

s
≥

c

2
≥ c−

wi1

s
> c−

wj1

s

Then from Lemma 5 we have h(c, wi1
s
) > h(c,

wj1

s
), or

−
wi1

s
log2(

wi1

s
)− (c−

wi1

s
) log2(c−

wi1

s
) >

−
wj1

s
log2(

wj1

s
)− (c−

wj1

s
) log2(c−

wj1

s
)

Therefore H(i) > H(j), because the rest of the entropy
terms (corresponding to W (i)

⋂

W (j)) are equal, and con-
sequently r(i) > r(j).

Lemma 5. The quantity h(C, x) = −x log2(x) − (C −
x) log2(C−x) is symmetric around and maximized at x = C

2
for C ≥ x ≥ 0.

Proof.

h(C,
C

2
+ δ) = −(

C

2
+ δ) log2(

C

2
+ δ)− (

C

2
− δ) log2(

C

2
− δ)

= h(C,
C

2
− δ)

Therefore h(C, x) is symmetric around c/2. Furthermore,
h(C, x) is maximized when

∂h(C, x)

∂x
= 0 = −1− log2 x+ 1 + log2(C − x)

or

log2 x = log2(C − x)

Therefore h(C, x) is maximized at x = C − x = C
2
.

The following section discusses the similarities and differ-
ences between the C-degree and previously developed net-
work measures in the field of graph analysis.

6. RELATED WORK
Some researchers analyzed how individual agent policies

co-evolved over time, either theoretically [13, 20, 5] or ex-
perimentally [6], as the number of agents increases, but in-
specting individual agent policies does not scale well with
the size of the network. A recent work used data mining
techniques to extract patterns from log files of communi-
cated messages between agents [21]. Inspecting individual
messages exchanged between the agents becomes less prac-
tical and less useful as the network gets larger.
Some of the previous work provided generic frameworks

for analyzing multi-agent systems, but these framework lim-
ited analysis to a few agents and ignored the underlying
network structure, unlike the work presented here [22, 23].

Most of the work in analyzing (communication) networks
and distributed systems relied on simple heuristics that are
intuitive, easy to understand, and experimentally verified to
work adequately. Large-scale and in-depth analysis of the
network behavior received attention recently, assuming the
underlying nodes are relatively simple with fixed behavior
[24]. Here we are interested in analyzing networks of learn-
ing agents, where the dynamics of the network change over
time even if the outside world remains unchanged.

Surveying all network measures that were proposed to
analyze weighted graphs is beyond the scope of this pa-
per. Instead, we focus on a sample of these measures that
are mostly related to our proposed measure (the interested
reader may refer to survey papers on the subject such as
[9]).

The strength of a node (the summation of weights inci-
dent to the node) becomes identical to the node’s degree if
all weights are equal to 1. The strength measure, however,
fails to capture the disparity of interaction between an indi-
vidual node and its neighbors (the consistent partial order
property). For example, suppose that a node v1 has multiset
of incident weights {1, 9}, while another node v2 has a multi-
set of incident weights {5, 5}. Both nodes will have the same
strength, despite the fact that node v2 is interacting with its
neighbors more uniformly than node v1. A more recent work
[25] analyzed a graph’s total weight,

∑

e∈E w(e), against the
graph’s total number of edges, |E|, over time. That work
also analyzed the degree of a node, k(v), against the node’s
strength, s(v). These measures again fail to capture the
disparity in interaction between a node and its neighbors.

The network measure Y (v) =
∑

e∈E(v)

(

w(e)
s(v)

)2

success-

fully captures the disparity of interaction within a node v
[26]. However, the Y measure is not a generalization of the
degree measure as it fails to satisfy the first two properties of
the C-degree, therefore the Y-measure is less intuitive than
the C-degree. An interesting method for generalizing the
node degree is generating an ensemble of unweighted net-
works that are sampled from the original weighted network
[27] (the weight of an edge reflects the probability of generat-
ing the edge in a sample network). The effective node degree
is then the average over the samples. While the ensemble
approach satisfies the first two properties of the C-degree,
it still fails to satisfy the third property, the consistency in
handling disparity.

7. CONCLUSION AND FUTURE WORK
In this paper we presented a case study of 100 networked

adaptive agents where the global performance metric can
hide an underlying instability in the system, and show that
this instability lead to a significant drop in performance later
on. We proposed the use of graph analysis to analyze agent
interactions over time. We also developed a new network
measure, the C-degree, that generalized the degree of a node
to take weights into account. Our methodology successfully
exposed the hidden instability in the case study. We finally
proved that the C-degree of a node reduces to the original
(discrete) degree when the node interacts with its neighbors
uniformly. Otherwise the C-degree captures the disparity in
a node’s interaction with its neighbors.

The analysis presented here, as mentioned earlier, is a pre-
liminary step that we hope to trigger more research that ap-
plies network analysis and mining techniques to multi-agent

systems. The C-degree, which we proposed here, focuses on
capturing the disparity of interaction between a node and
its neighbors. In domains where the (absolute) quantity of
interaction is crucial in understanding the dynamics, alter-
natives to the C-degree may be more effective.

