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ABSTRACT
The ability to coordinate effectively is critical for agents to
accomplish their goals in a multi-agent system. A number
of researchers have modeled the coordination problem for
multi-agent systems using decision theory. The most gen-
eral models have proven to be extremely complex to solve
optimally (NEXP-complete). Some of the more restricted
models have been much more tractable, though still difficult
(NP-complete). What is missing is an understanding about
why some models are much easier than others. This work
fills this gap by providing a condition that distinguishes be-
tween problems in NP and those strictly harder than NP.
This condition relates to the quantity of information each
agent has about the others, and whether this information
can be represented in a succinct way. We show that the
class of problems that satisfy this condition is NP-complete.
We illustrate this idea with two interaction protocols that
satisfy the condition. For those problems that do not sat-
isfy this condition we demonstrate how our theoretical re-
sults can be used to generate an NP approximation of the
original problem.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
DESIGN, THEORY

Keywords
Complexity, Interaction, Distributed POMDP

1. INTRODUCTION
In a multi-agent system, the agents do not act alone and

must take into account the behaviors of the other agents
in order to coordinate effectively and achieve their goals.
Recently, multi-agent coordination problems have received
attention from the decision theory community, and several
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distributed POMDP frameworks have been built to model
these problems. These models assume that the agents have
partial or noisy observations about the current world state,
and that communication between the agents may have a
cost. This partial observability of the world state leads to an
increased complexity of NEXP-complete [4, 12]. However,
two subclasses of distributed POMDPs have been identified
whose complexity is much more tractable than the general
case. One of them is the class of distributed POMDPs where
the agents interact with each other only through a global
reward function while their local transitions and observa-
tions remain independent [3]. In the other class of problems
agents are allowed to communicate with each other, how-
ever, when they do they are required to transmit sufficient
information such that all agents know the global state [6, 1].
Both subclasses have been proven to be NP-complete [7, 3].

The focus of this paper is to quantify the characteristics
of a class of multi-agent coordination problems that deter-
mines its complexity. Our key result is that the complexity
of the problem depends on the amount of important infor-
mation each agent has about the other agents, and whether
this information can be represented in a succinct way. Infor-
mation is important if knowing it could allow the agents to
achieve a higher expected reward, and by succinct we mean
that the set of all possible important information the agents
could acquire is polynomial in the number of states. We
prove that this criteria is both sufficient and necessary for
the class of problems to be NP-complete. We illustrate this
idea with two examples from the literature and prove that
both have this property.

Our goal in this paper is not to introduce new models or al-
gorithms, but to change the way people view interactions be-
tween agents in the context of distributed POMDPs. Multi-
agent researchers have long intuitively understood that the
interaction between the agents is the cause of their high
complexity. The theoretical results of this paper are sig-
nificant in that they both formally justify this intuition as
well as explain how the interaction affects the complexity.
This new understanding of interaction and its relationship
to complexity will help us to identify new classes of multi-
agent systems with a lower complexity.

The significance of this theoretical result also has a more
practical side. Most multi-agent systems are provably harder
than NP and solving them optimally is very difficult. Much
work has been put into developing good algorithms for ap-
proximating these problems. This work provides theoreti-
cal guidance in understanding how the approximations in
a model limit the search space and reduce the complexity.



We demonstrate this on two problems that does not meet
our condition by providing two approximations that impose
additional restrictions on the interactions among the agents
and reduce the complexity to no harder than NP.

There is existing work that looks at different types of in-
teractions in distributed POMDPs. Synchronizing commu-
nication in an otherwise transition and observation inde-
pendent DEC-MDP has been studied most extensively [6,
1]. Very little research has been done studying the trans-
fer of only partial observation history between agents. Shen
et al. [13] studies the problem of what to communicate in
a Distributed Sensor Interpretation setting, where at every
step only part of the local state is transferred between the
agents. Some researchers [8, 5] have studied the case where
the agents send their policies or actions to each other. In a
sense, exchanging actions or policies between the agents ac-
complishes the same goal as transferring partial observation
history. Both of them change each agent’s belief of the global
state and/or the other agent’s local view of the global state
without completely synchronizing the global views. The
interaction history in these problems contains information
that is not polynomial in the number of states and therefore
they are harder than NP.

This work builds on previous work in the distributed
POMDP field. Xuan and Lesser [14] proposed one of the first
decentralized extensions to the single agent MDP, in which
an agent has its local state in addition to the global state.
Several more general distributed POMDP models have been
independently developed and can be grouped into two cat-
egories. Partially Observable Identical Payoff Stochastic
Games (POIPSG) [11], Decentralized Partially Observable
Markov Decision Processes (DEC-POMDP) and Decentral-
ized Markov Decision Processes (DEC-MDP) [4] do not ex-
plicitly model the communication actions but instead view
them as a part of the normal action space. In contrast, Com-
municative Multi-agent Team Decision Problems
(COM-MTDP) [12] and DEC-MDPs with Communication
(DEC-MDP-Com) [6] make a clear distinction between a
domain level action and an explicit communication action.
In this paper, we prove that these two classes of models
are equivalent. While making a clear distinction between
explicit communication and domain level actions allows us
to study the effects of communication more easily, this dis-
tinction does not increase the expressiveness of the model.
Becker et al [2] made an early attempt to identify and ex-
ploit structure in the interactions between agents to reduce
the complexity. This work explains the complexity results
they found.

