
Learning the Task Allocation Game ∗

Sherief Abdallah† and Victor Lesser
University of Massachusetts

Amherst, MA

{shario,lesser}@cs.umass.edu

ABSTRACT
The distributed task allocation problem occurs in domains
like web services, the grid, and other distributed systems. In
this problem, the system consists of servers and mediators.
Servers execute tasks and may differ in their capabilities,
e.g. one server may take more time than the other in ex-
ecuting the same task. Mediators act on behalf of users,
which can potentially be other mediators, and are respon-
sible for receiving tasks from users and allocating them to
servers.

This work introduces a new gradient ascent learning algo-
rithm that outperforms state of the art multiagent learners
on this problem. We experimentally show that our algo-
rithm converges faster and is less sensitive to tuning param-
eters than other algorithms. We also provide an informal
proof that WPL has the same convergence guarantee as the
best known algorithm, GIGA-WoLF. We also show that our
algorithm converges in Jordan’s and Shapley’s games where
many other algorithms fail to converge. Finally, we verify
the practicality of our algorithm in the distributed task al-
location domain, comparing its performance to an optimal
global solution.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

∗This material is based upon work supported by the
National Science Foundation Engineering Research Centers
Program under NSF Award No. EEC-0313747. Any opin-
ions, findings, conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation.

†A student author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

Keywords
Reinforcement Learning, Multiagent Systems, Task Alloca-
tion, Markov Decision Process

1. INTRODUCTION
The distributed task allocation problem occurs in domains

like web services, the grid, and other distributed systems.
The problem can be illustrated by Figure 1. There are L
servers and N mediators. Servers execute tasks and may
differ in their capabilities, e.g. one server may take more
time than another server in executing the same task. Medi-
ators receive tasks from users, which can potentially be other
mediators. Mediators are responsible for allocating tasks to
servers. The goal is to find an optimal allocation that min-
imizes the average turn around time.1 Turn Around Time,
or TAT, is the time interval between a task arrival and its
completion. It includes both the task processing time and
the task waiting time at the server. Average TAT is then
averaged over tasks to produce TAT.

m m1m m

s s

server

mediator

s

1 2 N

L1 2

Figure 1: An example of distributed task allocation.

What makes this problem challenging is the limited ob-
servability of each mediator. In a large open system, a me-
diator will not be aware of all other mediators, their queues,
their actions, or the queue length of each server. Ideally,
one would like a learning algorithm that finds the optimal
policy for each mediator. We identify certain characteristics
that are desirable in such a learning algorithm.

• Ability to learn a stochastic policy. This is neces-
sary in order to minimize TAT. For example, consider
a system of two servers and three mediators. Any de-
terministic joint policy will overload one server more
than the other, increasing the average TAT.

• Convergence. If the mediator policies do not con-
verge, then oscillation between policies will occur mak-
ing the system unstable.

1Other optimal criteria are also possible.

• Adaptability. This is directly related to the conver-
gence property: not only do we need the algorithm
to converge, we want it to converge quickly. This is
important in a dynamic and open system that is con-
stantly changing.

This work develops a gradient ascent learning algorithm
that meets all these requirements and is better than the
state-of-the-art algorithms. We analyze its performance in
two-action games and prove its convergence. We also show
that our algorithm converges in Jordan’s and Shapley’s game
where many other algorithms fail to converge. Furthermore,
we show that our algorithm converges faster and is less sen-
sitive to tuning parameters when compared to previous ap-
proaches. Finally, we verify the practicality of our algo-
rithm in the distributed task allocation domain, comparing
its performance to an optimal global solution (computed us-
ing queuing theory).

This paper is organized as follows. Section 2 gives neces-
sary definitions of game theory, which provides an elegant
methodology for analyzing the performance of multiagent
learners. Section 3 describes our algorithm and proves its
convergence. Section 4 describes in more detail the state
of the art algorithms. Section 5 verifies our claims in both
simple games and distributed task allocation. Finally, we
conclude in Section 6.

