
Communication Management Using Abstraction in
Distributed Bayesian Networks

Jiaying Shen and Victor Lesser
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-4610

{jyshen, lesser}@cs.umass.edu

ABSTRACT
Techniques were developed in previous work for managing
communication in a controlled satisficing manner in two
layer distributed Bayesian Networks. DEC-MDPs were used
to sequence the information transferred in order to guaran-
tee the required confidence level. In this paper, we introduce
multiple abstraction layers into the Distributed Bayesian
Network as a way of carrying more useful information in
transmitted data to further reduce the number of messages
that need to be sent. An algorithm is developed to au-
tomatically generate appropriate abstraction data. Tech-
niques are introduced to effectively incorporate this abstrac-
tion data set into the DEC-MDP framework. We show that
the appropriate addition of abstraction data actions simpli-
fies the DEC-MDP while reducing the expected communi-
cation cost. This work provides us with a formal view of the
use of abstraction in agent cooperation and begins to give
us an understanding of when the less abstract data needs to
be transmitted.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
DESIGN, PERFORMANCE

Keywords
Abstraction, Communication, Decentralized MDP

1. INTRODUCTION
In complex distributed applications, such as distributed

interpretation (DI), a problem is often decomposed into a
set of subproblems and each subproblem is distributed to
an agent who will be responsible for solving it. The exis-
tence of interactions between subproblems means that the
agents cannot simply solve the subproblems individually and
then combine local solutions together. In such systems, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

amount of communication among agents may be very signif-
icant in order to guarantee global optimality or even global
consistency. Thus, “satisficing” approaches have been de-
veloped that trade off optimality for reduced communica-
tion [4]. One approach is for agents to generate local so-
lutions based on their own data and then transmit these
high level solutions to other agents. Based on the con-
sistency and credibility of these local solutions, new local
solutions may be generated or more detailed data sent un-
til a sufficient level of consistency and credibility has been
achieved among the agents. An important characterization
of such distributed protocols is how much communication
is required and the likelihood that the solution will be the
same as that generated by an optimal centralized algorithm
which uses all available information.

Most approaches to managing communication trade off
solution quality for reduced communication, but only from
a statistical point of view. The behavior of the algorithms
are often analyzed over a collection of problems to say that
p percent of the time they will get the required solution
quality q with an average amount of communication c [4].

Shen et al. [11] took this satisficing approach to the
next step by designing a parameterized algorithm where one
can predict, for a desired confidence level in the final so-
lution, the expected amount of communication the agents
need. They studied these issues in terms of a two layered
Distributed Bayesian Network (DBN), as shown in Figure
1. A decision-theoretic framework was proposed to model
this multi-agent coordination decision problem. A decen-
tralized Markov Decision Process (DEC-MDP) [1] can be
constructed from the Bayesian Network structure to find
a joint communication policy that minimizes the expected
communication cost.
Each agent needs to decide its communication actions based
only on its local observations. The framework takes the
amount of communication into account, as well as the qual-
ity of the final solution. The agents use only the necessary
amount of communication to achieve the required level of
solution quality.

In this paper, we introduce abstraction layers into the
Distributed Bayesian Network as a way of carrying more
useful information in one piece of transmitted data to fur-
ther reduce the number of messages that need to be sent.
In order to effectively use the abstraction technique, there
are two questions that need to be answered: How to gener-
ate the abstract information to be transferred, and When to
transfer the abstract information. To answer the first ques-
tion, we present an algorithm that automatically generates

E2E1

D10D9D8D7D6D5D4D3D2D1

‘s direct access
1
A

‘s direct access
2
A

‘s view of the BN
1
A

‘s local data
1
A ‘s local common data

1
A

‘s remote data
1
A

P(E1)

0.41

P(E2)

0.43

P(D1 | E1)

0.1975 1

0.0043 0

P(D2 | E1)

0.2903 1

0.0559 0

P(D9 | E2)

0.2486 1

0.3116 0

P(D10 | E2)

0.7990 1

0.0164 0

P(D3 | E1 E2)

0.8020 1 1

0.1000 1 0

0.7800 0 1

0 0 0

P(D4 | E1 E2)

0.5385 1 1

0.2900 1 0

0.3500 0 1

0 0 0

P(D5 | E1 E2)

0.1916 1 1

0.0600 1 0

0.1400 0 1

0 0 0

P(D6 | E1 E2)

0.4342 1 1

0.3100 1 0

0.1800 0 1

0 0 0

P(D7 | E1 E2)

0.1100 1 1

0. 1 0

0.1100 0 1

0 0 0

P(D8 | E1 E2)

0.7227 1 1

0.4100 1 0

0.5300 0 1

0 0 0

Figure 1: There are two events E1 and E2. Data D1, D2, ...D10 are distributed between two agents. A1 has
access to D1, ...D5 and is responsible for solving E1, while A2 can see only D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1 and E2 are with required confidence and
with minimum expected communication cost

goal of minimizing the total expected communication cost.
Therefore, our system is a decentralized and yet coopera-
tive one. Most distributed sensor systems have this feature,
and can be represented by a BN structure. Based on these
characteristics, we propose a decision-theoretic framework
to model this multi-agent coordination decision problem. A
decentralized Markov Decision Process (DEC-MDP) is con-
structed from the BN structure, whose objective is to find
a joint communication policy for the two agents that mini-
mizes the expected communication cost. Each agent needs
to decide its communication actions based only on its local
observations. This lack of complete knowledge of the global
state results in difficulty finding an optimal solution for the
DEC-MDP. In fact, recent work has shown that solving a
DEC-MDP is NEXP-hard [2].