This paper is organized as follows. Section 2 presents two
formal models that we use throughout the paper. Section 3
discusses different types of interactions between agents and
presents the condition that determines the complexity of a
distributed MDP. Two examples of NP-complete interaction
protocols are found in Section 4, and Section 5 contains
two examples of how harder problems can be approximated.
Section 6 discusses future work and conclusions.

2. FORMAL MODELS
There have been a number of distributed decision-theoretic

models for multi-agent systems published in the last few
years. Many of these models describe the same class of prob-
lems. We will discuss two models, the DEC-MDP-Com and
the DEC-MDP. While these two models are equivalent, they

do represent interactions between the agents differently and
it is therefore useful to examine both.

The models are based on the single agent Partially Ob-
servable Markov Decision Process (POMDP) extended to
apply to systems with multiple agents. In this paper, we
will define them for two agents i and j, but the definitions
easily extend to any number of agents. The basic idea is that
the state, now known as the global state, encompasses all of
the necessary information about the state of each agent (lo-
cal state) and the environment. Each agent has its own set
of actions it takes and observations it makes. The transition
function is from world states to world states given the ac-
tions taken by each agent, the joint action. The complexity
of these models is NEXP-complete [4]. The reason that it is
harder than the POMDP is that the agents are all receiving
different observations, and only together could they identify
the current global state. To predict what action agent i will
take requires agent j to maintain not only a belief about the
global state (similar to a POMDP) but also a belief about
the belief agent i has. Interactions between the agents are
built into the transition and observation functions. The like-
lihood that agent i will see a particular observation depends
directly on the actions of both agents as well as the new
global state, which in turn depends on the actions of both
agents. The DEC-MDP stops there in its definition (see [4]
for a formal definition), but the DEC-MDP-Com explicitly
represents another form of interaction, communication.

Definition 1 (adapted from [7]).A DEC-MDP-Com
is a tuple: 〈S, A, Σ, CΣ, P, R, Ω, O〉, where:

• S is a finite set of global states, with a distinguished
initial state s0.

• A = Ai ×Aj is a finite set of joint actions. Ai are the
local actions for agent i.

• Σ = Σi × Σj is the alphabet of messages. σi ∈ Σi

denotes an atomic message sent by agent i. σi is a
sequence of atomic messages sent by agent i. εσ ∈ Σi

denotes not sending a message to the other agent.
• CΣ → < is the cost of transmitting an atomic message.
• P : S ×A× S → < is the transition function.

P (s′|s, ai, aj) is the probability of the outcome state s′

when the joint action (ai, aj) is taken in state s.
• R : S×A×S → < is the reward function. R(s, ai, aj , s

′)
is the reward obtained from taking joint action (ai, aj)
in state s and transitioning to state s′.

• Ω = Ωi ×Ωj is a finite set of joint observations. Ωi is
the set of observations for agent i.

• O : S × A × S × Ω → < is the observation function.
O(s, ai, aj , s

′, oi, oj) is the probability of agents i and
j seeing observations oi and oj after the sequence s,
(ai, aj), s′ occurs.

• Joint full observability: the pair of observations made
by the agents together fully determine the current state.
If O(s, ai, aj , s

′, oi, oj) > 0 then P (s′|oi, oj) = 1.

The policy for an agent is a mapping from all of the avail-
able information to a domain action and a communication
action. Even though the global state is Markov, the agents
base their decisions on the history of observations just like in
a POMDP. However, if the agents ever communicate such
that they both know the global state, i.e., they exchange
their most recent observation, then they do not need to re-
member the prior history due to the Markov property. In



effect, this synchronization resets the problem but with a
new starting state.

Definition 2. The local policy for agent i, πi, is a map-
ping from the history of observations Ωi, the history of mes-
sages sent Σi, and the history of messages received Σj since
the last synchronized world state S to a domain action and
a communication action.

πi : S × Ωi × Σi × Σj → Ai × Σi.

The goal for a DEC-MDP-Com is to find a joint policy π =
〈πi, πj〉 that maximizes the expected value.

An important question is whether or not the communica-
tion explicitly represented in the DEC-MDP-Com increases
the expressiveness of the model. It turns out that it does
not – the communication actions are just special types of
domain actions and the message received are just special
types of observations.

Theorem 1. DEC-MDP-Com is equivalent toDEC-MDP.

Proof.
• DEC-MDP ≤p DEC-MDP-Com.
This reduction is trivial. To any DEC-MDP, we add Σ =

CΣ = ∅ and we get an equivalent DEC-MDP-Com.
• DEC-MDP-Com ≤p DEC-MDP.
We reduce a DEC-MDP-Com 〈S, A, Σ, CΣ, P, R, Ω, O〉 to

an equivalent DEC-MDP 〈Ŝ, Â, P̂ , R̂, Ω̂, Ô〉.
The basic idea is to introduce the two step process of the

DEC-MDP-Com into the DEC-MDP by doubling the state
space: Ŝ = S × {0, 1}. The states ŝ = [s, 0] are for tak-
ing domain actions Ai and receiving observations Ωi. The
states ŝ = [s, 1] are for taking communication actions Σi

and receiving communications Σj . The total space of ac-

tions is therefore Âi = Ai∪Σi. The observations that agent
i receives include both the messages sent by agent i and the
messages received from agent j, i.e., Ω̂i = Ωi × Σi × Σj .
When taking domain actions nothing changes in the func-
tions P̂ , R̂ and Ô:

P̂ ([s, 0], a1, a2, [s
′, 1]) = P (s, a1, a2, s

′).