2. GAME THEORY
Game theory provides an elegant framework for analyzing

learning in multiagent systems. It was used by previous
researchers [4, 3, 2] to analyze the convergence properties
of multiagent learning algorithms. This section gives an
overview of the game theory framework, illustrating how
it can be used to model distributed task allocation. The
following section describes our algorithm and analyzes its
convergence using game theory.

A game in normal form is defined by the tuple 〈n, A1, ...,
An, R1, ..., Rn〉, where n is the number of players2 in the
game, Ai is the set of actions available to agent i, and Ri :
A1 × ... × An → < is the reward agent i will receive as a
function of the joint action executed by all agents. If the
game has only two players, then it is convenient to define
their reward function as a payoff matrix as shown in Table 1.
Each cell (i, j) in the grid represents the payoff received by
the row player (Player 1) and the column player (Player 2),
respectively, if the row player plays action i and the column
player plays action j. The first three games in Table 1 were
used in evaluating previous research [3, 1, 2].

The game in Table 1(d) represents the task allocation
game at time t for two mediators and two servers. Action si

corresponds to the row/column mediator assigning the task
to server si. lti is the expected TAT if the task is allocated
to server i at time t. This is a compact representation of a
set of games with constant payoff. The game the mediators
play at time t depends on the status of the server queues
at that time. However, due to the limited observability of
each mediator, mediators can not distinguish between these
games. In other words, an optimal policy would be the pol-
icy that performs best, on average, over time. While we will
limit our theoretical analysis to games with payoffs that re-
main constant over time, Section 5 shows the effectiveness

2We use the terms: agent, player, and mediator inter-
changeably.

of our algorithm experimentally in the task allocation game
with varying payoffs and involving more players and servers.

a1 a2
a1 2,1 0,0
a2 0,0 1,2

(a) coordi-
nation

H T
H 1,-1 -1,1
T -1,1 1,-1

(b) matching
pennies

a1 a2
a1 0,3 3,2
a2 1,0 2,1

(c) tricky

s1 s2
s1 −(lt1 + 2),−(lt1 + 2) −(lt1 + 1),−(lt2 + 1)
s2 −(lt2 + 1),−(lt1 + 1) −(lt2 + 2),−(lt2 + 2)

(d) task allocation

Table 1: 2-action games

A policy (or a strategy) of agent i at time t is πt
i ∈

PD(Ai), where PD is the set of probability distributions
over actions Ai. In case of two-player-two-action games (like
the ones in Table 1) we refer to the joint policy of the two
players by (p, q), where π1 = (p, 1 − p) and π2 = (q, 1 − q).
Let the vector rt

i be the actual reward agent i would receive
at time t for each of its actions. This is the only feedback
signal agent i would receive. The expected payoff agent i
would get given its policy is V t

i (πi) = πt
i .r

t
i .

2.1 Learning and Convergence
The primary goal of any rational learner would be to maxi-

mize its expected payoff by changing its policy. The problem
is that rt

i is not fixed and depends on other agents’ policies.
Consider for example the matching pennies game in Table
1(b). Each player can play either head (H) or tail (T). The
payoff of Player 1 (row player) is rt

1 = (2q−1, 1−2q), which
is dependent on Player 2’s policy q. Therefore, an optimal
policy for Player 1 depends on the current policy of Player
2 and vice versa.

This dependence between optimal policies may prevent
the convergence of a simple policy gradient algorithm. Con-
sider the matching penny example again. Assume that ini-
tially the joint policy of the two players is (p0 = 1, q0 = 0)
(i.e. Player 1 always plays H and Player 2 always plays
T), this means rt

1 = (−1, 1) and rt
2 = (−1, 1). Player 1

realizes it can do better by moving its policy toward ac-
tion T by a small step of size δ. The new joint policy is
(p1 = 1 − δ, q1 = 0). The process continues, until time t
where the joint policy is (pt = 0.5 − δ, qt = 0). In this case
rt
2 = (δ,−δ). Player 1 continues moving its policy toward

p = 0 while player 2 starts increasing q. This process con-
tinues and the two players keeps oscillating around the joint
policy (p = 0.5, q = 0.5) as shown in the Figure 2.