What makes our problem more difficult than some of the
others [1] is its tightly coupled nature. An agent’s com-
munication action directly changes the other agent’s view.
The local MDPs of the two agents are largely dependent on
each other. This makes it hard to construct algorithms that
are guaranteed to find the globally optimal solution. We
have designed two algorithms to approximate the globally
optimal solution for our DEC-MDP. One is an iterative al-
gorithm that is guaranteed to converge to a local optimal
solution, but the quality of the policy it generates largely
depends on the starting policy of the iterative process. The
other approach is based on a lookup algorithm which is much
less computationally expensive and can be easily extended
to more than two agents. Though there is no guarantee
that can be made about the solution either generates, ex-
perimental work described in Section 5 indicates that in the
problems studied both approaches lead to policies that are
of very good quality. To our knowledge, this is some of
the first work providing algorithms that approximate the
optimal solution for communication problems in a complex
problem solving setting that are formulated in a decision-
theoretic model.

2. PROBLEM SETTING
In an interpretation system, there are a set of observable

data that are caused by some possible events, which agents
do not have the means to directly observe. The agents need
to collect the values of the data and pick out the set of
events that are most likely the cause of them. In many en-

vironments, the problem is inherently distributed and the
network is fairly large. In those cases, it is common to dis-
tribute not only the data but also the interpretation task
among several agents. Inevitably, there is a close interaction
between the agents, since the local sub-problems an agent
is responsible for are often dependent on some of the data
collected by other agents. The existence of subproblem in-
teractions means that the agents will need to communicate
during problem solving. Therefore, agent communication
strategies can have a major effect on the cost of problem
solving.

In our system, we use a two-layer Bayesian Network to
represent the problem structure (Figure 1). The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two agents, each of whom has di-
rect access to only a part of the observable data. The inter-
pretation task is distributed to the two agents as well. Each
agent is responsible only for its part of the overall problem
and has the knowledge of just the part of the network that
is relevant to its task. The agents can either request or send
data. The objective is to figure out the most likely interpre-
tation of the causal events with a certain level of confidence
using as little communication as possible. For example, in
Figure 1, there are two agents A1 and A2. A1 is responsible
for interpreting the event E1 and therefore knows about the
part of the causal network that is relevant to E1. Normally,
out of the necessary data D1, ...D8, it can directly observe
only D1 through D5.

Definition 1. Based on the nature of different parts of the
relevant data to an interpretation task, we divide them into
three categories. Local data are the data that can be di-
rectly observed by the agent and are relevant only to its
local task. They do not need to be transmitted to the re-
mote agent at any time since each agent has only a partial
view of the network. Local common data are the rest
of the data that are observable by the local agent. They
not only are important for the local task but also would
help remote agents in their interpretation tasks. They are
the candidates to be sent in the local agent’s decision pro-
cess. Remote data are the ones that cannot be directly
observed by the local agent, but knowing them might in-
crease the confidence of its local solution. When an agent
is considering requesting data, remote data are the natural

Figure 1: There are two events E1 and E2. Data
D1, D2, ...D10 are distributed between two agents. A1

has access to D1, ...D5 and is responsible for solving
E1, while A2 can see only D6, ...D10 and is responsible
for solving E2. The value of E1 is dependent on A1’s
data and vice versa. The objective is for A1 and A2 to
decide what E1 and E2 are with required confidence
while minimizing the expected communication cost.

appropriate abstraction data, which reduces the expected
communication cost necessary to achieve the required confi-
dence level. This is a greedy approach since the abstraction
data enables the agent to immediately reach the desired con-
fidence level. We chose this type of abstraction data because
it is intuitive and straightforward to generate, yet it enables
us to study the concept of abstraction and its use in reduc-
ing communication cost from a formal perspective. There
are other forms of abstraction that can be potentially use-
ful. For example, some abstraction data may contain useful
information but is not sufficient to reach the confidence by
itself. Other abstraction may be an intermediate interpreta-
tion result that can be incorporated into the local solution.
We plan to look into these different types of abstraction in
future work.

To answer the second question, we examine three different
approaches to incorporate the new abstract communication
actions to the existing DEC-MDP. The all data action selec-
tion approach allows abstract communication actions as well
as the normal communication actions in all the states. The
abstraction data action selection approach allows only the
abstract communication actions in all the states. In the hi-
erarchical action selection approach, before an agent has ac-
quired all of the abstraction data, the agents are not allowed
to transfer any of the information available at the next more
detailed level. Experimental work demonstrates that the
hierarchical approach simplifies the DEC-MDP while still
reducing the expected communication cost. Furthermore,
experiments on larger networks with multiple abstraction
layers show that the hierarchical approach is able to solve
more and larger networks than the other approaches and
therefore is more suitable for scaling up the approach.

Most work studying communication in DEC-MDP and its
related models studies synchronizing communication, where
every communication action synchronizes the agents’ views
of the world state [8, 10]. In contrast, this work studies the
problem of what to communicate, where only part of the lo-
cal observation is transferred between the agents. Abstrac-
tion has often been used in hierarchical planning community
to represent abstract plans that can be further refined into
specific actions. In particular, Clement and Durfee [6] used
summary conditions, a form of abstraction, to coordinate
the concurrent interactions of plans at different levels of ab-
straction between agents. Abstraction has also been used
in distributed diagnosis research to identify the sources of
problem. Chung and Barrett [5] demonstrated how Boolean

expressions can facilitate finding minimal cost diagnoses in
linear time. However, neither work studies the tradeoff be-
tween abstraction and communication. In the original Dis-
tributed Problem Solving work [7], abstraction was used as
a mechanism for controlling the information needing to be
communicated. However, the use of abstraction was not
formalized. Nor was there a clear understanding of when
the lower level data needed to be transmitted. Carver and
Lesser [3] studied the use of multiple levels of abstraction
to reduce the necessary communication. Like [7], the ab-
straction layers were predefined and the use of abstraction
was not formalized. In contrast, the algorithm we introduce
allows the system to generate appropriate abstraction data
automatically without predefinition. Our study of the ad-
dition of abstraction layers into the Bayesian networks and
transferring abstraction data as actions in the DEC-MDP
provides us with a formal view of the use of abstraction
in the management of communication cost in a distributed
problem solving system.

