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ABSTRACT
In complex distributed applications, a problem is often de-
composed into a set of subproblems that are distributed to
multiple agents. We formulate this class of problems with
a two layer Bayesian Network. Instead of merely providing
a statistical view, we propose a satisficing approach to pre-
dict the minimum expected communication needed to reach
a desired solution quality. The problem is modelled with a
decentralized MDP, and two approximate algorithms are de-
veloped to find the near optimal communication strategy for
a given problem structure and a required solution quality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and coordination, Multiagent systems

General Terms
Algorithms, Design

Keywords
coordination of multiple agents, action selection, decentral-
ized MDPs, decision-theoretic planning, Bayesian Networks

1. INTRODUCTION
In complex distributed applications, such as distributed

interpretation, a problem is often decomposed into a set of
subproblems and each subproblem is distributed to an agent
who will be responsible for solving it. The existence of inter-
actions between subproblems means that the agents cannot
simply solve the subproblems individually and then combine
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local solutions together. In such systems, the amount of
communication among agents required to guarantee global
optimality or global consistency may be very significant.
Thus, “satisficing” approaches have been developed that
trade off optimality for reduced communication [4]. One
approach is for agents to generate local solutions based on
their own data and then transmit these high level solutions
to other agents. Based on consistency and credibility of
these local solutions, new local solutions may be generated
or more detailed data sent until a sufficient level of consis-
tency and credibility has been achieved among the agents.
An important characterization of such distributed protocols
is how much communication is required and the likelihood
that the solution will be the same as what would be gen-
erated by an optimal centralized algorithm which uses all
available information.

Most approaches to managing communication trade off
solution quality for reduced communication, but only from
a statistical view. The behavior of the algorithms are often
analyzed over a collection of problems to say that p percent
of the time they will get the required solution quality q with
an average amount of communication c [4].

We would like to take this satisficing approach to the next
step by exploring whether we can design a parameterized al-
gorithm where we can predict, for a fixed amount of commu-
nication, the maximum expected level of confidence in the
final solution. Conversely, given a desired confidence level
in the final solution we would like to determine the expected
amount of communication the agents need. Finally, the al-
gorithm should produce a communication strategy that will
require only the minimum expected amount of communica-
tion necessary to achieve the desired solution quality.

We will study these issues in terms of Distributed Bayesian
Networks. Recent work includes algorithms such as in [10]
that produce the same final solution as is generated by a
centralized problem solving system. However, this approach
can potentially require significant communication. In con-
trast, our framework takes the amount of communication
into account, as well as the quality of the final solution.
The agents do only the necessary amount of communication
in order to achieve the required level of solution quality.

In our problem, each agent has its distinct local view,
which is related only to its local subproblem and communi-
cation history. At the same time, the agents share the same
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Figure 1: There are two events E1 and E2. Data D1, D2, ...D10 are distributed between two agents. A1 has
access to D1, ...D5 and is responsible for solving E1, while A2 can see only D6, ...D10 and is responsible for
solving E2. The objective is for A1 and A2 to figure out what E1 and E2 are with required confidence and
with minimum expected communication cost

goal of minimizing the total expected communication cost.
Therefore, our system is a decentralized and yet coopera-
tive one. Most distributed sensor systems have this feature,
and can be represented by a BN structure. Based on these
characteristics, we propose a decision-theoretic framework
to model this multi-agent coordination decision problem. A
decentralized Markov Decision Process (DEC-MDP) is con-
structed from the BN structure, whose objective is to find
a joint communication policy for the two agents that mini-
mizes the expected communication cost. Each agent needs
to decide its communication actions based only on its local
observations. This lack of complete knowledge of the global
state results in difficulty finding an optimal solution for the
DEC-MDP. In fact, recent work has shown that solving a
DEC-MDP is NEXP-hard [2].

What makes our problem more difficult than some of the
others [1] is its tightly coupled nature. An agent’s com-
munication action directly changes the other agent’s view.
The local MDPs of the two agents are largely dependent on
each other. This makes it hard to construct algorithms that
are guaranteed to find the globally optimal solution. We
have designed two algorithms to approximate the globally
optimal solution for our DEC-MDP. One is an iterative al-
gorithm that is guaranteed to converge to a local optimal
solution, but the quality of the policy it generates largely
depends on the starting policy of the iterative process. The
other approach is based on a lookup algorithm which is much
less computationally expensive and can be easily extended
to more than two agents. Though there is no guarantee
that can be made about the solution either generates, ex-
perimental work described in Section 5 indicates that in the
problems studied both approaches lead to policies that are
of very good quality. To our knowledge, this is some of
the first work providing algorithms that approximate the
optimal solution for communication problems in a complex
problem solving setting that are formulated in a decision-
theoretic model.

2. PROBLEM SETTING
In an interpretation system, there are a set of observable

data that are caused by some possible events, which agents
do not have the means to directly observe. The agents need
to collect the values of the data and pick out the set of
events that are most likely the cause of them. In many en-

vironments, the problem is inherently distributed and the
network is fairly large. In those cases, it is common to dis-
tribute not only the data but also the interpretation task
among several agents. Inevitably, there is a close interaction
between the agents, since the local sub-problems an agent
is responsible for are often dependent on some of the data
collected by other agents. The existence of subproblem in-
teractions means that the agents will need to communicate
during problem solving. Therefore, agent communication
strategies can have a major effect on the cost of problem
solving.

In our system, we use a two-layer Bayesian Network to
represent the problem structure (Figure 1). The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two agents, each of whom has di-
rect access to only a part of the observable data. The inter-
pretation task is distributed to the two agents as well. Each
agent is responsible only for its part of the overall problem
and has the knowledge of just the part of the network that
is relevant to its task. The agents can either request or send
data. The objective is to figure out the most likely interpre-
tation of the causal events with a certain level of confidence
using as little communication as possible. For example, in
Figure 1, there are two agents A1 and A2. A1 is responsible
for interpreting the event E1 and therefore knows about the
part of the causal network that is relevant to E1. Normally,
out of the necessary data D1, ...D8, it can directly observe
only D1 through D5.

Definition 1. Based on the nature of different parts of the
relevant data to an interpretation task, we divide them into
three categories. Local data are the data that can be di-
rectly observed by the agent and are relevant only to its
local task. They do not need to be transmitted to the re-
mote agent at any time since each agent has only a partial
view of the network. Local common data are the rest
of the data that are observable by the local agent. They
not only are important for the local task but also would
help remote agents in their interpretation tasks. They are
the candidates to be sent in the local agent’s decision pro-
cess. Remote data are the ones that cannot be directly
observed by the local agent, but knowing them might in-
crease the confidence of its local solution. When an agent
is considering requesting data, remote data are the natural
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goal of minimizing the total expected communication cost.
Therefore, our system is a decentralized and yet coopera-
tive one. Most distributed sensor systems have this feature,
and can be represented by a BN structure. Based on these
characteristics, we propose a decision-theoretic framework
to model this multi-agent coordination decision problem. A
decentralized Markov Decision Process (DEC-MDP) is con-
structed from the BN structure, whose objective is to find
a joint communication policy for the two agents that mini-
mizes the expected communication cost. Each agent needs
to decide its communication actions based only on its local
observations. This lack of complete knowledge of the global
state results in difficulty finding an optimal solution for the
DEC-MDP. In fact, recent work has shown that solving a
DEC-MDP is NEXP-hard [2].