The joint policy (p∗ = 0.5, q∗ = 0.5) that both players are
oscillating around is the Nash Equilibrium of the matching
pennies game. A joint policy is a Nash Equilibrium, NE,
iff no agent can get higher expected reward by changing its
policy unilaterally. A pure NE is the one where all agents
policies are deterministic. Otherwise the NE is mixed. The
coordination game has two pure NE, (1, 1) and (0, 0). The
other two games have one mixed NE, (0.5, 0.5).

time

Policy

p

q

0.5

1

t t+N

Figure 2: An illustration of policy oscillation.

The oscillation we have just described is common in policy
gradient algorithms that change policies depending only on
actual reward rt

i [7, 10]. This is particularly true when the
NE is mixed. The main idea behind our algorithm is to slow
down learning such that this oscillation dampens until the
joint policy gradually stabilizes to a NE.

3. THE WEIGHTED POLICY LEARNER AL-
GORITHM

Algorithm 1 illustrates our WPL algorithm. ∆ is the pol-
icy gradient which is used to update the policy π. The idea
of our algorithm is to start learning fastest when ∆ changes
its direction and then to gradually slow down learning if
the policy gradient does not change its direction. We detect
change in the direction of the gradient using the difference
between action rewards (because the policy gradient follows
the reward). If the reward of action a is decreasing, then the
change in π(a) is weighted by π(a), otherwise it is weighted
by (1−π(a)). Therefore, the change in π(a), ∆(a), is largest
when either π(a) is near 1 and r(a) is lower than average
reward r̄, or π(a) is low and r(a) is higher than r̄. The
process repeats until convergence is reached and we get a
damped oscillation as shown in Figure 3. The limit func-
tion is adopted from [10] with minor modifications to ensure
fixed exploration: limit(x) = argminx′:valid(x′)(x− x′), i.e.
limit(x) returns a valid policy that is closest to x. A pol-
icy is valid if it sums to 1 and every action is played with
miminum probability ε (for exploration). The following sec-
tion discusses the convergence of WPL.

Algorithm 1: WPL: Weighted Policy Learner

begin
Let r(a) be the (expected) reward for executing
action a
r̂ ← total average reward =

∑
a∈A

r(a)

|A|
.

foreach action a ∈ A do
∆(a)← r(a)− r̂
if ∆(a) > 0 then ∆(a)← ∆(a)(1− π(a))
else ∆(a)← ∆(a)(π(a))

end
π ← limit(π + ∆)

end

3.1 Convergence Proof

This section presents an informal proof that WPL con-
verges for 2x2 games that is verified by experimental results
involving 2x2 games as well as other games.3 In the case
of a pure NE, any gradient ascent player that follows the
actual reward rt will converge to the pure NE [7, 10]. The
interesting case is when the NE is mixed. This is usually
the case in the distributed task allocation problems, where
mediators compete for servers.

Because ∆t
1(a1) + ∆t

1(a2) will always sum to zero in 2x2
games, the only effect of the function limit is to constrain
each action probability within 0 and 1. This actually helps
convergence because it prevents players from moving further
away from the NE (since by definition any NE is within the
space of valid policies) [7]. Therefore, the limit function will
be ignored for the rest of the proof.

Lemma 1. WPL learners stop learning iff they reached
an NE.