The next section formally defines the problem we study
and summarizes the DEC-MDP model we developed to gen-
erate the communication strategy. Section 3 introduces the
algorithm that automatically generates the abstraction data
that when transmitted can greatly facilitate the achievement
of the confidence level. Section 4 discusses how the abstrac-
tion data can be incorporated to improve the system perfor-
mance. Section 5 extends the different approaches discussed
so far to larger networks with multiple abstraction layers.
We conclude with a discussion of future work.

2. PROBLEM DEFINITION AND DEC-MDP
MODEL

In an interpretation system there is a set of observable
data that is caused by some possible events, which agents do
not have the means to directly observe. The agents need to
observe the data and identify the events that are most likely
the cause of them. In many environments, the problem is in-
herently distributed and the network is fairly large. In those
cases, it is common to distribute not only the data but also
the interpretation task among several agents. Inevitably,
there is a close interaction between the agents since the local
sub-problems an agent is responsible for are often dependent
on some of the data collected by other agents. The existence
of subproblem interaction means that the agents will need
to communicate during problem solving. Therefore, agent
communication strategies can have a major effect on the cost
of problem solving.

We use a two-layer Bayesian Network to represent the
problem structure (Figure 1). The top level nodes are the
events that are the possible causes of the observed data,
while the leaves are the raw data gathered by various agents.
There are two agents, each of whom has direct access to
only a part of the observable data. The interpretation task
is distributed to the two agents as well with each agent re-
sponsible only for part of the overall problem. Additionally,
an agent only has knowledge of the network structure that is
directly relevant to its interpretation task. The agents can
either request or send data. The objective is to identify the
most likely interpretation of the causal events with a target
level of confidence using as little communication as possible.
For example, in Figure 1, there are two agents A1 and A2.
A1 is responsible for interpreting the event E1 and therefore

knows about the part of the causal network that is relevant
to E1 . Out of the relevant data D1, ..., D8, it can directly
observe only D1 through D5. D6, D7 and D8 are remote
data and may need to be transferred in order for A1 to solve
its local problem with confidence.

The evidence εAi of an agent Ai are the values of the
data that the agent has collected so far. They can be the
values that are observed directly by that agent or acquired
from the remote agent. An agent Ai is only able to find
the most likely interpretation of the local events given its
current evidence set, i.e., MAPI(εAi) = argmaxhP (EAi =
h|εAi) [4]. Ideally the decentralized system should generate
the interpretation that a centralized system will generate
given the complete data values MAPI(ε∗Ai

), where ε∗Ai
is

the complete evidence set relevant to Ai. Unfortunately,
with only partial knowledge of the relevant data values, it
is not always guaranteed that the current local MAPI is
the global MAPI. On the other hand, with the conditional
probability table given by the BN, an agent can predict the
probability of different relevant data configurations given its
current evidence P (ε∗Ai

|εAi). Hence we have the following
definition.

Definition 1. Confidence is the likelihood of the local
MAPI being the global MAPI of EA given the current known
evidence of A.

C(MAPI(εA)) = P (MAPI(εA) = MAPI(ε∗A))

=
X

e∈{ε∗
A
|MAPI(εA)=MAPI(ε∗

A
)}

P (e|εA)

What is important about the solution quality of a dis-
tributed system is not the likelihood of an event being the
local MAPI, but whether the local MAPI agrees with the
global MAPI, i.e., whether the decentralized system will
generate the same result that a centralized system would.
That is exactly what this definition of confidence achieves.
Using confidence as a measurement of the solution quality
of a decentralized system as compared to that of a central-
ized one, we can make a tradeoff between the quality of the
solution and the communication cost. Another interesting
and useful property of our definition of confidence is that it
is guaranteed to reach 100% when the values of all the rel-
evant data are known. As a result, a given confidence level
can always be satisfied.

Given a problem structure in a two level BN such as the
one in Figure 1 and a specified confidence threshold, we
need to find a communication strategy. Such a communi-
cation strategy should specify what communication action
each agent should take based on their current knowledge at
each stage. In this paper we are considering only the case
of synchronous communication. In other words, the two
agents take turns to decide their actions in the sequence of
A1, A2, A1, A2, ... until the confidence threshold is reached.

Definition 2. A communication strategy π〈A1,A2〉 is
a pair of policies πA1 and πA2 . Each policy πAi is a mapping
from local evidence and communication history to a local
action: πAi : εAi ×H → ai.

There are three classes of actions for each agent: SEND,
REQUEST and NULL. The content of the SEND and RE-
QUEST actions at each stage are restricted by the commu-
nication history so far. An agent can send only the part

of the local common data that the other agent has not yet
acquired, and can request only a part of the remote data
that it has no knowledge of. When the communication
history indicates that it is not Ai’s turn to act, the pol-
icy of that agent will always be NULL. A REQUEST ac-
tion and its response by the other agent occur in the same
stage. For example, in Figure 1, let us assume that initially
εA1 = {D1 = 1, D2 = 0, D3 = 0, D4 = 1, D5 = 1} and
H = ∅. A valid action for A1 at this step would be “SEND
D3 and D4”. It could also “REQUEST D8 and D9”. On
the other hand, since it is not A2’s turn, the only valid ac-
tion for A2 is NULL. The cost model for this framework is
very general. Each communication has its own cost, based
on its action class and the particular data sent. The only
restriction is that the cost of a REQUEST must also include
the cost of the immediate reply by the other agent. For ex-
ample, in our experiments SEND costs 1 per data sent. A
REQUEST action costs 1 for the request plus a reply cost
equal to a SEND action of the same data. “REQUEST D8

and D9” would cost 3.
To summarize, the problem can be defined by a two level

BN and a required confidence threshold t. The goal is to find
a communication strategy π〈A1,A2〉 that allows the agents to
interpret their local events with a confidence greater than, or
equal to t, i.e., C(MAPI(εA1)) ≥ t and C(MAPI(εA2)) ≥ t,
while minimizing the expected communication cost.