What makes our problem more difficult than some of the
others [1] is its tightly coupled nature. An agent’s com-
munication action directly changes the other agent’s view.
The local MDPs of the two agents are largely dependent on
each other. This makes it hard to construct algorithms that
are guaranteed to find the globally optimal solution. We
have designed two algorithms to approximate the globally
optimal solution for our DEC-MDP. One is an iterative al-
gorithm that is guaranteed to converge to a local optimal
solution, but the quality of the policy it generates largely
depends on the starting policy of the iterative process. The
other approach is based on a lookup algorithm which is much
less computationally expensive and can be easily extended
to more than two agents. Though there is no guarantee
that can be made about the solution either generates, ex-
perimental work described in Section 5 indicates that in the
problems studied both approaches lead to policies that are
of very good quality. To our knowledge, this is some of
the first work providing algorithms that approximate the
optimal solution for communication problems in a complex
problem solving setting that are formulated in a decision-
theoretic model.

2. PROBLEM SETTING
In an interpretation system, there are a set of observable

data that are caused by some possible events, which agents
do not have the means to directly observe. The agents need
to collect the values of the data and pick out the set of
events that are most likely the cause of them. In many en-
vironments, the problem is inherently distributed and the

network is fairly large. In those cases, it is common to dis-
tribute not only the data but also the interpretation task
among several agents. Inevitably, there is a close interaction
between the agents, since the local sub-problems an agent
is responsible for are often dependent on some of the data
collected by other agents. The existence of subproblem in-
teractions means that the agents will need to communicate
during problem solving. Therefore, agent communication
strategies can have a major effect on the cost of problem
solving.

In our system, we use a two-layer Bayesian Network to
represent the problem structure (Figure 1). The top level
nodes are the events that are the possible causes of the ob-
served data, while the leaves are the raw data gathered by
various agents. There are two agents, each of whom has di-
rect access to only a part of the observable data. The inter-
pretation task is distributed to the two agents as well. Each
agent is responsible only for its part of the overall problem
and has the knowledge of just the part of the network that
is relevant to its task. The agents can either request or send
data. The objective is to figure out the most likely interpre-
tation of the causal events with a certain level of confidence
using as little communication as possible. For example, in
Figure 1, there are two agents A1 and A2. A1 is responsible
for interpreting the event E1 and therefore knows about the
part of the causal network that is relevant to E1. Normally,
out of the necessary data D1, ...D8, it can directly observe
only D1 through D5.

Definition 1. Based on the nature of different parts of the
relevant data to an interpretation task, we divide them into
three categories. Local data are the data that can be di-
rectly observed by the agent and are relevant only to its
local task. They do not need to be transmitted to the re-
mote agent at any time since each agent has only a partial
view of the network. Local common data are the rest
of the data that are observable by the local agent. They
not only are important for the local task but also would
help remote agents in their interpretation tasks. They are
the candidates to be sent in the local agent’s decision pro-
cess. Remote data are the ones that cannot be directly
observed by the local agent, but knowing them might in-
crease the confidence of its local solution. When an agent
is considering requesting data, remote data are the natural
candidates. Figure 1 gives an example for all three types of
data.



Definition 2. The evidence εAi of an agent Ai are the
values of the data that the agent has collected so far. They
can be the values that are observed directly by that agent or
acquired from the remote agent. The complete evidence
ε∗Ai

of Ai are the values of all the relevant data of the agent.
ε∗ are the values of all the low level data in the system. At
any time, ε∗ = ∪iε

∗
Ai

. In Figure 1, A1 observes only the
data values of D1, . . . , D5, and εA1 can be one of the 32 pos-
sible configurations. As communication goes on, an agent
will gather more evidence from the remote agents, and the
set εA1 will grow. The relevant data of A1’s interpretation
task is D1, . . . , D8. Therefore, ε∗A1 is one of the 64 possible
configurations. εAi is always a subset of ε∗Ai

.

Definition 3. Likelihood LAi . Based on the evidence
observed, an agent can calculate the conditional probabili-
ties of every possible interpretation of its local events based
on the current evidence, i.e., LAi(EAi) = P (EAi |εAi). For
example, in Figure 1 the local event of A1 is E1. Therefore,
LA1(E1) = P (E1|εA1). Specifically, before any communica-
tion occurs, LA1(E1) = P (E1|D1, . . . , D5).

Definition 4. MAPI (Maximum A Posteriori Inter-
pretation). Based on the current evidence set available to
an agent, there is a most likely interpretation of the events.
MAPI(εAi) = argmaxhP (EAi = h|εAi).

An agent Ai in the system is only able to find the most
likely interpretation of the local events given its current ev-
idence set MAPI(εAi). Ideally the decentralized system
should generate the interpretation that a centralized system
will generate given the complete data values MAPI(ε∗Ai

).
Unfortunately, with only partial knowledge of the relevant
data values, an agent cannot always guarantee that the cur-
rent local MAPI is the global MAPI. On the other hand,
with the conditional probability table given by the BN, an
agent can predict the probability of different relevant data
configurations given its current evidence P (ε∗Ai

|εAi). Hence
we have the following definition.

Definition 5. Confidence is the likelihood of the local
MAPI being the global MAPI of EA given the current known
evidence of A.

C(MAPI(εA)) = P (MAPI(εA) = MAPI(ε∗A))

=
∑

e∈{ε∗
A
|MAPI(εA)=MAPI(ε∗

A
)}

P (e|εA)

Confidence is not a novel idea, but the way we define
it is different from previous work. [4] defined it simply
as the probability of an event being the local MAPI, i.e.,
P (EA = MAPI(εA)|εA). As we have stated, what we really
care about is not the likelihood of an event being the local
MAPI, but whether the local MAPI agrees with the global
MAPI, i.e., whether the decentralized system will generate
the same result that a centralized system would. That is
exactly what our definition of confidence achieves. Using
confidence as a measurement of the solution quality of a de-
centralized system as compared to that of a centralized one,
we can make a tradeoff between the quality of the solution
and the communication cost. Another interesting and useful
property of our definition of confidence is that it is guaran-
teed to reach 100% when the values of all the relevant data

are known. As a result, a given confidence level can always
be satisfied.

Given a problem structure in a two level BN such as the
one in Figure 1 and a specified confidence threshold, we
need to find a communication strategy. Such a communi-
cation strategy should specify what communication action
each agent should take based on their current knowledge at
each stage. In this paper we are considering only the case
of synchronous communication. In other words, the two
agents take turns to decide their actions in the sequence of
A1, A2, A1, A2, ... until the confidence threshold is reached.

Definition 6. A communication strategy π<A1,A2> of
the system is a pair of policies < πA1 , πA2 >. πAi is a map-
ping from a local evidence and communication history pair
< εAi , H > to local action ai, where H is the communication
history of the system.