Proof. From the WPL description, the change in the
row agent policy, or ∆t

1 is zero only if one of the following is
true: pt = 0, pt = 1, or rt

1(a)− r̂t. In practice, p is bounded
by [ε, 1−ε], where ε > 0. This forces agents to keep exploring
non-optimal actions in case the environment changes and
non-optimal actions becomes optimal.4 Therefore, ∆t is zero
iff rt

1(a1) = rt
1(a2). The same argument goes for player 2,

i.e. it stops learning iff rt
2(a1) = rt

2(a2). This is only true in
a Nash equilibrium.5

Lemma 2. A player changes its gradient direction iff the
other player crosses its NE strategy.

Proof. We say Player 1 crosses the NE at time t iff
pt−1 < p∗ < pt+1, where p∗ is Player 1’s NE policy. For
example, in Figure 2 Player 1 crosses the NE at time t. The
lemma follows from the fact that when a player is at a NE,
the values of both actions of the other player are equal. This
means that the relative values of each of player 1’s actions
switch when player 2 crosses its NE strategy. This changes
the gradient direction of player 1 because the gradients fol-
low the action with highest expected reward. The lemma is
depicted in Figure 3.

Lemma 3. The two agents using WPL will continue to
oscillate around the NE unless both converge to the NE.

Proof. Both players try to maximize their reward by
moving their strategy toward the action that yields more
rewards. At any time t, one agent (player 1) will be better
off by moving its strategy closer to the NE strategy while
the other agent (player 2) is better off by moving its strategy
away from the NE strategy (because we are considering only
competitive game, i.e. mixed NE). Eventually, Player 1 will
cross its NE strategy. This will cause player 2 to switch
its policy gradient direction toward the NE strategy, while
player 1 is now moving away from the NE. This process
continues, unless both players converge to an NE.

3We are currently working on a more formal proof using
differential equations.

4Even in a static environment agents need time to cor-
rectly estimate the rewards rt

i either because of noise or
other agents learning; ε then decreases gradually with time

t such that
lim

t→∞ (εt)→ 0.
5This is a property of two-action games (and can be gen-

eralized for larger games): if players are at a mixed NE then
both actions for each player have the same expected reward.

Lemma 4. A WPL learner slows down (i.e. the magni-
tude of the policy gradient decreases) if its gradient direction
does not change.

Proof. We will prove the lemma for Player 1 and a
similar argument goes for the column player. Let |∆t

1| =
|∆t

1(a1) + ∆t
1(a2)| = 2|∆t

1(a1)| = 2(1− pt)(rt
1(a1)− rt

1(a2))
be the magnitude of gradient change, assuming rt

1(a1) >
rt
1(a2). A WPL learner slows down its learning iff |∆t+1

1 | <
|∆t

1|. If the gradient direction is the same, then rt+1
1 (a1) >

rt+1
1 (a2), and therefore |∆t+1

1 | = 2(1 − pt+1)(rt+1
1 (a1) −

rt+1
1 (a2)). There are two cases:

• Either rt+1
1 (a1)− rt+1

1 (a2) <= rt
1(a1)− rt

1(a2). In this
case, the gradient magnitude decreases; i.e. |∆t+1

1 | <
|∆t

1| because 1−pt+1 = 1−pt−∆t
1(a1) < 1−pt. If the

gradient magnitude decreases then the learning slows
down.

• Or rt+1
1 (a1)−rt+1

1 (a2) > rt
1(a1)−rt

1(a2). We prove by
contradiction that this case can not occur. If rt+1

1 (a1)−
rt+1
1 (a2) > rt(a1)1 − rt

1(a2) then the only explanation
is that Player 2 moved faster. However as we have just
proved, Player 2 will slow down if its gradient ∆t+1

2 is
moving in the same direction as ∆t

2. Therefore, Player
2 must have changed its gradient direction. However,
if ∆t

2 increases rt(a1)−rt(a2) then ∆t+1
2 must decrease

this difference (because it is in the opposite direction),
and therefore |∆t

1| actually decreases further.

Lemma 5. A WPL learner moves toward its NE strategy
faster than it moves away from its NE strategy.