To solve this problem, we model it as a DEC-MDP. Un-
like a centralized MDP, in a DEC-MDP the process is con-
trolled by multiple agents, each with a different view of the
current global state. At each time step the agents’ observa-
tions together uniquely determine the global state, though
frequently no one agent has this complete view. A local
policy for an agent is a mapping from its local histories of
observations to an action. The goal of a decentralized MDP
is to find an optimal joint policy for all of the agents that
maximizes the expected total reward.

We model our problem in the framework of a decentralized
MDP as follows.

• Every global state is in the form of s = 〈ε∗, i〉, where
ε∗ is all of the low level data values observed by the
system, and i is an external feature that indicates it
is Ai’s turn to communicate. s0 is a dummy start
state 〈∅, 0〉. When all the sensors collect their data,
the start state transitions to one of the possible real
global states 〈ε∗, 1〉 before any communication takes
place.

• Ac1 and Ac2 are action sets of the two agents. Aci ∈ {
NULL, SEND x, REQUEST y}, where x is a subset of
the local common data of Ai and y is a subset of the
remote data. When it is not Ai’s turn to communicate,
its action is the NULL action. A joint action 〈Ac1 6=
NULL, NULL〉 transitions a state 〈ε∗, 1〉 to 〈ε∗, 2〉,
and a joint action 〈NULL, Ac2 6= NULL〉 transitions
a state 〈ε∗, 2〉 to 〈ε∗, 1〉. If at state s, both agents have
reached confidence level t for its local interpretation
task, i.e., when C(MAPI(εAi)) ≥ t, i = 1, 2, then s is
a final state.

• P is a transition probability table. P (s′|s, a1, a2) =
P (〈ε∗, i〉|〈ε∗, j〉, a1, a2) = 1 iff i 6= j. Otherwise,
P (s′|s, a1, a2) = 0. As a special case, the transition
probability from s0 to s = 〈ε∗, 1〉 after both agents ex-
ecute NULL action is P (s|s0, NULL, NULL) = P (ε∗).

0 ,0s =<∅ >

* {0,0,...,0},1ε< = > * {1,1,...,1},1ε< = >...

* {0,0,...,0}, 2ε< = > * {1,1,...,1}, 2ε< = >

65.735 10P −= ×0.226P =

1P = 1P =1P =1P =

1's turnA

2's turnA

Figure 2: A portion of a typical decentralized MDP.

It can be calculated given the BN structure.

• R is a reward function. R(s, a1, a2, s
′) = R(a1, a2) =

−c(a1)− c(a2), where c(ai) is the cost of the commu-
nication action ai, i = 1, 2.

• Ω1 and Ω2 are the sets of observations for the two
agents. An observation oi ∈ Ωi is the data value just
sent or received by Ai. As a special case, after s0,
each agent observes the values of its local data. An
observation sequence oi = 〈ε0Ai

, H〉, where ε0Ai
is the

initial observation of Ai’s local data set before any
communication occurred in the system, and H is the
communication history of the system.

• O(s, a1, a2, s
′, o1, o2) = 1 iff o1 and o2 are the new data

sent or received by the agents after them taking actions
a1 and a2 at state s. Otherwise it equals to 0.

• A local policy πi for agent Ai is a mapping from the
local observation sequence oi to an action ai ∈ Aci. A
joint policy π = 〈πi, πj〉 is a pair of local policies, one
for each agent.

For example, Figure 2 is the DEC-MDP built for the
problem in Figure 1. A possible global state s when both
agents just observed their local sensor data might be 〈{D1 =
1, D2 = 0, D3 = 0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 =
1, D9 = 0, D10 = 0}, 1〉. The possible actions for A1 are
NULL, SEND x, and REQUEST y, where x ⊆ {D3 =
0, D4 = 1, D5 = 1} and y ⊆ {D6, D7, D8}. Since it is
not A2’s turn to communicate, its only action is NULL.
If A1 chooses REQUEST {D7, D8}, then the next state is
〈{D1 = 1, D2 = 0, D3 = 0, D4 = 1, D5 = 1, D6 = 0, D7 =
1, D8 = 1, D9 = 0, D10 = 0}, 2〉 and both agents observes
{D7 = 1, D8 = 1}. The observation sequence for A1 is
o1 = {〈D1 = 1, D2 = 0, . . . , D5 = 1〉, 〈D7 = 1, D8 = 1〉},
and the observation sequence for A2 is o2 = {〈D6 = 0, D7 =
1, . . . , D10 = 0〉, 〈D7 = 1, D8 = 1〉}. The policy πi decides
which action to take for each agent based on its current oi.
Remembering the entire communication history H for both
agents have two purposes. First, it includes the newly ac-
quired evidence received from the other agent. Second, even
for the agent who just SEND part of its own data without
receiving any new evidence, it is important to remember this
so that in the future it does not send the same information
unnecessarily.