There are three classes of actions for each agent: SEND,
REQUEST and NULL. The content of the SEND and RE-
QUEST actions at each stage are restricted by the commu-
nication history so far. An agent can send only the part
of the local common data that the other agent has not
acquired yet, and can request only a part of the remote
data that it has no knowledge of. When the communica-
tion history indicates that it is not Ai’s turn to act, the
policy of that agent will always be NULL. A REQUEST ac-
tion and its response by the other agent occur in the same
stage. For example, in Figure 1, let us assume that initially
εA1 = {D1 = 1, D2 = 0, D3 = 0, D4 = 1, D5 = 1} and
H = ∅. A valid action of A1 at this step can be “SEND
D3 and D4”. It can also be “REQUEST D8 and D9”. On
the other hand, since it is not A2’s turn, the only valid ac-
tion for A2 is NULL. The cost model for this framework is
very general. Each communication has its own cost, based
on its action class and the particular data sent. The only
restriction is that the cost of a REQUEST must also include
the cost of the immediate reply by the other agent. For ex-
ample, in our experiments, we use a simplistic cost model.
In this model, SEND costs 1 per data sent. A REQUEST
action costs 1 regardless of the data requested plus a reply
cost equal to a SEND action of the same data. “REQUEST
D8 and D9” would then cost 3.

Now let us summarize our problem. Given a problem
structure in a two level BN and a specified confidence thresh-
old t, a communication strategy π<A1,A2> needs to be found.
The agents will follow this strategy until their confidence in
the interpretation of the local events is higher than t, i.e.,
C(MAPI(εA1)) ≥ t and C(MAPI(εA2)) ≥ t. The expected
cost of a most desirable communication strategy should be
minimized.

3. DECENTRALIZED MDP MODEL
As we have mentioned before, the system we described

in the last section is both decentralized and cooperative at
the same time. The communication actions of each agent
are entirely dependent on its current local evidence and the
communication history. Based on these characteristics, we
are modelling this problem as a decentralized MDP1.

Unlike centralized MDPs, in a decentralized MDP the pro-
cess is controlled by multiple agents, each with possibly dif-

1For a more centralized approach to our problem, please
refer to our previous work [9].



ferent information about the global state. At each time step
the agents’ observations together will uniquely determine
the global state, though possibly none of them have the com-
plete information of the global state. A local policy for an
agent is a mapping from its local histories of observations to
an action. The task of a decentralized MDP is normally to
find an optimal joint policy of all the agents that maximizes
the expected total return.

First let us give a formal definition of decentralized MDP,
adapted from [2].

Definition 7. A decentralized MDP is a tuple
< S, Ac1, Ac2, P, R, Ω1, Ω2, O >, where

• S is a finite set of global states, with distinguished
initial state s0.

• Ac1 and Ac2 are action sets of the two agents.

• P is a transition probability table. P (s′|s, a1, a2) is
the probability of transitioning from s to s′ on taking
actions a1 and a2, where s, s′ ∈ S, a1 ∈ Ac1, and
a2 ∈ Ac2.

• R is a reward function. R(s, a1, a2, s
′) is the reward

obtained from taking actions a1 and a2 from state s
and reaching state s′, where s, s′ ∈ S, a1 ∈ Ac1 and
a2 ∈ Ac2.

• Ω1 and Ω2 are observations of the two agents.

• O is an observation probability table.
O(s, a1, a2, s

′, o1, o2) = P (o1, o2|s, a1, a2, s
′) is the

probability of A1 observing o1 and A2 observing o2

when taking actions a1 and a2 respectively in state
s and reaching state s′. Here s, s′ ∈ S, a1 ∈ Ac1,
a2 ∈ Ac2, o1 ∈ Ω1 and o2 ∈ Ω2.

Definition 8. A local policy πi for agent Ai is a mapping
from local histories of observations oi to actions in Aci. A
joint policy π =< π1, π2 > is a pair of local policies, one
for each agent.

Definition 9. The value Vπ(s) of a state s following policy
π =< π1, π2 > is:

Vπ(s) =
∑

<o1,o2>

∑
q∈S

∑
s′∈S

Pπ(o1, o2, q|s) ·

P (s′|q, π1(o1), π2(o2)) ·
R(q, π1(o1), π2(o2), s

′), (1)

where Pπ(o1, o2, q|s) is the probability of observing o1, o2

and reaching state q from state s following policy π. The
value of the initial state Vπ(s0) is the expected total reward
following the policy π from state s0. To solve a decentralized
MDP is to find a joint policy < π1, π2 > that maximizes
Vπ(s0).

Definition 10. An underlying centralized MDP of a
decentralized MDP is a tuple < S, Ac1, Ac2, P, R >, where
S, Aci, P and R are the same as its corresponding part in the
DEC-MDP. A centralized policy πc =< πc

1, π
c
2 > for this

MDP is a mapping from the global state s ∈ S to a pair of
local actions < a1, a2 >∈ Ac1 ×Ac2. The value of the state
is denoted as V c(s). Solving an underlying centralized MDP
is to find a centralized policy that maximizes the value of the
start state. We denote the value of a state for the optimal
policy as V c∗(s).

Unlike centralized MDPs, in a decentralized MDP the pro-
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Figure 2: A portion of a typical decentralized MDP.

is to find a centralized policy that maximizes the value of the
start state. We denote the value of a state for the optimal
policy as V c∗(s).

The key difference between a decentralized MDP and its
underlying centralized MDP are their policies. The joint
policy of a DEC-MDP is a pair of local policies each of which
is dependent on the local observation sequence of the cor-
responding agent, while the centralized policy for the cen-
tralized MDP is itself dependent only on the global state,
and is not directly related to the local policies. When the
two agents have access to the global state at all times, a
DEC-MDP is reduced to its underlying centralized MDP.
Therefore an underlying centralized MDP is equivalent to a
Multi-agent Markov decision-process (MMDP) [3].

Now let us model our problem in the framework of a de-
centralized MDP as follows.

• Every global state s ∈ S is a tuple < ε∗, H, i >, where
ε∗ is all of the low level data values observed by the sys-
tem, H is the communication history, and i indicates
that it is Ai’s turn to communicate. s0 is a dummy
start state < ∅, ∅, 0 >, which transitions to all the
possible real start states < ε∗, ∅, 1 > before any com-
munication takes place. If at state s, both agents have
reached confidence level t for its local interpretation
task, i.e., when C(MAPI(εAi)) ≥ t, i = 1, 2, then s is
a final state.

• Ac1 and Ac2 are action sets of the two agents. Aci ∈ {
NULL, SEND x, REQUEST y}, where x is a subset of
the local common data of Ai and y is a subset of the
remote data. When it is not Ai’s turn to communicate,
its action is the NULL action.

• P is a transition probability table. P (s′|s, a1, a2) =
P (< ε∗′, H ′, i > | < ε∗, H, j >, a1, a2) = 1 if and only
if ε∗ = ε∗′, H ′ = H ∪ {a1, a2} and i 6= j. Otherwise,
P (s′|s, a1, a2) = 0. As a special case, the transition
probability from s0 to s =< ε∗, ∅, 1 > after both agents
execute NULL is P (s|s0, NULL, NULL) = P (ε∗). It
can be calculated given the BN structure.