8. REFERENCES
[1] S. Abdallah, V. Lesser, Multiagent reinforcement

learning and self-organization in a network of agents,
in: Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems,
2007, pp. 1–8.

[2] J. A. Boyan, M. L. Littman, Packet routing in
dynamically changing networks: A reinforcement
learning approach, in: Proceedings of the Annual
Conference on Advances in Neural Information
Processing Systems, 1994, pp. 671–678.

[3] L. Peshkin, V. Savova, Reinforcement learning for
adaptive routing, in: Proceedings of the International
Joint Conference on Neural Networks, 2002, pp.
1825–1830.

[4] Y.-H. Chang, T. Ho, Mobilized ad-hoc networks: A
reinforcement learning approach, in: Proceedings of
the First International Conference on Autonomic
Computing, 2004, pp. 240–247.

[5] S. Abdallah, V. Lesser, A multiagent reinforcement
learning algorithm with non-linear dynamics, Journal
of Artificial Intelligence Research 33 (2008) 521–549.

[6] M. Ghavamzadeh, S. Mahadevan, R. Makar,
Hierarchical multi-agent reinforcement learning,
Autonomous Agents and Multi-Agent Systems 13 (2)
(2006) 197–229.

[7] M. E. J. Newman, Finding community structure in
networks using the eigenvectors of matrices, Physical
Review E 74 (2006) 036104.

[8] J. Park, A.-L. Barabasi, Distribution of node
characteristics in complex networks, Proceedings of
the National Academy of Science 104 (2007)
17916–17920.

[9] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U.
Hwang, Complex networks: Structure and dynamics,
Physics Reports 424 (2006) 175–308.

[10] L. Panait, S. Luke, Cooperative multi-agent learning:
The state of the art, Autonomous Agents and
Multi-Agent Systems 11 (3) (2005) 387–434.

[11] M. Bowling, Convergence and no-regret in multiagent
learning, in: Proceedings of the Annual Conference on
Advances in Neural Information Processing Systems,
2005, pp. 209–216.

[12] R. Sutton, A. Barto, Reinforcement Learning: An
Introduction, MIT Press, 1999.

[13] M. Bowling, M. Veloso, Multiagent learning using a
variable learning rate, Artificial Intelligence 136 (2)
(2002) 215–250.

[14] V. Conitzer, T. Sandholm, AWESOME: A general
multiagent learning algorithm that converges in
self-play and learns a best response against stationary
opponents, Machine Learning 67 (1-2) (2007) 23–43.

[15] Y. Shoham, R. Powers, T. Grenager, If multi-agent
learning is the answer, what is the question?, Artificial
Intelligence 171 (7) (2007) 365–377.

[16] B. Banerjee, J. Peng, Generalized multiagent learning
with performance bound, Autonomous Agents and
Multiagent Systems 15 (3) (2007) 281–312.

[17] S. Abdallah, V. Lesser, Learning the task allocation
game, in: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent
Systems, 2006, pp. 850–857.

[18] A. Clauset, C. Rohilla Shalizi, M. E. J. Newman,
Power-law distributions in empirical data, ArXiv
e-printsarXiv:0706.1062.

[19] M. Bowling, Convergence and no-regret in multiagent
learning, Technical Report TR04-11, University of
Alberta (2004).

[20] P. Vrancx, K. Tuyls, R. Westra, Switching dynamics
of multi-agent learning, in: Proceedings of the 7th
International Joint conference on Autonomous Agents
and Multiagent Systems, 2008, pp. 307–313.

[21] E. Serrano, J. J. Gómez-Sanz, J. A. Bot́ıa, J. Pavón,
Intelligent data analysis applied to debug complex
software systems, Neurocomputing 72 (13-15) (2009)
2785–2795.

[22] J. Jin, R. T. Maheswaran, R. Sanchez, P. Szekely,
Vizscript: visualizing complex interactions in
multi-agent systems, in: Proceedings of the 12th
international conference on Intelligent user interfaces,
2007, pp. 369–372.

[23] T. Bosse, D. N. Lam, K. S. Barber, Tools for
analyzing intelligent agent systems, Web Intelligence
and Agent Systems 6 (4) (2008) 355–371.

[24] V. Paxson, End-to-end routing behavior in the
internet, SIGCOMM Computer Communication
Review 36 (5) (2006) 41–56.

[25] M. McGlohon, L. Akoglu, C. Faloutsos, Weighted
graphs and disconnected components: patterns and a
generator, in: ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2008, pp.
524–532.

[26] E. Almaas, B. Kovacs, T. Vicsek, Z. N. Oltvai, A. L.
Barabasi, Global organization of metabolic fluxes in
the bacterium, escherichia coli, Nature 427 (2004) 839.

[27] S. E. Ahnert, D. Garlaschelli, T. M. A. Fink,
G. Caldarelli, Ensemble approach to the analysis of
weighted networks, Physics Review E 76 (1) (2007)
016101.