R̂([s, 0], a1, a2, [s
′, 1]) = R(s, a1, a2, s

′).

Ô([s, 0], a1, a2, [s
′, 1], o1, o2) = O(s, a1, a2, s

′, o1, o2).

When taking the communication actions, they do change:

P̂ ([s, 1], σ1, σ2, [s, 0]) = 1.

R̂([s, 1], σ1, σ2, [s, 0]) = CΣ(σ1) + CΣ(σ2).

Ô([s, 1], σ1, σ2, [s, 0], σ1σ2, σ2σ1) = 1.

Therefore, the DEC-MDP-Com is equivalent to the DEC-
MDP.

Theorem 1 states that DEC-MDP-Com and DEC-MDP
have the same expressiveness. However, the distinction be-
tween the communication actions and the domain actions
can be very useful, as we will show in the next section.

3. POLYNOMIALLY ENCODABLE
INTERACTIONS

The DEC-MDP-Com and related models allow for a very
general form of interaction between the agents. The com-
plexity for those problems has been proven to be NEXP-
complete [4, 7]. At the other end of the spectrum would

be to disallow all interactions between the agents. In effect,
each agent would be independently solving a local MDP that
represents its part of the system. MDPs are P-complete,
so there is something about the interactions between the
agents which is the cause of the complexity. As additional
evidence, Becker et al [3] defined a class of multi-agent prob-
lems in which the agents were almost completely indepen-
dent. Each agent had a local MDP that described its part
of the system. The agents could not communicate in any
way nor could they take an action that would influence an-
other agent. However, the system received a reward that
depended on the local states and actions of all of the agents,
and the goal was to find a joint policy that maximized the
sum of the expected local and global rewards. This class of
problems in which the agents can only interact through the
reward function proved to be NP-complete. Goldman and
Zilberstein [7] also showed that by following certain com-
munication protocols the agents from the previous example
could communicate with each other and the problem re-
mained at NP-complete.

This section will examine different types of interactions
between agents and provide theoretical results to explain
how and why the interactions affect the complexity of finding
optimal solutions. The next section will elaborate on the
two NP-complete examples introduced above and prove that
they meet this condition.

We classify the actions agents can take into two groups:
non-interacting (or independent) actions and interacting (or
dependent) actions. Independent actions are those that do
not affect the other agent and neither agent receives any
information about the other. Dependent actions are those
that affect the other agent in some way. For example, robot
i could pick up robot j and move it, which would affect
the local state of robot j. Communication is another exam-
ple: agent i could send a message to agent j, which would
change the knowledge agent j has. We can further subdivide
dependent actions into explicit and implicit communication.
Normally when one thinks about communication, i.e., send-
ing a message, one is talking about explicit communication.
This is the communication part of the DEC-MDP-Com. Im-
plicit communication is the information an agent receives by
a domain action, like the example of a robot picking up and
moving another robot. The robot being picked up gains in-
formation about the local state and belief of the other robot,
namely the location of the other robot and the fact that the
other robot felt this was a useful action to take.

We will illustrate these interactions with a token collect-
ing example. There is a n×n grid world, which is populated
by two agents and a number of tokens. The agents can ob-
serve their own locations and the locations of the tokens.
When an agent picks up a token, the system gets a positive
reward. The goal of the system is to maximize the total
reward within time T . This problem can be modeled in a
DEC-MDP. The world state includes the locations of both
agents, the locations of the tokens and the time left. The
agents’ observations at each time step include the agents’
own location, the location of the tokens, and the time left.
At every time step, each agent can either move to an ad-
jacent square or pick up a token at its current location. If
an agent moves, its action does not affect the other agent’s
observations, and therefore the movement actions are in-
dependent actions. However, if agent i picks up a token,
agent j can observe the fact that one of the tokens just dis-



appeared. By comparing its current observation and the
observation at the last time step, agent j can infer the exact
location of agent i and therefore has the complete knowledge
of the current world state. As a result, the token collecting
action is a dependent action even though there is no explicit
communication in the system.

We defined a dependent action as an action that affects
the observations of the other agent and therefore changes its
belief about the global state. If a dependent action is ex-
plicitly modeled in a DEC-MDP-Com, its effect is recorded
by the communication action σi itself. On the other hand, if
it is not explicitly modeled in a DEC-MDP-Com, its effect
is recorded by the observations of the agents. The observa-
tion history Ωi records the interaction history of agent i in
the DEC-MDP. Consequently, in a DEC-MDP-Com where
there are communication actions explicitly modeled, the in-
teraction history of agent i is Ωi × Σi × Σj .

Definition 3. We call Ei an encoding of the interac-
tion history of agent i, if a joint policy π̃ = 〈π̃1, π̃2〉 is suf-
ficient to maximize the global value, where π̃i is of the form
S × Ei → Ai × Σi for a DEC-MDP-Com, or of the form
Ei → Ai for a DEC-MDP.