3. GENERATING THE ABSTRACTION
LAYER

So far we have discussed two layer networks, which means
that there are no intermediate abstraction data. Many do-
mains, however, have structures that can be exploited to
improve the performance of both local processing and inter-

agent merging of evidence. Domain structure can result
from a number of factors such as independencies among
subsets of events or between events and certain data sub-
sets and cases where only a fraction of the combinations of
some data are informative. Many of these situations are best
captured by using BNs that include intermediate nodes that
lie between the event and data levels.

Input: agent A’s view of BN, the values of1.1

the local data, the required confidence
Output: a set of logic expressions of the1.2

remote data that, if true, put the local
confidence above the required confidence
Set DataList = all the remote data of A,1.3

potential = null
Initialize LogicTree1.4

while DataList.next is not null do1.5

currentLeaf = DataList.next
add currentLeaf and ¬currentLeaf as new
children to LogicTree.root
if confidence given currentLeaf ≥ required
confidence then

mark currentLeaf
continue

if confidence given ¬currentLeaf ≥
required confidence then

mark ¬currentLeaf
continue

if potential == null then
potential.add(currentLeaf)
potential.add(¬currentLeaf)
continue

for each p in potential do
potential.add(addChildren
(currentLeaf, p), addChildren
(¬currentLeaf, p))

convert the marked part of LogicTree to a set1.6

of logic expressions and return it

addChildren (currentLeaf, p)1.7

begin
Add p to LogicTree as a child of
currentLeaf in a depth first fashion, check
the confidence at every step. If confidence
≥ required confidence, stop going deeper
into this branch and mark it.
Output: the unmarked subtree of
LogicTree starting from currentLeaf

end

Algorithm 1: The algorithm for generating
the abstraction layer

Research on learning Bayesian Networks from data [2, 9]
focuses on finding the BN structure that best matches the
collected data. These techniques are important in construct-
ing the BN structure that represents the problem we are try-
ing to solve. However, we need other methods to find an ap-
propriate abstraction layer from the existing BN that, when
transmitted from the remote agent, more efficiently con-
veys the necessary information to facilitate the local prob-
lem solving. In other words, this abstraction layer, when
acquired, should be able to reduce the expected communi-
cation necessary to achieve the required confidence level.

D6 D7 D8 D9 D10

¬D7∧¬D6 D10∧¬D9¬D8∧D7D6

D6 D7 D8 D9 D10

D10

¬ D9

¬ D8D6 ¬ D7

¬D6 D7

Abstraction Level

Raw data level

(a) The action options for the raw data
action selection approach

D6 D7 D8 D9 D10

¬D7∧¬D6 D10∧¬D9¬D8∧D7D6

D6 D7 D8 D9 D10

D10

¬ D9

¬ D8D6 ¬ D7

¬D6 D7

Abstraction layer

Raw data layer

(b) The action options for the all action selection approach.
The data that can be transferred are divided into two cat-
egories.

D10

¬ D9

¬ D8D6 ¬ D7

¬D6 D7

(a)

D6∨(¬D7∧¬D6)∨(¬D8∧D7)∨(D10∧¬D9)

D6∨(¬D7∧¬D6)∨(¬D8∧D7) D10∧¬D9

(b)

(c) The corresponding LogicTree to
the abstraction data.

Figure 3: An example of the abstraction layer. Re-
mote data includes {D6, · · · , D10}. The required con-
fidence level is 75%

We achieve this goal by developing an algorithm (Algo-
rithm 1) that automatically generates an abstraction layer
given a value combination of an agent’s local data and the
desired confidence level. The basic idea behind the algo-
rithm is to find a set of logic expressions consisting of the
remote data such that if at least one of the expressions is
true the required confidence is reached. For example, an
agent has 5 pieces of remote data {D6, · · · , D10} and needs
to achieve a confidence level of 75%. In the original sys-
tem, the only possible actions are to transfer some or all
of these raw data. We will call this approach raw data ac-
tion selection. However, if one or more of D6, ¬D7 ∧ ¬D6,
¬D8∧¬D7 and D10∧¬D9 are true, then the agent imme-
diately has a local solution with a confidence level of 75%.
These data carry more abstract information than the raw
data themselves and therefore are more efficient, though the
information is not as refined. If these data values can be ac-
quired as well as the raw data, it can potentially yield huge
savings on the communication cost. Additionally, the values
of the abstraction data also give valuable information about
what the values the raw data may have. For example, if the
value of ¬D7∧¬D6 is transferred and is true, then the pro-
cess can immediately terminate because the confidence level
of 75% has been reached. If the value is false, even though
the desired confidence level is not immediately achieved the
agent does now have the knowledge that D6 and D7 cannot
be false at the same time. This information can be retained
by updating the BN. Figure 3(a) shows the action options
of the raw data action selection approach for this example
while Figure 3(b) shows the action options if the abstraction
data can also be transferred.

The desired set of logic expressions can be generated by
simply enumerating all of the possible combinations of the
remote data values and selecting those that will enable the
agent to reach its desired confidence level. Our algorithm
improves efficiency by a logarithmic factor over the expo-
nential brute force enumeration by reusing the subgraphs of
logic expressions.

D6 ¬D6 D7 ¬ D7

¬D6 ¬D6

¬D6, D7, ¬ D7

¬D6

potential:

D8 ¬ D8D6 ¬D6 D7 ¬ D7

¬D6 ¬D6 ¬D6 D7 ¬ D7

¬D6

¬D6 D7 ¬ D7

¬D6, D7, ¬ D7,

¬D6

new potetial:

D8, ¬ D8

¬D6 D7 ¬ D7

¬D6

¬D6 ¬ D7

(a) LogicTree and potential before adding
D8,¬D8 to LogicTree.