• R is a reward function. R(s, a1, a2, s
′) = R(a1, a2) =

−c(a1)− c(a2), where c(ai) is the cost of the commu-
nication action ai, i = 1, 2.

• Ω1 and Ω2 are the sets of observations for the two
agents. An observation oi ∈ Ωi is the data value just
sent or received by Ai. As a special case, after s0,
each agent observes the values of its local data. An
observation sequence oi =< εAi , H >. εAi can be
mapped from the global state s using ε∗ and H.

• O(s, a1, a2, s
′, o1, o2) = 1 if and only if o1 and o2 are

the new observations seen after the agents take actions
a1 and a2 in state s. Otherwise it equals to 0.

Figure 2: A portion of a typical decentralized MDP.

The key difference between a decentralized MDP and its
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is dependent on the local observation sequence of the cor-
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Now let us model our problem in the framework of a de-
centralized MDP as follows.

• Every global state s ∈ S is a tuple < ε∗, H, i >, where
ε∗ is all of the low level data values observed by the sys-
tem, H is the communication history, and i indicates
that it is Ai’s turn to communicate. s0 is a dummy
start state < ∅, ∅, 0 >, which transitions to all the
possible real start states < ε∗, ∅, 1 > before any com-
munication takes place. If at state s, both agents have
reached confidence level t for its local interpretation
task, i.e., when C(MAPI(εAi)) ≥ t, i = 1, 2, then s is
a final state.

• Ac1 and Ac2 are action sets of the two agents. Aci ∈ {
NULL, SEND x, REQUEST y}, where x is a subset of
the local common data of Ai and y is a subset of the
remote data. When it is not Ai’s turn to communicate,
its action is the NULL action.

• P is a transition probability table. P (s′|s, a1, a2) =
P (< ε∗′, H ′, i > | < ε∗, H, j >, a1, a2) = 1 if and only
if ε∗ = ε∗′, H ′ = H ∪ {a1, a2} and i 6= j. Otherwise,
P (s′|s, a1, a2) = 0. As a special case, the transition
probability from s0 to s =< ε∗, ∅, 1 > after both agents
execute NULL is P (s|s0, NULL, NULL) = P (ε∗). It
can be calculated given the BN structure.

• R is a reward function. R(s, a1, a2, s
′) = R(a1, a2) =

−c(a1) − c(a2), where c(ai) is the cost of the commu-
nication action ai, i = 1, 2.

• Ω1 and Ω2 are the sets of observations for the two
agents. An observation oi ∈ Ωi is the data value just
sent or received by Ai. As a special case, after s0,
each agent observes the values of its local data. An
observation sequence oi =< εAi , H >. εAi can be
mapped from the global state s using ε∗ and H.

• O(s, a1, a2, s
′, o1, o2) = 1 if and only if o1 and o2 are

the new observations seen after the agents take actions
a1 and a2 in state s. Otherwise it equals to 0.

For example, take the BN structure in Figure 1. A pos-
sible global state s might be ε∗ =< {D1 = 1, D2 = 0, D3 =
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Figure 3: A snapshot of the local belief MDP of A1

with the internal states.

For example, take the BN structure in Figure 1. A pos-
sible global state s might be ε∗ =< {D1 = 1, D2 = 0, D3 =
0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 = 1, D9 = 0, D10 =
0}, ∅, 1 >. The possible actions for A1 are NULL, SEND x,
and REQUEST y, where x ⊆ {D3 = 0, D4 = 1, D5 = 1} and
y ⊆ {D6, D7, D8}. Since it is not A2’s turn to communicate,
its only action is NULL. If A1 chooses REQUEST {D7, D8},
then the next state is < ε∗, {D7 = 1, D8 = 1}, 2 > and both
agents observe {D7 = 1, D8 = 1}.

Figure 2 is a portion of a typical DEC-MDP built for our
problem. It is interesting to note that the structure of the
DEC-MDP is stochastic only in the first transition, from s0.
The remaining transitions are all deterministic. In future
work, we would like to exploit this structure to develop bet-
ter approximation algorithms or possibly a tractable optimal
algorithm.

4. SOLVING THE DEC-MDP

4.1 Local MDP
In a general DEC-MDP, there is one transition function,

reward function and observation function, and they are de-
fined over two global states and a joint action. This is
why a DEC-MDP cannot simply be treated as two separate
POMDPs, one for each agent. It also cannot be treated as
a single centralized POMDP. In the case of the DEC-MDP,
an agent must choose its action based only on the sequence
of observations it has seen. In the POMDP case, it chooses
its actions based on the sequence of pairs of observations
seen by both agents. It has a centralized view inside the
model instead of a distributed view. However, if the policy
of one of the agents is fixed, then the DEC-MDP reduces to
a POMDP, and the POMDP can be reduced to a belief MDP
(the belief state of the POMDP is the state of the MDP).
Since this MDP corresponds to the local decision problem
for one of the agents, we refer to it as the local MDP. By
solving the local MDP, we can find the optimal local policy
for one agent given the fixed local policy for the other.

The interesting element of such a local MDP is its transi-
tion probability table. To make it more understandable we
generate a group of internal states for each local state. Each
internal state represents the possible observation sequences
of the remote agent after the agent executes a certain ac-
tion at the current local state. Since the remote policy
is fixed for each local MDP, for each pair of current local
state and internal state there is one and only one next lo-
cal state. For example, Figure 3 shows a snapshot of A1’s
local MDP. Here, before A1 chooses its next action, its ob-
servation is o1 and A2 may have observation sequence of
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Figure 4: A snapshot of the local MDP of A1 without
the internal states
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tively. Similarly, we get the next states from o1 by execut-
ing REQUEST y actions. Figure 4 shows the corresponding
snapshot of the actual local MDP of A1 without the internal
states.

Since our system is a cooperative one, the goal of the
agents is to maximize the global utility instead of the local
one. This means that in a local MDP, when calculating the
reward received from an action, we not only need to include
the reward from the local action alone but also that gained
by the remote action. For example, in Figures 3 and 4, the
reward for executing action a1 at state o1 and reaching state

o1o
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1 is R(o1, a1, o1o
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1 ) = R(a1) + R(π2(o
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We can summarize the local MDP of an agent Ai when
fixing the other agent’s policy πj as follows:

• S is a finite local state set. Each state is the obser-
vation sequence of the local agent oi =< εAi , H >.
To resolve the uncertainty of the initial observation, a
dummy start state o0

i is added. When the confidence
level is reached at a state, it is a final state.

• Ac is the action set. For Ai, it is Aci in the DEC-MDP.

• P is the transition probability table, the calculation of
which has been illustrated.

• R(s, a, s′) is the reward function. It is a sum of the
reward gained directly by Ai executing action a and
that gained by the remote agent’s action as a result of
a.

• V<πi,πj>(oi) is the value of the state oi for a local
policy πi of the local MDP. To solve the local MDP is
to find the policy πi that maximizes the state value of
the start state o0

i .