The encoding represents removing all elements from the
interaction history that are unnecessary to generate an op-
timal policy. The important characteristic is the size of the
smallest encoding. The interaction history is normally con-
sidered to be exponential in |S| because the length of the
observation sequence is O(|S|). In some problems, however,
the smallest encoding is only polynomial in |S|.

Definition 4. The interaction history of a DEC-MDP/
DEC-MDP-Com is polynomially encodable if there ex-
ists an encoding Ei for each interaction history Ωi and a
constant ci, such that |Ei| = O(|S|ci).

The criteria that determines the complexity of a multi-
agent system is whether the interaction history can be poly-
nomially encoded. If it can, then the problem is in NP. If it
cannot be polynomially encoded, then it is provably harder
than NP. The following two theorems prove this relationship
between the encoding and the complexity.

Theorem 2. Deciding a polynomially encodable
DEC-MDP/DEC-MDP-Com is NP-complete.

Proof. Here we prove the DEC-MDP case, the DEC-
MDP-Com is essentially the same.

To prove NP-completeness, we (1) provide a polynomial
time verifier and (2) show a reduction from an NP-Complete
problem to this one.

(1) A joint policy in a DEC-MDP can be evaluated by
representing it as a belief state graph. Each node in the
graph is composed of the state, the sequence of observations
for agent i and for agent j. Each node has a single joint
action, which is defined by the joint policy. The transitions
between the nodes depends only on the transition and obser-
vation functions, and each transition has a reward defined
by the reward function. The belief state graph can be eval-
uated using the standard MDP recursive value function and
policy evaluation, which runs in time polynomial in the size
of the graph. For a DEC-MDP, this size is |S|×|Ωi|T×|Ωj |T ,
where T = O(|S|). However, since there exists a polynomial
encoding Ei for each observation sequence Ωi, the size of

P-complete

NP-complete

NP-complete

NP-complete

NEXP-complete

Figure 1: The relationships and complexity between
various distributed MDP models.

the graph is only |S| × |Ei| × |Ej | and the policy evaluation
takes O((|S|ci+cj+1)c), which is polynomial in the size of the
state space for constants ci, cj and c.

(2) To prove the lower bound we will reduce the NP-
complete problem DTEAM [9, 10] to this problem. DTEAM
is a single-step discrete team decision problem with two
agents. Agent i observes a random integer ki, 1 ≤ ki ≤ N ,
and takes an action γi(ki) ∈ {1, ... , M}. Their actions incur
cost c(ki, kj , γi(ki), γj(kj)). The problem is to find policies
γi and γj that minimize the expected cost:

NX
ki=1

NX
kj=1

c(ki, kj , γi(ki), γj(kj)).

The reduction is quite straightforward. In the initial state,
the agents take a null action and transition to one of N2

intermediate states that correspond to the random integers
ki and kj . Agent i observes ki and takes its action to reach
the final state. The reward is negative the cost, R(·) =
−c(·). The size of the observation sequence |Ωi| = N =
O(|S|) is polynomial in the size of the state space.

Given the polynomial time verifier and the reduction, a
DEC-MDP with a polynomially encodable interaction his-
tory is NP-complete.

Theorem 3. Deciding a non-polynomially encodable
DEC-MDP/DEC-MDP-Com is harder than NP.

Proof. We prove this by contradiction. Assume that an
arbitrary DEC-MDP without a polynomial encoding is in
NP. This means that there exists a polynomial time verifier
for any policy in the DEC-MDP. If a policy can be verified
in polynomial time then it must have a polynomial sized
representation. Since a policy is a mapping from Ei → Ai,
this polynomial sized representation is the encoding of the
interaction history. Contradiction. Therefore, the DEC-
MDP without a polynomial encoding is not in NP.

The proof for DEC-MDP-Com is similar.

Figure 1 illustrates the relationship and complexity be-
tween the models discussed in this paper. Polynomially En-
codable interaction histories are an NP-complete subset of
DEC-MDPs. Other models, like the synchronizing commu-
nication are NP-complete subsets of polynomially encodable
problems. No interaction between the agents is a P-complete
class of problems.



4. EXAMPLES OF PROTOCOLS
In this section, we present two interaction protocols known

to be NP-complete, and demonstrate how to prove the exis-
tence of a polynomial encodings.

4.1 Reward Dependence
The first example is a DEC-MDP in which the agents are

mostly independent of each other. All of their actions are
independent actions. The dependence between the agents
comes from the reward function which depends on the world
state and joint action. Becker et al. [3] formally defined this
class of problems as a Transition Independent DEC-MDP
(TI-DEC-MDP). It is a DEC-MDP with a factored state
space, which means that there is a local state for each agent
and the global state is the product of all of the local states,
S = Si ×Sj . The transition from one local state to the next
depends only on the actions of that agent. Similarly, the
observations of agent i depends only on i’s local states and
actions. We call these properties transition and observation
independent.

Definition 5 ([3]). A factored DEC-MDP is said to
be transition independent if the new local state of each
agent depends only on its previous local state and the action
taken by that agent:

P (s′i|(si, sj), (ai, aj), s
′
j) = Pi(s

′
i|si, ai).

Definition 6 ([3]). A factored DEC-MDP is said to
be observation independent if the observation an agent
sees depends only on that agent’s current and next local state
and current action: ∀oi ∈ Ωi

P (oi|(si, sj), (ai, aj), (s
′
i, s

′
j), oj) = P (oi|si, ai, s

′
i).