D6 ¬D6 D7 ¬ D7

¬D6 ¬D6

¬D6, D7, ¬ D7

¬D6

potential:

D8 ¬ D8D6 ¬D6 D7 ¬ D7

¬D6 ¬D6 ¬D6 D7 ¬ D7

¬D6

¬D6 D7 ¬ D7

¬D6, D7, ¬ D7,

¬D6

new potetial:

D8, ¬ D8

¬D6 D7 ¬ D7

¬D6

¬D6 ¬ D7

(b) LogicTree and potential after adding D8,¬D8 to
LogicTree.

Figure 4: An example of the key step of Algorithm
1.

Figure 4 gives an illustration of an episode showing how
the algorithm is run for the example in Figure 3. We use
a tree, which we call a LogicTree, to keep track of all the
data values examined so far. The nodes along the same path
are connected by the ∧ operator, and the different branches
represent different value assignments. The marked branches
are the ones that pass the confidence test, i.e., if true, the
desired confidence level is reached. The set potential is
used to keep track of the subtrees examined so far that did
not pass the confidence test. Only the members of poten-
tial should be examined as a subgraph of longer expressions.
Figure 3(c) shows the final LogicTree for this example.

If the values of all the remote data are acquired, the local
confidence is guaranteed to reach 100%. Therefore, we limit
the depth of the LogicTree to be less than the number
of remote data. When the maximum depth is the num-
ber of remote data minus 1, the algorithm generates all of
the expressions that have the desired property. Reducing
the depth of the LogicTree results in a smaller number of
abstraction nodes generated and therefore a smaller DEC-
MDP. This tradeoff will be further discussed in the next
section. In general, the number of abstraction data gener-
ated should be no more than the number of raw data. For
each path in the LogicTree, we record the likelihood of the
abstraction data represented by the branch being true, and
we choose the n abstraction data with the highest likelihood
of being true to incorporate into the DEC-MDP, where n <
the number of raw data.

When given a BN and a desired confidence level, the agent
generates an abstraction layer for each raw data value com-
bination and adds them to its action options for the states
that have the corresponding raw data values. The expanded
DEC-MDP can be solved to generate a communication strat-
egy. We call this approach the all data action selection

approach. Since the raw data communication actions are
competing with the abstraction actions, an agent chooses to
transfer an abstraction data if and only if it will result in
a lower expected communication cost than transferring any
of the raw data. Therefore, the new system performance
should be no worse than the original system in terms of the
expected communication cost.

We compared the performance of the all action selection
approach and the raw data action selection approach. The
cost of sending a piece of abstraction data was equal to the
cost of sending raw data. We used the Iterative Algorithm
introduced in [11] to solve the DEC-MDP. We ran exper-
iments on 100 problem structures with 2 high level events
and 10 raw data (5 local to each agent) for different con-
fidence levels. All of the networks were fully connected,
which means that for both agents to have the complete ev-
idence, 10 pieces of data needed to be transmitted. The
corresponding curves in Figure 5 shows a comparison of the
minimum expected communication cost generated by both
systems. Column (a) in Table 1 shows the percent improve-
ment in the expected communication cost when transmitting
abstraction data in addition to the raw data. As shown,
the all data action selection has a noticeable improvement
over the raw data action selection approach. This illustrates
that the addition of the abstraction data does help reduce
the communication cost. The improvement is most signifi-
cant when the required confidence is between 70% and 80%.
When the confidence level is low, the expected communi-
cation cost is already low so that it is difficult to achieve
a significant improvement. On the other hand, when the
required confidence level is high, there are much fewer ab-
straction data generated resulting in a smaller improvement.

4. HIERARCHICAL ACTION SELECTION
Introducing the communication actions that transmit the

values of the new abstraction data leads to both a larger
state space and a larger action space for the generated DEC-
MDP. As a result, the time needed to solve the new DEC-
MDP can be significantly greater than the original DEC-
MDP, which only has the raw data transmission as its ac-
tions. Column (c) in Table 1 shows the average time the all
data action selection approach took to solve the DEC-MDP,
where the average time needed for the raw data action se-
lection approach equals 1.00. In this section, we introduce
techniques that address this problem.

First we examine the case where the agents only transfer
the abstraction data between them. We call this approach
the abstraction data action selection approach. While the
size of the DEC-MDP generated is often much smaller than
that of the original DEC-MDP, one major drawback of this
approach is that we can no longer guarantee that the re-
quired confidence level can be reached. Only when at least
one of the abstraction data is true will the desired confi-
dence level be reached. The corresponding curve in Fig-
ure 5 shows the expected communication cost achieved for
the cases where the desired confidence level can be reached.
When the required confidence level is high, there are fewer
abstraction data generated, and therefore the expected cost
is much lower than those of the two approaches we dis-
cussed in the previous section. Notice, however, that this
is a false savings as the desired confidence level cannot al-
ways be reached, which is not reflected in the figure.