Proof. From the previous lemma, an agent slows down
as long as it does not change its gradient direction. There-
fore, after player 1 crosses its NE strategy (i.e. starts moving
its policy away from the NE) player 1 does not change its
gradient direction (while player 2 changes its gradient di-
rection) and consequently player 1 moves away from its NE
strategy slower than player 1 moves toward its NE strat-
egy.

Lemma 3 says that both players will continue to oscillate
around the NE while Lemma 5 says that each player will
slow down as long as it does not change its policy gradient
direction. This leads to a damping effect as illustrated by
Figure 3 until both players reach the NE. Our experimental
results reflect this same behavior as Section 5 will show.

time

Policy

Player 1 crosses
NE & Player 2

changes direction

Player 1

Player 2
Player 1’s NE

Player 2’s NE

Player 2 crosses
NE & Player 1

changes direction

Figure 3: An illustration of WPL convergence.

4. RELATED WORK
There are many algorithms that have been proposed for

multiagent learning. Unfortunately, all of them either fail to
achieve all the three desired characteristics that are listed in
Section 1 or assume agents can observe each other’s actions.
Independent Learners and Joint Learners [4] only learn a de-
terministic policy using the Q-Learning algorithm[8] and do
not have any convergence guarantee. Joint Learners also re-
quire the knowledge of other agents’ actions, an assumption
that is not practical in large open systems.

Equilibrium learners such as Nash-Q [6], OAL [9], AWE-
SOME [5] require that each agent observe other agents’ ac-
tions. Each agent then computes a stable joint policy (NE).
While these learners are guaranteed to converge, similar to
joint learners, they are not applicable in open domains.

The gradient ascent learners are the most promising and
relevant as they can learn a stochastic policy without observ-
ing other agents actions. These algorithms directly follow
the expected reward. The Infinitisemal Gradient Ascent al-
gorithm, or IGA [7] and its generalization, Generalized IGA,
or GIGA [10] were the first algorithms to provide any con-
vergence guarantees in a multiagent context. They converge
to games with pure NE. However both algorithms failed to
converge in games with mixed NE, and therefore are not
suitable for the distributed task allocation problem.

Several modifications to IGA and GIGA were proposed to
avoid divergence in games with mixed NE, including: PHC-
WoLF [3], PHC-PDWoLF [1], and GIGA-WoLF [2]. They
all used some form of the Win or Learn Fast heuristics [3],
whose purpose is to speedup learning if the agent is moving
toward its NE policy and slow down learning if the agent
is moving away from the NE policy. The main problem
with this heuristic is that an agent does not know what pol-
icy is an NE policy. Therefore, all the algorithms that use
the WoLF heuristic use approximate methods to determine
when an agent is moving toward or away from the NE. This
is different from our approach, in which an agent slows down
its learning as long as its policy gradient has the same di-
rection. Except for GIGA-WoLF, none of the WoLF-based
algorithms have any form of convergence guarantee. There-
fore, while we will compare our algorithm to all of them,
our experiments will focus on comparing our algorithm to
GIGA-WoLF.

5. RESULTS

5.1 Practical Issues

5.1.1 Expected Reward vs Most Recent Reward
Our algorithm, along with all previous approaches, needs

the expected reward of an action a at time t, or rt(a). How-
ever, this is not known a priori and needs to be computed.
The common approach in reinforcement learning, which we
also use, is the equation rt+1(a)← αRt+(1−α)rt(a), where
Rt is the sample reward received at time t and 0 ≤ α ≤ 1
is a learning parameter [8]. Tuning α is not an easy task
when the expected reward itself is dynamically changing (be-
cause other agents are changing their policies concurrently).
Smaller α means more samples contribute to computed ex-
pected reward and vice versa.

Using more samples to estimate the reward makes the es-
timate more accurate. However, the time required to get
more samples may in fact degrade the accuracy of reward

estimate. This is because it will take more time for rt to
follow the dynamically changing expected reward. In other
words, a higher α value increases the adaptability of the
learning algorithm, but may affect convergence which re-
quires r to reflect the expected reward, not a sample. We
investigate this tradeoff in our experiments and show that
our approach is less sensitive to the value of α than previous
approaches.