At each step each agent fully observes its local state, and
observes no information about the local state of the other
agent.

Definition 7 ([3]). A factored DEC-MDP is said to
be locally fully observable if each agent fully observes its
own local state at each step., i.e., ∀oi ∃si : P (si|oi) = 1.

The interaction history of the DEC-MDP is the sequence
of local observations, which in this problem translates into
the sequence of local states. However, due to the limited
interaction, the most recent local state and the time step is
sufficient to maximize the global value. Proving that this
encoding is sufficient is the primary component in proving
that this class of problems is polynomially encodable.

Theorem 4. The interaction history of a DEC-MDP with
independent transitions and independent observations is poly-
nomially encodable.

Proof. The interaction history of a transition indepen-
dent and observation independent DEC-MDP is a sequence
of local states si with an upper bound on the length being
T = O(|S|). We will prove that there exists an encoding
of the interaction history composed of the last state in the
sequence and the length of the sequence. This encoding
Ei = Si × T is polynomial: |Si × T | = O(|S|2).

The Q value of the belief state graph (see Theorem 2) is
the Q value of taking the given action in the current state

sequence and then following the given optimal policy π∗ =
〈π∗

1, π
∗
2〉, where π∗

i : Si → Ai.

Qπ∗(s1s1, s2s2, a1a2) =
X
s′1s′2

P (s′1s
′
2|s1s1, s2s2, a1a2)×

[R(s1s1, s2s2, a1a2, s
′
1s

′
2) + γVπ∗(s1s1s

′
1, s2s2s

′
2)].

If for all possible histories s′1, s
′
2 of length T that led to

the current state, the Q value is the same, then the history
of states is irrelevant and can be replaced in the policy by
just the length of the sequence T.

To prove Qπ∗(s1s1, s2s2, a1a2) = Qπ∗(s′1s1, s
′
2s2, a1a2),

we have to show three things:
1. P (s′1s

′
2|s1s1, s2s2, a1a2) = P (s′1s

′
2|s′1s1, s

′
2s2, a1a2).

From the definition of Markov,

P (s′1s
′
2|s1s1, s2s2, a1a2) = P (s′1s

′
2|s1s2, a1a2). (1)

2. R(s1s1, s2s2, a1a2, s
′
1s

′
2) = R(s′1s1, s

′
2s2, a1a2, s

′
1s

′
2).

From the definition of reward,

R(s1s1, s2s2, a1a2, s
′
1s

′
2) = R(s1s2, a1a2, s

′
1s

′
2). (2)

3. Vπ∗(s1s1s
′
1, s2s2s

′
2) = Vπ∗(s′1s1s

′
1, s

′
2s2s

′
2)

We show Vπ∗(s1s1, s2s2) = Vπ∗(s′1s1, s
′
2s2) by induction.

Base case: s1 and s2 are final states and their values are
always zero. Vπ∗(s1s1, s2s2) = 0, Vπ∗(s′1s1, s

′
2s2) = 0.

Inductive case: We assume it is true for

Vπ∗(s1s1s
′
1, s2s2s

′
2) = Vπ∗(s′1s1s

′
1, s

′
2s2s

′
2), (3)

we need to show that it is true for

Vπ∗(s1s1, s2s2) = Vπ∗(s′1s1, s
′
2s2).

The value function is very similar to the Q function, ex-
cept the current action is chosen from the policy.

Vπ∗(s1s1, s2s2)

=
X
s′1s′2

P (s′1s
′
2|s1s1, s2s2, a1a2)×

[R(s1s1, s2s2, a1a2, s
′
1s

′
2) + γVπ∗(s1s1s

′
1, s2s2s

′
2)]

(1),(2)
=

X
s′1s′2

P (s′1s
′
2|s1s2, a1a2)×

[R(s1s2, a1a2, s
′
1s

′
2) + γVπ∗(s1s1s

′
1, s2s2s

′
2)]

(1),(2),(3)
=

X
s′1s′2

P (s′1s
′
2|s′1s1, s

′
2s2, a1a2)×

[R(s′1s1, s
′
2s2, a1a2, s

′
1s

′
2) + γVπ∗(s′1s1s

′
1, s

′
2s2s

′
2)]

Since a′
1 and a′

2 are optimal actions, we have:X
s′1s′2

P (s′1s
′
2|s′1s1, s

′
2s2, a1a2)[R(s′1s1, s

′
2s2, a1a2, s

′
1s

′
2)

+γVπ∗(s′1s1s
′
1, s

′
2s2s

′
2)]

≤
X
s′1s′2

P (s′1s
′
2|s′1s1, s

′
2s2, a

′
1a

′
2)[R(s′1s1, s

′
2s2, a

′
1a

′
2, s

′
1s

′
2)

+γVπ∗(s′1s1s
′
1, s

′
2s2s

′
2)]

= Vπ∗(s′1s1, s
′
2s2)

As a result, we have Vπ∗(s1s1, s2s2) ≤ Vπ∗(s′1s1, s
′
2s2). Due

to symmetry, we can also show that Vπ∗(s′1s1, s
′
2s2) ≤

Vπ∗(s1s1, s2s2). Therefore Vπ∗(s1s1, s2s2) = Vπ∗(s′1s1, s
′
2s2).



Since the value of taking a joint action while following
the optimal policy does not depend on the history, the same
joint action is optimal for all histories and the policy need
not include it. The interaction history can be summarized
by the current state and time.