We seek to combine the advantages of the all data ac-

0

1

2

3

4

5

6

7

8

60% 65% 70% 75% 80% 85% 90% 95% 100%

Required confidence level

M
i
n
i
m
u
m

e
x
p
e
c
t
e
d

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

Raw data action selection All data action selection

Abstraction data action selection Hierarchical action selection

Figure 5: A comparison of the minimum expected
communication cost given different action selections

required
confidence (a) (b) (c) (d)

60% 1.66% 0.55% 1.25 0.89
65% 9.22% 7.28% 1.53 0.77
70% 14.95% 8.31% 1.49 0.69
75% 11.76% 8.47% 1.52 0.63
80% 16.22% 9.53% 1.61 0.59
85% 8.27% 4.56% 1.41 0.65
90% 7.52% 3.40% 1.21 0.77
95% 6.80% 2.41% 1.10 0.82
100% 6.21% 2.40% 1.09 0.87

Table 1: Performance compared to raw data ac-
tion selection approach for single abstraction layer
in a 2-10 network. (a) Expected communication
cost improvement of all action selection. (b) Expected
communication cost improvement of hierarchical ac-
tion selection. (c) Time needed to solve the DEC-
MDP for all action selection normalized by that for
raw data action selection. (d) Time needed to solve
the DEC-MDP for hierarchical action selection normal-
ized by that for raw data action selection.

tion selection approach and the raw data action selection
approach so that we can save time on solving the DEC-
MDP as well as guarantee the required confidence level. We
achieve this by restricting legal actions for different states.
Before an agent has acquired all of the abstraction data, the
agents are not allowed to transfer any of the raw data. We
call this approach the hierarchical action selection approach.
An agent prefers to transfer abstraction data because it ab-
stracts from multiple pieces of raw data and thus is a more
efficient information carrier. Only when the acquisition of
all of the abstraction data cannot achieve the desired con-
fidence level will an agent start to acquire the raw data in
order to get the necessary information.

Like the all data action selection approach, the hierar-
chical action selection approach guarantees that the desired
confidence level can be achieved. Figure 5 illustrates the
comparison of the performance of the approaches we have
discussed. As we expected, the all data action selection
approach performs the best. In fact, it generates the op-
timal solution for any DEC-MDP whose action space in-

cludes transferring both the abstraction data and the raw
data. On average, the hierarchical action selection approach
outperforms the raw data action selection approach. How-
ever, there are cases where the hierarchical action selection
approach requires more communication than the raw data
action selection does. In those BNs, it is often the case that
there is a low likelihood of any of the abstraction data being
true. Column (b) in Table 1 shows the amount of improve-
ment in the minimum communication cost the hierarchical
action selection approach gains over the raw data action se-
lection approach. The pattern is similar to that of column
(a).

Column (d) in Table 1 shows the average time needed to
solve the DEC-MDP for the hierarchical action selection ap-
proach normalized by the average time needed for the raw
data action selection approach. It achieves substantial sav-
ings. Even though the hierarchical action selection approach
does not reduce the size of the action space compared to the
all action selection approach, it does reduce the number of
legal actions available to any given state. This also decreases
the size of the state space because H, the communication
history, has fewer possibilities. These two factors combined
together contribute to the time savings, and the larger the
network is, the more substantial the savings should be. We
plan to run more experiments on larger networks to verify
this observation.

All of the experiments we have shown so far set the depth
of the LogicTree in Algorithm 1 to be the number of re-
mote data minus 1, i.e., 4. A shallower LogicTree will
generate fewer abstraction data and result in a higher ex-
pected communication cost to reach the same confidence
level. However, generating the abstraction layer and finding
the communication strategy will take less time. Our future
experiments will explore this tradeoff between computation
time and communication cost as the depth is varied.

5. MULTIPLE LEVELS OF ABSTRACTION
The idea of varying the depth of the LogicTree leads to

an interesting way of generating a hierarchy of abstraction
data. We can modify Algorithm 1 to generate a set of ab-
straction data of different lengths. The more literals in the
abstraction data, the more abstract it is, the more efficiently
it carries information, and the less refined the information
is.

Just like in the single abstraction layer case, there are dif-
ferent ways of incorporating multiple layers of abstraction
data into the action space of the DEC-MDP. We did ex-
periments on the all data action selection approach and the
hierarchical action selection approach, and compared their
performance to that of the raw data action selection ap-
proach. In the all data action selection approach, all the
abstraction data of various length are added to the action
space to compete with the raw data. In the hierarchical
action selection approach, the agents transfer the most ab-
stract data first. If the confidence level is not achieved, then
the agents start transferring the next level of abstract data.
This process goes on until the confidence level is reached.

We tested these approaches on networks of different sizes:
4 high level events and 20 low level data (4-20 networks); 6
high level events and 30 low level data (6-30 networks); 8
high level events and 40 low level data (8-40 networks). We
generated two abstraction layers for each of the networks.
Figure 6 shows the percentage of the networks we tested on

Percent of the experiements finished within 2
hours

100%

81%

52%

100%

67%

37%

100% 100%

78%

0%

20%

40%

60%

80%

100%

120%

4-20 6-30 8-40
The size of the network

Pe
rc

en
t f

in
sh

ed

raw data action selection all data action selection
hierarchical action selection

Figure 6: The percentage of the problems tested
that each approach was able to finish solving within
2 hours.

required
confidence (a) (b) (c) (d)

60% 3.87% 2.14% 1.33 0.91
65% 10.42% 8.19% 1.49 0.79
70% 16.01% 12.34% 1.52 0.62
75% 19.84% 15.62% 1.59 0.56
80% 18.26% 13.43% 1.71 0.49
85% 12.22% 9.53% 1.59 0.58
90% 8.49% 6.72% 1.39 0.68
95% 5.71% 4.43% 1.19 0.76
100% 4.23% 3.12% 1.10 0.78

Table 2: Performance compared to the raw data ac-
tion selection approach for multiple abstraction lay-
ers in a 6-30 network. (a) Expected communication
cost improvement of all action selection. (b) Expected
communication cost improvement of hierarchical ac-
tion selection. (c) Time needed to solve the DEC-
MDP for all action selection normalized by that for
raw data action selection. (d) Time needed to solve
the DEC-MDP for hierarchical action selection normal-
ized by that for raw data action selection.