5.1.2 Fixing Learning Parameters
In our experiments we have not used any decaying rates.

The reason is that in an open system where dynamics can
continuously change, one would want learning to be contin-
uous as well. We have fixed the exploration rate ε to 0.1,
the learning rate δ to 0.001. Two values of the learning pa-
rameter α have been used to measure the tradeoff between
accuracy and responsiveness: 0.1 and 1.

5.2 Benchmark Games
To verify our theoretical result, we tested our algorithm

for the three games described in 1. Figure 4 plots π(r1) and
π(c1) against time, when the initial joint policy is ([0.1, 0.9]r,
[0.9, 0.1]c) (several initial joint policies have been tested with
similar results) and α = 0.1. The algorithm converged to
an NE in all the games. Note also that the plotted change
of agents’ policy over time in the two games with mixed
equilibrium is almost identical to our theoretical prediction.

The tricky game deserves more attention as it is the most
challenging among two-player-two-action games. Figure 5
shows the performance of PHC-WoLF, PHC-PDWoLF, and
GIGA-WoLF in this game using the exact same settings of
our approach. Only GIGA-WoLF converges but with slower
rate than our approach (Figure 4(c)).6 The performance
of PHC-WoLF and GIGA-WoLF conforms to the results re-
ported by their authors [3, 2] (actually PHC-WoLF performs
here better than reported results). On the other hand, PHC-
PDWoLF diverged in our experiments while it converged in
the authors’ experiments [1]. A possible explanation is that
they used more tuned learning parameters, possibly with
decaying rates. Due to the poor performance of both PHC-
WoLF and PHC-PDWoLF in the rest of our experiments,
the focus will be on GIGA-WoLF thereafter.

Table 2 shows two well known 3-action games used to eval-
uate GIGA-WoLF [2]. The NE in both games is mixed and
equals ([1

3
, 1

3
, 1

3
]r, [

1
3
, 1

3
, 1

3
]c). GIGA-WoLF is known to con-

verge in the rock-paper-scissors game and diverge in Shap-
ley’s game as we verify ourselves.

c1 c2 c3
r1 0,0 -1,1 1, -1
r2 1,-1 0,0 -1,1
r3 -1,1 1,-1 0,0

(a) rock paper scis-
sors

c1 c2 c3
r1 0,0 1,0 0,1
r2 0,1 0,0 1,0
r3 1,0 0,1 0,0

(b) Shapley’s

Table 2: 3-action games

Figures 6 and 7 plot the policy of the row player over time

6We have tried increasing the learning rate of GIGA-
WoLF to 0.01 in order to see if this can speed up its conver-
gence. However, this resulted in GIGA-WoLF diverging.

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1
player1

player2

(a) coordination

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1
player1

player2

(b) matching pennies

0 5000 10000 15000 20000

0

0.2

0.4

0.6

0.8

1
player1

player2

(c) tricky

Figure 4: Convergence of WLP in different two-player-

two-action games. The figures plot the probability of

playing the first action for each player (vertical axis)

against time (horizontal axis).

for the two games for both WPL and GIGA-WoLF when the
initial joint strategy is ([0.1, 0.8, 0.1]r, [0.8, 0.1, 0.1]c), δ =
0.0003, and for two values of α: 0.1 and 1. GIGA-WoLF’s
performance usually gets worse as α increases. GIGA-WoLF
also keeps oscillating in Shapley’s game regardless of the
value of α. WLP on the other hand performs better as α
increases and converges in Shapley’s game when α = 1. We
believe the reason is that small α leads to an out of date
reward estimate which in turn leads agents to continuously
chase the NE without successfully reaching it. One of our
future directions is to theoretically analyze this tradeoff be-
tween accuracy and recency of the reward and its effect on
both convergence and optimality.