The CPT of the BN is used to calculate the transitional
probability tables and decide whether a local state is a final
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0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 = 1, D9 = 0, D10 =
0}, ∅, 1 >. The possible actions for A1 are NULL, SEND x,
and REQUEST y, where x ⊆ {D3 = 0, D4 = 1, D5 = 1} and
y ⊆ {D6, D7, D8}. Since it is not A2’s turn to communicate,
its only action is NULL. If A1 chooses REQUEST {D7, D8},
then the next state is < ε∗, {D7 = 1, D8 = 1}, 2 > and both
agents observe {D7 = 1, D8 = 1}.

Figure 2 is a portion of a typical DEC-MDP built for our
problem. It is interesting to note that the structure of the
DEC-MDP is stochastic only in the first transition, from s0.
The remaining transitions are all deterministic. In future
work, we would like to exploit this structure to develop bet-
ter approximation algorithms or possibly a tractable optimal
algorithm.
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POMDPs, one for each agent. It also cannot be treated as
a single centralized POMDP. In the case of the DEC-MDP,
an agent must choose its action based only on the sequence
of observations it has seen. In the POMDP case, it chooses
its actions based on the sequence of pairs of observations
seen by both agents. It has a centralized view inside the
model instead of a distributed view. However, if the policy
of one of the agents is fixed, then the DEC-MDP reduces to
a POMDP, and the POMDP can be reduced to a belief MDP
(the belief state of the POMDP is the state of the MDP).
Since this MDP corresponds to the local decision problem
for one of the agents, we refer to it as the local MDP. By
solving the local MDP, we can find the optimal local policy
for one agent given the fixed local policy for the other.

The interesting element of such a local MDP is its transi-
tion probability table. To make it more understandable we
generate a group of internal states for each local state. Each
internal state represents the possible observation sequences
of the remote agent after the agent executes a certain ac-
tion at the current local state. Since the remote policy
is fixed for each local MDP, for each pair of current local
state and internal state there is one and only one next lo-
cal state. For example, Figure 3 shows a snapshot of A1’s
local MDP. Here, before A1 chooses its next action, its ob-
servation is o1 and A2 may have observation sequence of

o
(1)
2 , . . . , o

(n)
2 which are dependent on A1’s current local ev-

idence εA1 and the past communication history of the sys-

A

1o
M

(1)
2 2o o

( )
2 2

n
o o

(1)
2 2 'o o

( )
2 2 '
n

o o

(1)
1 1o o

( )
1 1

no o

(1)
1 1 'o o

( )
1 1 'no o

SEND x1a

2a

1( )R a

2( )R a

REQUEST y

(1)
2 1( | )P o o

(1)
2 1( | )P o o

( )
2 1( | )
n

P o o

( )
2 1( | )
n

P o o

(1)
22 2( )o oπ
(1)
22 2( ( ))R o oπ

( )
22 2( )
n

o oπ
( )
22 2( ( ))
n

R o oπ
(1)
22 2( ')o oπ

(1)
22 2( ( '))R o oπ

( )
22 2( ')
n

o oπ
( )
22 2( ( '))
n

R o oπ

M

M

Figure 3: A snapshot of the local belief MDP of A1

with the internal states.

For example, take the BN structure in Figure 1. A pos-
sible global state s might be ε∗ =< {D1 = 1, D2 = 0, D3 =
0, D4 = 1, D5 = 1, D6 = 0, D7 = 1, D8 = 1, D9 = 0, D10 =
0}, ∅, 1 >. The possible actions for A1 are NULL, SEND x,
and REQUEST y, where x ⊆ {D3 = 0, D4 = 1, D5 = 1} and
y ⊆ {D6, D7, D8}. Since it is not A2’s turn to communicate,
its only action is NULL. If A1 chooses REQUEST {D7, D8},
then the next state is < ε∗, {D7 = 1, D8 = 1}, 2 > and both
agents observe {D7 = 1, D8 = 1}.

Figure 2 is a portion of a typical DEC-MDP built for our
problem. It is interesting to note that the structure of the
DEC-MDP is stochastic only in the first transition, from s0.
The remaining transitions are all deterministic. In future
work, we would like to exploit this structure to develop bet-
ter approximation algorithms or possibly a tractable optimal
algorithm.

4. SOLVING THE DEC-MDP

4.1 Local MDP
In a general DEC-MDP, there is one transition function,

reward function and observation function, and they are de-
fined over two global states and a joint action. This is
why a DEC-MDP cannot simply be treated as two separate
POMDPs, one for each agent. It also cannot be treated as
a single centralized POMDP. In the case of the DEC-MDP,
an agent must choose its action based only on the sequence
of observations it has seen. In the POMDP case, it chooses
its actions based on the sequence of pairs of observations
seen by both agents. It has a centralized view inside the
model instead of a distributed view. However, if the policy
of one of the agents is fixed, then the DEC-MDP reduces to
a POMDP, and the POMDP can be reduced to a belief MDP
(the belief state of the POMDP is the state of the MDP).
Since this MDP corresponds to the local decision problem
for one of the agents, we refer to it as the local MDP. By
solving the local MDP, we can find the optimal local policy
for one agent given the fixed local policy for the other.

The interesting element of such a local MDP is its transi-
tion probability table. To make it more understandable we
generate a group of internal states for each local state. Each
internal state represents the possible observation sequences
of the remote agent after the agent executes a certain ac-
tion at the current local state. Since the remote policy
is fixed for each local MDP, for each pair of current local
state and internal state there is one and only one next lo-
cal state. For example, Figure 3 shows a snapshot of A1’s
local MDP. Here, before A1 chooses its next action, its ob-
servation is o1 and A2 may have observation sequence of
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Figure 4: A snapshot of the local MDP of A1 without
the internal states
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tively. Similarly, we get the next states from o1 by execut-
ing REQUEST y actions. Figure 4 shows the corresponding
snapshot of the actual local MDP of A1 without the internal
states.

Since our system is a cooperative one, the goal of the
agents is to maximize the global utility instead of the local
one. This means that in a local MDP, when calculating the
reward received from an action, we not only need to include
the reward from the local action alone but also that gained
by the remote action. For example, in Figures 3 and 4, the
reward for executing action a1 at state o1 and reaching state
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We can summarize the local MDP of an agent Ai when
fixing the other agent’s policy πj as follows:

• S is a finite local state set. Each state is the obser-
vation sequence of the local agent oi =< εAi , H >.
To resolve the uncertainty of the initial observation, a
dummy start state o0

i is added. When the confidence
level is reached at a state, it is a final state.

• Ac is the action set. For Ai, it is Aci in the DEC-MDP.

• P is the transition probability table, the calculation of
which has been illustrated.

• R(s, a, s′) is the reward function. It is a sum of the
reward gained directly by Ai executing action a and
that gained by the remote agent’s action as a result of
a.

• V<πi,πj>(oi) is the value of the state oi for a local
policy πi of the local MDP. To solve the local MDP is
to find the policy πi that maximizes the state value of
the start state o0

i .