that each of the three approaches was able to finish within
two hours. It shows that hierarchical action selection ap-
proach was able to finish the policy search better than ei-
ther of the two other approaches. The larger the network,
the bigger an advantage the hierarchical approach has over
the other two. Table 2 shows the performance comparison
of the all data action selection approach and hierarchical
action selection approach over the raw data action selection
approach. The data is shown only for the 6-30 networks
for which all of the three approaches finished searching for
the optimal policy. The first abstraction layer is composed
of the abstraction data with no more than 5 literals, and
the second layer is composed of the abstraction data with
no more than 10 literals and greater than 5 literals. The
results show a similar pattern as those of the single ab-
straction layer experiments. The all data approach is not
practical for large networks or more than a few abstraction
layers, since it substantially expands both of the state space
and action space of the DEC-MDP. However, it does give a

lower expected communication cost than the raw data ac-
tion selection approach when it can solve the problem. On
the other hand, the hierarchical approach proves to be more
effective than both the raw data action selection approach
and the all data action selection approach. It is able to solve
more and larger networks, and on average it takes much less
time. Furthermore, for the networks that both approaches
were able to finish the policy search, the solution generated
by the hierarchical action selection approach has a lower ex-
pected communication cost on average than that generated
by the raw data action selection approach.

6. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the techniques of trans-

ferring abstraction data in addition to raw data in Dis-
tributed Bayesian Networks to reduce the required commu-
nication cost. We introduced an algorithm that automati-
cally generates appropriate abstraction data that facilitates
the achievement of the required confidence level and reduces
the necessary communication cost. We also discussed ap-
proaches to incorporate the new abstraction data into the
DEC-MDP framework effectively. Both the improvement in
the minimum expected communication cost and the time
savings in solving the DEC-MDP make the hierarchical ac-
tion selection an attractive approach, especially for the sys-
tems which require a mid-ranged confidence level. We fur-
ther extended the different action selection approaches to
larger networks and multiple abstraction layers. The hi-
erarchical action selection approach was shown to be able
to solve problems with larger networks than the other ap-
proaches.

This work allows us to look at the use of abstraction to
reduce communication cost from a formal perspective. The
hierarchical action selection approach defines when and how
the abstraction data and the raw data should be transferred
in the communication process. The addition of transfer-
ring abstraction data to the communication actions can be
extended to reduce the communication cost of other Coop-
erative Distributed Problem Solving (CDPS) applications
as well. Though the algorithm that we used to generate
the abstraction data is specific to the DBN used to repre-
sent the DI problems, given a CDPS problem with specific
semantics, there often is abstraction data that can be gener-
ated and used to transfer information more efficiently. The
hierarchical action selection approach then can be used to
incorporate this abstraction data to further minimize the
communication cost.

We plan to do more experiments with larger networks,
and we predict that the savings of the hierarchical action
selection approach shown in this paper will be more signif-
icant for larger networks. The influence of different depths
of LogicTree in Algorithm 1 on the system performance
will also be investigated. In this work, we looked at one
particular type of abstraction. There are other forms of ab-
straction that can be potentially useful. For example, some
abstraction data may contain useful information but is not
sufficient to reach the confidence by itself. Other abstraction
may be an intermediate interpretation result that can be in-
corporated into the local data. We plan to look into these
different types of abstraction in future work. We also intend
to investigate other techniques in generating multiple layers
of abstraction data, such as different levels of intermediate
interpretation results.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. IIS-0219606
and IIS-0414711. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

8. REFERENCES
[1] D. Bernstein, R. Givan, N. Immerman, and

S. Zilberstein. The complexity of decentralized control
of markov decision processes. Mathematics of
Operations Research, 27(4):819–840, November 2002.

[2] W. Buntine. A guide to the literature on learning
probabilistic networks from data. IEEE Transactions
on Knowledge and Data Engineering, 8(2):195–210,
1996.

[3] N. Carver and V. Lesser. The DRESUN testbed for
research in fa/c distributed situation assessment:
Extensions to the model of external evidence. In
Proceedings of ICMAS-95, pages 33–40, 1995.

[4] N. Carver and V. Lesser. Domain monotonicity and
the performance of local solutions strategies for
CDPS-based distributed sensor interpretation and
distributed diagnosis. International Journal of
Autonomous Agents and Multi-Agent Systems,
6:35–76., 2003.

[5] S. H. Chung and A. Barrett. Distributed real-time
model-based diagnosis. In Proceedings of the 2003
IEEE Aerospace Conference, 2003.

[6] B. J. Clement and E. H. Durfee. Theory for
coordinating concurrent hierarchical planning agents
using summary information. In Proceedings of the
Sixteenth National Conference on Artificial
Intelligence, pages 495–502, 1999.

[7] L. Erman, F. Hayes-Roth, V. Lesser, and D. Reddy.
The HEARSAY-II Speech Understanding System:
Integrating Knowledge to Resolve Uncertainty.
Computing Surveys, 12(2):213–253, June 1980.

[8] C. V. Goldman and S. Zilberstein. Optimizing
information exchange in cooperative multi-agent
systems. In Proceedings of the Second International
Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS03), 2003.

[9] D. Heckerman. A tutorial on learning with bayesian
networks. In Learning in Graphical Models. MIT
Press, Cambridge, MA, 1999.

[10] R. Nair, M. Roth, M. Yokoo, and M. Tambe.
Communication for improving policy computation in
distributed pomdps. In Proceedings of The Third
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-04), 2004.

[11] J. Shen, V. Lesser, and N. Carver. Minimizing
Communication Cost in a Distributed Bayesian
Network using a Decentralized MDP. In Proceedings
of Second International Joint Conference on
Autonomous Agents and MultiAgent Systems
(AAMAS 2003), volume AAMAS03, pages 678–685,
Melbourne, AUS, July 2003. ACM Press.