5.3 The Task Allocation Game
This section evaluates WPL in the distributed task allo-

cation domain. Let N be the number of mediators and L

0 5000 10000 15000 20000

0

0.2

0.4

0.6

0.8

1
player1

player2

(a) PHC-WolF

0 5000 10000 15000 20000

0

0.2

0.4

0.6

0.8

1
player1

player2

(b) PHC-PdWolF

0 5000 10000 15000 20000

0

0.2

0.4

0.6

0.8

1
player1

player2

(c) GIGA-WolF

Figure 5: Convergence of the previous approaches in the

tricky game. The figures plot the probability of playing

the first action for each player (vertical axis) against time

(horizontal axis).

be the number of servers. The turn-around-time, or TAT,
is the time interval between a task arrival and its comple-
tion. An upper bound on the TAT can be computed using
queuing theory as follows. Let µi be rate by which tasks are
serviced at server i. Let λj be the rate by which tasks arrive
at mediator j. Then the global task arrival rate λ =

∑
j λj

and the global service rate µ =
∑

i µi. The global utilization
u = λ/µ. Then a lower bound on the turn around time is

given by the equation T̂AT = 1
µ
(1 + u

1−u
).

We define TAT to be the average TAT seen by each me-

diator when using WPL. Table 3 shows TAT/T̂AT (lower
is better, where 1 is optimal) for different numbers of play-
ers N (columns) and different values of load u (rows). This
data is collected from a system with 4 servers. Two servers
have µi = 1 task/time unit and the other two have µ = 0.5
task/time unit. Tasks arrival rate is the same for all agents.

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(a) GIGA-WolF, α = 0.1

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(b) WPL, α = 0.1

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(c) GIGA-WolF, α = 1

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(d) WPL, α = 1

Figure 6: Convergence of GIGA-WoLF and WPL in the

rock-paper-scissors game. The figures plot the probabil-

ity of playing each action of the first player (vertical axis)

against time (horizontal axis).

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(a) GIGA-WolF, α = 0.1

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(b) WPL, α = 0.1

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(c) GIGA-WolF, α = 1

0 20000 40000 60000 80000 100000 120000 140000 160000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

(d) WPL, α = 1

Figure 7: Convergence of GIGA-WoLF and WPL in

Shapley’s game. The figures plot the probability of play-

ing each action of the first player (vertical axis) against

time (horizontal axis).

The initial policy of all agents is to allocate all tasks to the

first server. TAT/T̂AT approaches 1 as u increases. In
other words, WPL is closer to optimal in high loads. This is
expected because knowing the queue length of all servers is
more advantageous in low loads (some servers may have an
empty queue while others have nonempty queues). In high
loads, all servers have on average constant queue length at all

times. We can also notice that TAT/T̂AT does not change
much for the same u and different N . This means that WPL
scales well with the number of agents.

u
N 3 4 5
0.3 3.13 3.34 3.44
0.6 2.27 2.3 2.3
0.9 1.68 1.875 1.9

Table 3: TAT/T̂AT for different values of N
(columns) and u (rows)

Figure 8 compares the performance of GIGA-WoLF and
WPL with 5 mediators and 4 servers. The figure plots the
TAT from individual mediators’ perspective (TAT is plotted
as a negative reward for each mediator). Note that the scale
in GIGA-WoLF figure is almost double the scale in the WPL
figure. There are two observations from the figures: time
of convergence and maximum TAT. By 250 time steps, all
mediators using the WLP algorithm witness TAT less than
50 time units. It took GIGA-WoLF more than 450 time
units to achieve the same results. The maximum TAT that
is ever witnessed by a WPL mediator is under 170 time
units. GIGA-WoLF mediators have witnessed TAT of more
than 320 time units.

Figure 9 illustrates how the policy of one player converges
over time. As expected, for both WPL and GIGA-WoLF,
the probability of sending a task to one of the fast servers (a2
and a3) becomes almost double the probability of sending
a task to any of the slow servers. However, WPL learns a
better policy, where the probabilities of sending a task to
any of slower servers are equal (while in GIGA-WoLF there
is a consistent difference).