Theorem 4 implies that a DEC-MDP with independent
transitions and observations can be decomposed into two
independent MDPs, with local states only affected by the
local actions. The policies are standard policies for MDPs
with the addition of time, and the goal is to maximize the
expected reward received from a global value function.

4.2 Synchronizing Communication
In the DEC-MDP with independent transitions and ob-

servations presented above, the agents interact only through
reward function. This highly restricted form of interaction
does not reveal any information about other agent’s local
state or observations. In this section, we look at a less re-
stricted form of interaction, which we call synchronizing
communication. We define it in the context of DEC-MDP-
Com, since the explicit modeling of communication allows
it to remain distinct from the domain actions.

Definition 8. A communication protocol is said to be
a synchronizing communication protocol if whenever
any agent communicates, all agents send sufficient informa-
tion to all other agents to unify their world views. Such an
exchange is viewed as a single communication action with a
single cost, even though there are potentially many messages
sent.

In a DEC-MDP-Com with a synchronizing communica-
tion protocol, whenever there is communication, each agent
has the same view of the world. Since the world state is
jointly fully observable, each agent has a complete view of
the world state, and knows that the other agent has a com-
plete view as well. The DEC-MDP-Com is essentially reset
to an identical problem with a different start state, and the
agents are safe to forget their past observation histories and
communication histories. The communication actions essen-
tially divide the DEC-MDP-Com into individual episodes,
each of which is a DEC-MDP with no communication ac-
tions. The length of each episode varies depending on when
it is optimal to communicate.

There are many applications in which synchronizing com-
munication is an appropriate protocol. In certain problems,
the communication setup cost is so high that it does not mat-
ter how much actual information is transferred. In other sys-
tems, the minimum packet size sent over the network may be
larger than the messages the agents send, giving them a con-
stant cost per message. For applications such as these, the
amount of information contained in each message does not
change its cost. A communication protocol is said to have
constant cost if all the communication actions have the
same cost. Specifically, a synchronizing communication ac-
tion has the same cost as any other communication actions,
no matter how many messages are actually exchanged to
synchronize their partial views of the world state. Goldman
and Zilberstein [7] proved that given a DEC-MDP-Com with
constant communication cost, there is an optimal commu-
nication policy such that whenever there is communication,
the agents exchange their last observations. Since a DEC-
MDP-Com is jointly fully observable, when the agents ex-
change their last observations, they synchronize their views

of the global state. As a result, if a DEC-MDP-Com has
constant communication cost, there is an optimal commu-
nication policy such that whenever there is communication
between the agents, it is synchronizing communication.

The second example of a polynomially encodable interac-
tion protocol is the synchronizing communication in a DEC-
MDP-Com with independent transitions and observations
and a constant communication cost. This protocol has been
studied in other work [7, 1].

Theorem 5. The interaction history of a DEC-MDP-Com
with independent transitions and observations and constant
communication cost is polynomially encodable.

Proof. From Definition 2, a local policy for a DEC-
MDP-Com is of the form πi : S × Ωi × Σi × Σj → Ai × Σi,
where S is the last synchronized state, and Ωi, Σi and Σj

are the observation history and communication history since
S. Since the DEC-MDP-Com has a constant communication
cost, a synchronizing communication protocol is optimal. As
a result, whenever there is communication the last synchro-
nized global state S is updated to the newly synchronized
state, and Ωi is set to ∅. When there is no communication,
the observation is appended to Ωi. Neither Σi nor Σj are
used. Therefore, between communications the DEC-MDP-
Com is equivalent to a DEC-MDP with independent tran-
sitions and observations, which is polynomially encodable
(from Theorem 4). Since the interaction history between
communications is polynomially encodable and communi-
cation resets the interaction history to ∅, the problem is
polynomially encodable.

Even though a DEC-MDP-Com with independent transi-
tions and observations and constant communication cost has
considerably more communication than a DEC-MDP with
only reward dependence, Theorem 5 shows that its interac-
tion protocol is still polynomially encodable, and therefore
it remains in NP.

5. EXAMPLES OF APPROXIMATIONS
For applications where communication cost is constant,

one can find an optimal policy that periodically synchro-
nizes the world views of the agents. However, there are
many other applications where the cost of message depends
on its contents, and it may be beneficial to send less in-
formation than would synchronize the agents’ world views.
Unfortunately, most such interactions do not seem to be
polynomially encodable because each piece of information
changes an agent’s belief about the local state of the other
agent. A good guideline is that an agent needs to keep
track of both the other agent’s local state as well as the
other agent’s knowledge. However, we may still be able to
design approximate encodings that are polynomial for such
problems. The purpose of these encodings is to put extra
restrictions on the interactions so that the complexity of ap-
proximating the optimal policy is reduced to at most NP. In
this section, we show two examples of such approximations.