The CPT of the BN is used to calculate the transitional
probability tables and decide whether a local state is a final
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tively. Similarly, we get the next states from o1 by execut-
ing REQUEST y actions. Figure 4 shows the corresponding
snapshot of the actual local MDP of A1 without the internal
states.

Since our system is a cooperative one, the goal of the
agents is to maximize the global utility instead of the local
one. This means that in a local MDP, when calculating the
reward received from an action, we not only need to include
the reward from the local action alone but also that gained
by the remote action. For example, in Figures 3 and 4, the
reward for executing action a1 at state o1 and reaching state
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We can summarize the local MDP of an agent Ai when
fixing the other agent’s policy πj as follows:

• S is a finite local state set. Each state is the obser-
vation sequence of the local agent oi =< εAi , H >.
To resolve the uncertainty of the initial observation, a
dummy start state o0

i is added. When the confidence
level is reached at a state, it is a final state.

• Ac is the action set. For Ai, it is Aci in the DEC-MDP.

• P is the transition probability table, the calculation of
which has been illustrated.

• R(s, a, s′) is the reward function. It is a sum of the
reward gained directly by Ai executing action a and
that gained by the remote agent’s action as a result of
a.

• V<πi,πj>(oi) is the value of the state oi for a local
policy πi of the local MDP. To solve the local MDP is
to find the policy πi that maximizes the state value of
the start state o0

i .

The CPT of the BN is used to calculate the transitional
probability tables and decide whether a local state is a final
state of the local MDP. By constructing such an MDP, we
are utilizing the information provided by the BN to model



the local agent’s belief in the current global state based on
its local state. Its belief in the observation sequence of the
remote agent directly influences the transitional probabil-
ity of the states. Therefore, by finding an optimal policy
for the local MDP, the agent is implicitly using the knowl-
edge obtained from both the current evidence set and the
communication history of the system.

In our DEC-MDP, the two agents interact through ac-
tions, which directly affect each other’s local observations.
The local MDPs of the two agents are tightly coupled. The
rewards, transitional probability table of the MDPs are both
dependent on each other. This means that it is very hard to
solve our DEC-MDP without exhaustive search. In the next
two subsections we will present two approximate algorithms
which utilize the property of the local MDPs as expressed
by Theorem 1.

Theorem 1. Maximizing the utility of the local MDP of
Ai maximizes the utility of the decentralized MDP if the
other agent’s policy πj is fixed.

Proof. First let us simplify the utility function (1) due
to the alternating action behavior of our decentralized MDP.

V<π1,π2>(s0)

=
∑

<o1,o2>

∑
q∈S

∑
S′∈S

P<π1,π2>(o1, o2, q|s) ·

P (s′|q, π1(o1), π2(o2))R(q, π1(o1), π2(o2), s
′)

=
∑

<o1,o2>

∑
q∈S1

∑
S′∈S2

Pπ1,π2>(o1, o2, q) ·

P (s′|q, π1(o1))R(π1(o1))

+
∑

<o1,o2>

∑
q∈S2

∑
S′∈S1

Pπ1,π2>(o1, o2, q) ·

P (s′|q, π2(o2))R(π2(o2))

=
∑
o1

R(π1(o1))P<π1,π2>(o1)

+
∑
o2

R(π2(o2))P<π1,π2>(o2)

Next, let us see what the global utility that the local MDP
is trying to maximize is. Here we are taking advantage of
the independence relationships due to our MDP setup.

V<π1,π2>(o0
1)

=
∑
o1

∑
o1

P<π1,π2>(o1|o0
1)P (o1|o1, π1(o1)) ·

R(o1, π1(o1), o1o1)

=
∑
o1

∑
o2

∑
o2

P<π1,π2>(o1)P (o2|o1) ·

P (o2|o1, π1(o1))R(π(o1))

+
∑
o1

∑
o2

∑
o2

P<π1,π2>(o1)P (o2|o1) ·

P (o2|o1, π1(o1))R(π2(o2o2))

=
∑
o1

R(π1(o1))P<π1,π2>(o1)

+
∑
o2

R(π2(o2))P<π1,π2>(o2)

Hence, we get

V<π1,π2>(o0
1) = V<π1,π2>(s0) (2)

The same equation holds for o0
2.

4.2 Iterative Algorithm

Algorithm 1. Iterative Algorithm

1. Start from A1, choose a random policy π2 for A2 (the
simplest being that A2 will not do any action at any
state), generate the local MDP for A1. Solve the MDP
and get the local policy π1 for A1.

2. Repeat

(a) Fix π1 for A1, generate the local MDP for A2.
Generate the local optimal policy π′

2 for A2. If
V<π1,π2>(o0

2) == V<π1,π′
2>(o0

2), go to step 3; else,

update π2 to π′
2.

(b) Fix π2 for A2, generate the local MDP for A1.
Generate the local optimal policy π′

1 for A1. If
V<π1,π2>(o0

1) == V<π′
1,π2(o

0
1), go to step 3; else,

update π1 to π′
1.

3. Return < π1, π2 >.

Theorem 2. The Iterative Algorithm converges.

Proof. Let us first prove that the global utility of the
local MDP’s is monotonically increasing at each iteration,
i.e., V<π1,π′

2>(o0
2) ≥ V<π1,π2>(o0

1) and

V<π′
1,π2>(o0

1) ≥ V<π1,π2>(o0
2).

Since π′
2 is the optimal policy of A2 when fixing A1’s policy

as π1, we have V<π1,π′
2>(o0

2) ≥ V<π1,π2>(o0
2). According to

Theorem 1, V<π1,π2>(o0
2) = V<π1,π2>(s0) = V<π1,π2>(o0

1).
Therefore, we have V<π1,π′

2>(o0
2) ≥ V<π1,π2>(o0

1). Similarly

we can prove V<π′
1,π2>(o0

1) ≥ V<π1,π2>(o0
2).

On the other hand, since there is a finite joint policy space,
there exists a globally optimal solution. The iteration is
bound to stop when the utility hits the upper bound, i.e.,
that of the optimal solution if it does not stop before that.
Therefore, the algorithm converges.

A natural corollary of this theorem is that the global opti-
mal solution is at one of the local convergence points gener-
ated by the Iterative Algorithm. From the proof of Theorem
2, we can see that for an iterative algorithm like ours, the
sufficient condition for it to converge to a local optimal so-
lution is that the local MDP is maximizing the same global
utility as the decentralized MDP. Therefore, for any decen-
tralized MDP, if we can construct a local MDP for the local
agents which maximizes the same global utility as that of
the DEC-MDP, an iterative algorithm will converge to a lo-
cal optimal solution. There is other work using the same
general idea, such as described in [5].

Although the Iterative Algorithm is guaranteed to con-
verge to a local optimal solution, it needs to dynamically
regenerate the local MDPs at each iteration. As a result,
it is suitable to be run off-line. The other main disadvan-
tage is that it depends on the starting policy chosen; it may
be stuck at some fairly low quality local optimal solution
without being able to reach the globally optimal one. One
solution to the later problem is to randomly restart with a
new initial policy and pick the best joint policy generated
after a few time steps. In the experimental work that we
present later, we did not use this variation since the original
algorithm already performed very well.