In conclusion, GIGA-WoLF converges slower than WPL
and also reaches almost double the maximum TAT that
WLP ever reaches. This gives WPL a clear advantage in dy-
namic environments where agents are continuously adapting
to changes in the environment. We believe GIGA-WoLF’s
slow convergence is due to the way GIGA-WoLF works.
GIGA-WoLF relies on learning a slowly moving policy in
addition to the actual policy π to determine the direction of
the gradient. This requires more time than the WPL algo-
rithm, which changes its gradient direction according to the
current expected reward.

6. CONCLUSION AND FUTURE WORK
This work presents WPL, a gradient ascent learning algo-

rithm that outperforms state of the art multiagent learners
in the task allocation. We experimentally show that our
algorithm converges faster and is less sensitive to tuning pa-
rameters than other algorithms. We provide an informal
proof of WPL’s convergence. We also show that our algo-
rithm converges in Shapley’s game where many other algo-
rithms fail to converge. Finally, we verify the practicality

0 200 400 600 800 1000

−400

−300

−200

−100

0

100
p0

p1

p2

p3

(a) GIGA-WolF

0 200 400 600 800 1000

−200

−150

−100

−50

0

p0

p1

p2

p3

(b) WPL

Figure 8: Convergence of GIGA-WoLF and WPL in

distributed task allocation. The figures plot the reward

(negative TAT) obtained by each player (vertical axis)

against time (horizontal axis).

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

a3

(a) GIGA-WolF

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1
a0

a1

a2

a3

(b) WPL

Figure 9: Convergence of GIGA-WoLF and WPL in

distributed task allocation. The figures plot the policy

of a player as the vertical axis (aka the probability of

playing each action) against time (horizontal axis).

of our algorithm in the distributed task allocation domain,
comparing its performance to an optimal global solution.

In the future, we want to extend our convergence guar-
antee to more than two players and two actions. We also
want to evaluate WPL in more general task allocation set-
tings where mediators may be connected to other mediators.
This work also illustrates the importance of computing the
expected reward and how it affects convergence. This issue
was overlooked in previous work and assumed an implemen-
tation issue. Using more samples of the immediate reward
may increase the accuracy of the reward expectation but
may also make the expectation out of date. Finding the
right balance and theoretically analyzing how it affects con-
vergence are interesting research questions that we plan to
address.

7. REFERENCES
[1] B. Banerjee and J. Peng. Adaptive policy gradient in

multiagent learning. In Proceedings of the Second
International Joint Conference on Autonomous Agents
and Multi Agent Systems., 2003.

[2] M. Bowling. Convergence and no-regret in multiagent
learning. In L. K. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing
Systems 17, pages 209–216. MIT Press, Cambridge,
MA, 2005.

[3] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

[4] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In AAAI/IAAI, pages 746–752, 1998.

[5] V. Conitzer and T. Sandholm. Awesome: A general
multiagent learning algorithm that converges in
self-play and learns a best response against stationary
opponents. In International Conference on Machine
Learning, pages 83–90, 2003.

[6] J. Hu and M. P. Wellman. Nash q-learning for
general-sum stochastic games. Journal of Machine
Learning Research, 4:1039–1069, 2003.

[7] S. Singh, M. Kearns, and Y. Mansour. Nash
convergence of gradient dynamics in general-sum
games. In the 16th Conference on Uncertainty in
Artificial Intelligence, pages 541–548, 2000.

[8] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1999.

[9] X. Wang and T. Sandholm. Reinforcement learning to
play an optimal nash equilibrium in team markov
games. In S. T. S. Becker and K. Obermayer, editors,
Advances in Neural Information Processing Systems
15. MIT Press.

[10] M. Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In
International Conference on Machine Learning, pages
928–936, 2003.