5.1 Constant Horizon
Consider the token collecting example. While there is

no explicit communication between the agents, both of the
agents observe the location of all available tokens. When
agent i picks up a token at time t, agent j observes the fact
that a token disappeared and can infer the location of agent
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Figure 1: There are two events E1 and E2. Data D1, D2, ...D10 are distributed between two agents. A1 has
access to D1, ...D5 and is responsible for solving E1, while A2 can see only D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1 and E2 are with required confidence and
with minimum expected communication cost

goal of minimizing the total expected communication cost.
Therefore, our system is a decentralized and yet coopera-
tive one. Most distributed sensor systems have this feature,
and can be represented by a BN structure. Based on these
characteristics, we propose a decision-theoretic framework
to model this multi-agent coordination decision problem. A
decentralized Markov Decision Process (DEC-MDP) is con-
structed from the BN structure, whose objective is to find
a joint communication policy for the two agents that mini-
mizes the expected communication cost. Each agent needs
to decide its communication actions based only on its local
observations. This lack of complete knowledge of the global
state results in difficulty finding an optimal solution for the
DEC-MDP. In fact, recent work has shown that solving a
DEC-MDP is NEXP-hard [2].

What makes our problem more difficult than some of the
others [1] is its tightly coupled nature. An agent’s com-
munication action directly changes the other agent’s view.
The local MDPs of the two agents are largely dependent on
each other. This makes it hard to construct algorithms that
are guaranteed to find the globally optimal solution. We
have designed two algorithms to approximate the globally
optimal solution for our DEC-MDP. One is an iterative al-
gorithm that is guaranteed to converge to a local optimal
solution, but the quality of the policy it generates largely
depends on the starting policy of the iterative process. The
other approach is based on a lookup algorithm which is much
less computationally expensive and can be easily extended
to more than two agents. Though there is no guarantee
that can be made about the solution either generates, ex-
perimental work described in Section 5 indicates that in the
problems studied both approaches lead to policies that are
of very good quality. To our knowledge, this is some of
the first work providing algorithms that approximate the
optimal solution for communication problems in a complex
problem solving setting that are formulated in a decision-
theoretic model.

2. PROBLEM SETTING
In an interpretation system, there are a set of observable

data that are caused by some possible events, which agents
do not have the means to directly observe. The agents need
to collect the values of the data and pick out the set of
events that are most likely the cause of them. In many en-

vironments, the problem is inherently distributed and the
network is fairly large. In those cases, it is common to dis-
tribute not only the data but also the interpretation task
among several agents. Inevitably, there is a close interaction
between the agents, since the local sub-problems an agent
is responsible for are often dependent on some of the data
collected by other agents. The existence of subproblem in-
teractions means that the agents will need to communicate
during problem solving. Therefore, agent communication
strategies can have a major effect on the cost of problem
solving.

In our system, we use a two-layer Bayesian Network to
represent the problem structure (Figure 1). The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two agents, each of whom has di-
rect access to only a part of the observable data. The inter-
pretation task is distributed to the two agents as well. Each
agent is responsible only for its part of the overall problem
and has the knowledge of just the part of the network that
is relevant to its task. The agents can either request or send
data. The objective is to figure out the most likely interpre-
tation of the causal events with a certain level of confidence
using as little communication as possible. For example, in
Figure 1, there are two agents A1 and A2. A1 is responsible
for interpreting the event E1 and therefore knows about the
part of the causal network that is relevant to E1. Normally,
out of the necessary data D1, ...D8, it can directly observe
only D1 through D5.

Definition 1. Based on the nature of different parts of the
relevant data to an interpretation task, we divide them into
three categories. Local data are the data that can be di-
rectly observed by the agent and are relevant only to its
local task. They do not need to be transmitted to the re-
mote agent at any time since each agent has only a partial
view of the network. Local common data are the rest
of the data that are observable by the local agent. They
not only are important for the local task but also would
help remote agents in their interpretation tasks. They are
the candidates to be sent in the local agent’s decision pro-
cess. Remote data are the ones that cannot be directly
observed by the local agent, but knowing them might in-
crease the confidence of its local solution. When an agent
is considering requesting data, remote data are the natural

Figure 2: There are two events E1 and E2. Data
D1, D2, ...D10 are distributed between two agents. A1

has access to D1, ...D5 and is responsible for solving
E1, while A2 can see only D6, ...D10 and is responsible
for solving E2. The objective is for A1 and A2 to fig-
ure out what E1 and E2 are with required confidence
and with minimum expected communication cost

i. With this observation, agent j knows the global state
but agent i does not, so the interaction is not synchronizing
but what we call asymmetric synchronizing. Asymmetric
synchronization is where an agent either gains no informa-
tion about the other agent’s local state or complete infor-
mation, giving it a belief of 1.0 about the current global
state. The difference between synchronization and asym-
metric synchronization is in the asymmetric case the agents
do not necessarily both synchronize at the same time.

This difference precludes a polynomial encoding. In the
token collecting example when agent i picks up a token both
agents i and j know that i picked it up as well as both know
the other knows, and so on. Agent i, then, must keep track
of the information j has collected about i to best predict
what j will do at least until j picks up a token itself and
i learns where j is located. Remembering this sequence of
information is exponential in the size of the state space in
the worst case.

While the problem itself is harder than NP, it can be ap-
proximated by making assumptions that allow the interac-
tion history to be polynomially encoded. For example, in-
stead of keeping track of the entire history of interaction,
one could assume that the last c interactions, for some con-
stant c, was sufficient. The interaction history is now of size
|S|c, which is polynomial in the size of the state space. In
the token collecting example this could correspond to agent
i remembering the last 5 tokens it collected.