4.3 Lookup Algorithm

Theorem 3. For a local MDP of Ai, when the policy
of the remote agent is fixed as πj (i 6= j) its state value
V<π1,π2>(oi) for a specific local policy πi has the property:

V<π1,π2>(oi) =
∑
s∈S

P (s|oi)V<π1,π2>(s)

= R(< π1, π2 > (oi)) +
∑
s∈S

P (s|oi)V<π1,π2>(s′)

where s′ is the next global state in the DEC-MDP after ex-
ecuting the action < π1, π2 > (oi) at state s.

This theorem is an extension of Theorem 2 and the proof
is similar. It establishes the relationship between the value
of an observation sequence of a local MDP and the value
of the states in the decentralized MDP given a joint policy.
As we have said, the local MDPs of our problem are very
tightly coupled and the unknown policy of the other agent
directly decides the shape of a local MDP.

The Lookup Algorithm presented below is an attempt to
take advantage of Theorem 3 to approximate the values of
the local MDP without knowing the remote policy.

Algorithm 2. Lookup Algorithm

1. Solve the underlying centralized MDP for the given
DEC-MDP, build a lookup table of the optimal state
value of each state V c∗(s) (see Definition 10). The
state values are indexed by the value MDP the states
belong to.

2. When reaching a new observation sequence oi, choose
the action according to the following equation, where
s′ is the next state of s in the decentralized MDP after
taking action a.

πi(oi) = argmaxa(R(a) +
∑
s∈S

P (s|oi)V
c∗(s′)) (3)

This algorithm makes use of the simple structure of the de-
centralized MDP. As we discovered before, the decentralized
MDP is mostly deterministic, which makes the underlying
centralized MDP very easy to solve. The Lookup Algorithm
utilizes the optimal state values of the underlying central-
ized MDP as a guidance to approximate the globally opti-
mal solution. According to Theorem 3, (3) is trying to maxi-
mize a very optimistic approximation of V<π1,π2>∗(oi), since
V c∗(s′) is an optimistic estimate of V<π1,π2>∗(s′). Never-
theless, without knowing what the optimal solution is, it is
still a fairly good estimate. The main merit of the algo-
rithm is the simplicity of the heuristic. If along with the
state value lookup table, we also store the prior probability
of each value combination of the data set, then even P (s|oi)
can be easily calculated without resorting back to the orig-
inal BN. This algorithm can be executed online efficiently
after the lookup table is constructed. A simple algorithm
described in [7] uses the same idea to solve POMDP.

5. EXPERIMENTAL RESULTS
We implemented both approximate algorithms described

above. We have run experiments on 100 problem structures
with 2 high level events and 10 low level data (5 local to each
agent) for different confidence levels. All the networks are
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Figure 6: The minimum expected communication
cost required by two different problem structures.

state. When an agent has ambiguity over which action it
should take based on its local state, it needs to communi-
cate with the other agent to synchronize the global view.
Our work is unique in the way that the agents cannot sim-
ply observe the global state directly or even synchronize to
it occasionally. In fact, this inability to observe the global
state at any time is the key factor that leads to the difficulty
of the problem.

Modeling the problem structure as a BN is also unique.
By utilizing the information provided by the BN structure,
we are able to build a complete model of the DEC-MDP and
calculate the local agent’s belief in the global state and the
other agent’s local state. In this respect, our model of the
local MDPs resembles a POMDP. In fact, the techniques of
solving a DEC-MDP presented in this paper can be used for
general DEC-MDPs as long as they have a complete model.
That is exactly what the BN representation achieves.

[8] proposes a general framework (COM-MTDP) which
extends the DEC-MDP to incorporate communication ac-
tions as well as domain actions. This framework provides
an excellent foundation for theoretical analysis of different
coordination strategies in the teamwork context, but does
not provide a practical algorithm for approximate or opti-
mal solutions. In contrast, our framework is designed for the
distributed systems that can be represented by a BN struc-
ture and we are modelling only the communication of the
system. This enables us to find the optimal or near-optimal
solutions for a given problem.

The current BN structure we are working with is compar-
atively small and simple. To effectively model real world ap-
plications we need to scale along several dimensions: number
of agents, number of events, number of sensor data elements,
and the layers of intermediate results between the events and
the raw data. In order to incorporate these changes, we will
need to extend the framework presented in this paper. In
addition, scaling will inevitably increase the state and ac-
tion space of the DEC-MDP under the current mapping,
and therefore we plan to investigate techniques like heuris-
tic search and state abstraction, which have proven useful
in large single-agent problems [6].

Another way to handle scaling is to change the way we
map the BN problem structure to DEC-MDP. In our cur-
rent mapping, the state space and action space of the DEC-
MDP are exponential to the amount of data in the BN. It
is computationally infeasible to generate a large DEC-MDP
when the quantity of raw data grows. One approach we
are looking at is to extend the BN to multiple layers, where

the intermediate nodes represent the intermediate causes.
Instead of transmitting raw data directly, the agents will
abstract the information contained in the raw data into the
intermediate nodes and communicate them.
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Figure 5: The comparison of the expected communi-
cation cost of the joint policies generated by the two
approximate algorithms and the optimal solution.

fully connected, which means that for both agents to have
the complete evidence, 10 pieces data need to be transmit-
ted. We also implemented the exhaustive search algorithm
to generate the optimal joint policy for the problem. Figure
5 shows the comparison of the expected communication cost
of the communication strategies generated by the three algo-
rithms. On the problem sets we ran experiments on, the two
approximate algorithms performed surprisingly well, with
an expected communication cost only slightly higher than
that of the optimal solution. In fact, for about 95% of the
problems, both of the two algorithms generated the optimal
solution. We have done further experiments on larger net-
works with 4 high level events and 20 low level data and
found similar results.

It is interesting to observe how the minimum expected
communication cost changes when the required confidence
level increases. At first, increasing the confidence does not
require much increase in the communication cost, while later
the same amount of improvement in the confidence needs a
lot more communication. When the confidence reaches a
certain level, no further communication is required for im-
provement. This is understandable because the critical data
are chosen to be transferred first, which has the most im-
pact on increasing the confidence. Later, more non-critical
data needs to be communicated to gain the same amount
of improvement. Finally, the comparatively irrelavant data
will not contribute a lot to improving the solution quality.

The framework we have presented can also be used to ana-
lyze the suitability of a problem to be solved by a distributed
system. Figure 6 shows the minimum expected communica-
tion cost curve of two different problems. Problem structure
1 is much more suitable for a distributed solution than prob-
lem structure 2 since it needs comparatively little communi-
cation to achieve high confidence level. Further experiments
and theoretic work need to be done to help design suitable
systems for different problems with different communication
properties.

6. CONCLUSION
There is beginning to be research applying the decision-

theoretic framework to multi-agent systems. The Multi-
agent Markov decision process (MMDP) defined in [3] is a
centralized multi-agent extension of an MDP. In that work,
each agent observes the global state directly and takes an
joint action. [11] proposes a decentralized extension, in
which an agent has its local state in addition to the global



4.3 Lookup Algorithm

Theorem 3. For a local MDP of Ai, when the policy
of the remote agent is fixed as πj (i 6= j) its state value
V<π1,π2>(oi) for a specific local policy πi has the property:

V<π1,π2>(oi) =
�

s∈S

P (s|oi)V<π1,π2>(s)

= R(< π1, π2 > (oi)) +
�

s∈S

P (s|oi)V<π1,π2>(s′)

where s′ is the next global state in the DEC-MDP after ex-
ecuting the action < π1, π2 > (oi) at state s.

This theorem is an extension of Theorem 2 and the proof
is similar. It establishes the relationship between the value
of an observation sequence of a local MDP and the value
of the states in the decentralized MDP given a joint policy.
As we have said, the local MDPs of our problem are very
tightly coupled and the unknown policy of the other agent
directly decides the shape of a local MDP.

The Lookup Algorithm presented below is an attempt to
take advantage of Theorem 3 to approximate the values of
the local MDP without knowing the remote policy.

Algorithm 2. Lookup Algorithm

1. Solve the underlying centralized MDP for the given
DEC-MDP, build a lookup table of the optimal state
value of each state V c∗(s) (see Definition 10). The
state values are indexed by the value MDP the states
belong to.

2. When reaching a new observation sequence oi, choose
the action according to the following equation, where
s′ is the next state of s in the decentralized MDP after
taking action a.

πi(oi) = argmaxa(R(a) +
�

s∈S

P (s|oi)V
c∗(s′)) (3)

This algorithm makes use of the simple structure of the de-
centralized MDP. As we discovered before, the decentralized
MDP is mostly deterministic, which makes the underlying
centralized MDP very easy to solve. The Lookup Algorithm
utilizes the optimal state values of the underlying central-
ized MDP as a guidance to approximate the globally opti-
mal solution. According to Theorem 3, (3) is trying to maxi-
mize a very optimistic approximation of V<π1,π2>∗(oi), since
V c∗(s′) is an optimistic estimate of V<π1,π2>∗(s′). Never-
theless, without knowing what the optimal solution is, it is
still a fairly good estimate. The main merit of the algo-
rithm is the simplicity of the heuristic. If along with the
state value lookup table, we also store the prior probability
of each value combination of the data set, then even P (s|oi)
can be easily calculated without resorting back to the orig-
inal BN. This algorithm can be executed online efficiently
after the lookup table is constructed. A simple algorithm
described in [7] uses the same idea to solve POMDP.

5. EXPERIMENTAL RESULTS
We implemented both approximate algorithms described

above. We have run experiments on 100 problem structures
with 2 high level events and 10 low level data (5 local to each
agent) for different confidence levels. All the networks are
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Figure 5: The comparison of the expected communi-
cation cost of the joint policies generated by the two
approximate algorithms and the optimal solution.

fully connected, which means that for both agents to have
the complete evidence, 10 pieces data need to be transmit-
ted. We also implemented the exhaustive search algorithm
to generate the optimal joint policy for the problem. Figure
5 shows the comparison of the expected communication cost
of the communication strategies generated by the three algo-
rithms. On the problem sets we ran experiments on, the two
approximate algorithms performed surprisingly well, with
an expected communication cost only slightly higher than
that of the optimal solution. In fact, for about 95% of the
problems, both of the two algorithms generated the optimal
solution. We have done further experiments on larger net-
works with 4 high level events and 20 low level data and
found similar results.

It is interesting to observe how the minimum expected
communication cost changes when the required confidence
level increases. At first, increasing the confidence does not
require much increase in the communication cost, while later
the same amount of improvement in the confidence needs a
lot more communication. When the confidence reaches a
certain level, no further communication is required for im-
provement. This is understandable because the critical data
are chosen to be transferred first, which has the most im-
pact on increasing the confidence. Later, more non-critical
data needs to be communicated to gain the same amount
of improvement. Finally, the comparatively irrelavant data
will not contribute a lot to improving the solution quality.

The framework we have presented can also be used to ana-
lyze the suitability of a problem to be solved by a distributed
system. Figure 6 shows the minimum expected communica-
tion cost curve of two different problems. Problem structure
1 is much more suitable for a distributed solution than prob-
lem structure 2 since it needs comparatively little communi-
cation to achieve high confidence level. Further experiments
and theoretic work need to be done to help design suitable
systems for different problems with different communication
properties.

6. CONCLUSION
There is beginning to be research applying the decision-

theoretic framework to multi-agent systems. The Multi-
agent Markov decision process (MMDP) defined in [3] is a
centralized multi-agent extension of an MDP. In that work,
each agent observes the global state directly and takes an
joint action. [11] proposes a decentralized extension, in
which an agent has its local state in addition to the global

Figure 6: The minimum expected communication
cost required by two different problem structures.

state. When an agent has ambiguity over which action it
should take based on its local state, it needs to communi-
cate with the other agent to synchronize the global view.
Our work is unique in the way that the agents cannot sim-
ply observe the global state directly or even synchronize to
it occasionally. In fact, this inability to observe the global
state at any time is the key factor that leads to the difficulty
of the problem.

Modeling the problem structure as a BN is also unique.
By utilizing the information provided by the BN structure,
we are able to build a complete model of the DEC-MDP and
calculate the local agent’s belief in the global state and the
other agent’s local state. In this respect, our model of the
local MDPs resembles a POMDP. In fact, the techniques of
solving a DEC-MDP presented in this paper can be used for
general DEC-MDPs as long as they have a complete model.
That is exactly what the BN representation achieves.

[8] proposes a general framework (COM-MTDP) which
extends the DEC-MDP to incorporate communication ac-
tions as well as domain actions. This framework provides
an excellent foundation for theoretical analysis of different
coordination strategies in the teamwork context, but does
not provide a practical algorithm for approximate or opti-
mal solutions. In contrast, our framework is designed for the
distributed systems that can be represented by a BN struc-
ture and we are modelling only the communication of the
system. This enables us to find the optimal or near-optimal
solutions for a given problem.

The current BN structure we are working with is compar-
atively small and simple. To effectively model real world ap-
plications we need to scale along several dimensions: number
of agents, number of events, number of sensor data elements,
and the layers of intermediate results between the events and
the raw data. In order to incorporate these changes, we will
need to extend the framework presented in this paper. In
addition, scaling will inevitably increase the state and ac-
tion space of the DEC-MDP under the current mapping,
and therefore we plan to investigate techniques like heuris-
tic search and state abstraction, which have proven useful
in large single-agent problems [6].

Another way to handle scaling is to change the way we
map the BN problem structure to DEC-MDP. In our cur-
rent mapping, the state space and action space of the DEC-
MDP are exponential to the amount of data in the BN. It
is computationally infeasible to generate a large DEC-MDP
when the quantity of raw data grows. One approach we
are looking at is to extend the BN to multiple layers, where

the intermediate nodes represent the intermediate causes.
Instead of transmitting raw data directly, the agents will
abstract the information contained in the raw data into the
intermediate nodes and communicate them.
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