5.2 Flat Representation
Now let us look at a communication optimization prob-

lem in a Distributed Sensor Interpretation (DSI) system [13].
There are two agents in the system. Each agent directly ob-
serves data from a group of sensors and is responsible for
solving a subset of the interpretation problem to best ex-
plain the sensor data collectively observed by the agents.
Since each subproblem may relate to not only the sensor
data collected by the agent itself, but also those collected
by the other agent, the agents may need to communicate
with each other in order to solve its local problem with re-
quired confidence. Figure 2 illustrates such a DSI system
that is represented in a Bayesian Network. The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two classes of actions for each
agent: SEND and REQUEST. An agent can only send one
piece of data that the other agent has no knowledge of, and
can only request one piece of the remote data that it has

0 ,0s

* {0,0,...,0},1 * {1,1,...,1},1
...

* {0,0,...,0}, 2 * {1,1,...,1}, 2

65.735 10P0.226P

1P 1P1P1P
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Figure 3: The decentralized MDP generated for the
problem in Figure 2.

not yet acquired. The two agents alternate actions until the
confidence threshold is reached by both. The communica-
tion optimization problem is, for the specified BN structure,
to find the communication strategy whose expected cost is
minimized in order to reach the required confidence for both
agents.

Shen et al. [13] models this problem with a DEC-MDP
as shown in Figure 3. Every global state is in the form of
s = 〈e∗, i〉, where e∗ is all of the sensor data values observed
by the system, and i is an external feature that indicates
it is agent i’s turn to communicate. s0 is a dummy start
state 〈∅, 0〉. When all the sensors collect their data, the
start state transitions to one of the possible real global states
〈e∗, 1〉 before any communication takes place. A1 and A2 are
action sets of the two agents, Ai = {SEND x, REQUEST
y} for local data x and remote data y. An observation oi is
the data value just sent or received by agent i. As a special
case, after s0 each agent observes the values of its local data.

In this DEC-MDP every action is explicit communica-
tion. Instead of explicitly modeling it as Σ in a DEC-MDP-
Com, these actions are implicitly modeled in the DEC-MDP
framework itself. The observation history Ω records the in-
teraction history of the system. Since every observation at
every time step is needed to calculate the confidence level
achieved, it is necessary for the agents to remember all the
data values transferred between the agents in the past. Fur-
thermore, remembering the order in which the data are ex-
changed is valuable because it carries useful information. An
agent can infer why the other agent chose to transfer this
piece of data before the other piece. Therefore, remembering
the entire Ω is essential to generating the optimal policy. We
write the number of local sensor data as n, and assume that
each sensor data has at most m possible values. As a result,
|S| = mn, and |Ω| = O(n! · mn) = O(nn) = O(|S|log2 n).
Since n is not independent of |S|, Ω is not polynomially
encodable and therefore the DEC-MDP is harder than NP.

One way to approximate the optimal solution to this prob-
lem is that, instead of remembering the entire Ω, each agent
only remembers the values of the data exchanged so far with-
out remembering the order in which they were transferred.
This is a reasonable approximation since to calculate the
confidence level of the local interpretations, only the sen-
sor data values are needed. In this approximation, the ap-
proximate encoding Ei of Ω is of the size O((m + 1)n) =

O(|S|logm(m+1)). Since m is independent of |S|, Ei is a
polynomial encoding, and therefore this approximation is
no harder than NP.

6. CONCLUSIONS
Distributed POMDPs have been developed and employed

to model various multi-agent coordination problems. Un-



derstanding the source of their high complexity is crucial to
identifying new and more tractable models as well as devel-
oping appropriate approximations to otherwise intractable
problems. This paper establishes that the interactions present
among the agents is the cause of the high complexity of dis-
tributed POMDPs. We proved that deciding a distributed
POMDP whose interaction history contains information of
a size polynomial in the number of states is NP-complete,
and that deciding a non-polynomially encodable distributed
POMDP is harder than NP. We demonstrated how two sub-
classes of distributed POMDPs known to be NP-complete
can be polynomially encoded. This is the first time that a
well-defined condition has been identified that can distin-
guish between multi-agent problems in NP and those that
are strictly harder than NP. It is an important step in map-
ping out the complexity hierarchy of multi-agent systems.

Our goal in this paper was not to introduce new models
or algorithms, but to change the way people view interac-
tions between agents in the context of distributed POMDPs.
Multi-agent researchers have long intuitively understood that
the interaction between the agents is the cause of their high
complexity. The theoretical results of this paper are sig-
nificant in that they both formally justify this intuition as
well as explain how the interaction affects the complexity.
This new understanding of interaction and its relationship
to complexity will help us to identify new classes of multi-
agent systems with a lower complexity.

The significance of this theoretical result also has a more
practical side. Most multi-agent systems are provably harder
than NP and solving them optimally is not possible. Much
work has been put into developing good algorithms for ap-
proximating these problems. This work provides theoreti-
cal guidance in understanding how the approximations in a
model limit the search space and reduce the complexity. We
demonstrate this on two non-polynomially encodable prob-
lems by providing two assumptions that reduce the complex-
ity to no harder than NP.

We are currently pushing this work in two directions.
First, we are searching for new examples of polynomially en-
codable interaction protocols, as well as common protocols
that we can prove are not polynomially encodable. Second,
we are evaluating the performance of the approximations
we presented here in addition to finding new approxima-
tions appropriate to the protocols that we can prove to be
harder than NP.
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