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Abstract

In Multi-Agent systems, agents often need to make deci-
sions about how to interact with each other when negotiat-
ing over task allocation. In this paper, we present OAR, a
formal framework to address the question of how the agents
should interact in an evolving environment in order to achieve
their different goals. The traditional categorization of self-
interested and cooperative agents is unified by adopting a util-
ity view. We illustrate mathematically that the degree of co-
operativeness of an agent and the degree of its self-directness
are not directly related. We also show how OAR can be used
to evaluate different negotiation strategies and to develop dis-
tributed mechanisms that optimize the performance dynam-
ically. This research demonstrates that sophisticated proba-
bilistic modeling can be used to understand the behaviors of
a system with complex agent interactions.

Introduction
In Multi-Agent systems, agents often need to make deci-
sions about how to interact with each other when negoti-
ating over task allocation. Traditionally, research on ne-
gotiation is categorized into two general classes: coopera-
tive negotiation and competitive negotiation. In competi-
tive negotiation, agents are self-interested and negotiate to
maximize their expected local reward. In cooperative nego-
tiation, agents work to increase the system’s social utility.
Recent experimental work (Zhang, Lesser, & Wagner 2003;
Jung, Tambe, & Kulkarni 2001) found that it is not always
beneficial for an agent to cooperate with other agents about
non-local tasks even if its goal is to achieve higher social
utility. Similarly, if an agent is interested only in its own
local reward, sometimes it still should choose to commit to
non-local task for other agents instead of its local task. At
the same time, researchers look for effective mechanisms
to improve social utility even in competitive negotiation
(Braynov & Sandholm 2002; Sen 2002). In a complex dis-
tributed system, the environment evolves over time. It is vir-
tually impossible for the agents to always obtain and process
all the necessary non-local information in order to achieve
optimal performance, whether their goals are to maximize
the social utility or local reward only. Formally understand-
ing complex behaviors in multi-agent negotiation is very im-
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portant for designing appropriate mechanisms to achieve op-
timal performance.

(Shen, Zhang, & Lesser 2004) builds a statistical model
for a small cooperative multi-agent system and introduces
attitude parameteras an effective local mechanism to im-
prove system performance. In this paper, we extend this re-
search and present OAR, a formal framework to study differ-
ent issues in multi-agent negotiation. There are three com-
ponents in OAR.Objective functions specify different goals
of the agents involved.Attitude parameters reflect the nego-
tiation attitude of each agent towards another agent.Reward
splitting specifies how a contractor agent divides the reward
received for finishing the task among itself and the agents
who finish the subtasks. The traditional categorization of
self-interested and cooperative agents is unified by adopting
a utility view. Both attitude parameters and reward splitting
can be used as effective local mechanisms for the agents to
realize their goals. We show that OAR can be used to eval-
uate different negotiation strategies. The closed form statis-
tical analysis presented in (Shen, Zhang, & Lesser 2004) is
extended to mathematically analyze the interaction between
attitude parameters and reward splitting and their relation-
ship with different objective functions. To our knowledge,
no work has been done that formally analyzes the interac-
tion among different negotiation parameters.

An agent iscompletely self-directedwhen it does not take
into consideration how much utility the other agent can po-
tentially gain if it commits to the requested task. In contrast,
an agent iscompletely externally-directedif it sees the other
agent’s gain as its own when negotiating. In OAR, we dis-
tinguish the notion of “self-interested” versus “cooperative”
from “self-directed” versus “externally-directed”. We call
an agentself-interestedif its local goal is to maximize only
its local utility and an agent iscooperativeif it is intent on
maximizing the final social utility. The degree of coopera-
tiveness illustrates the goal of an agent, while self-directness
is the local mechanism used to achieve the goal. In OAR, we
represent them separately with objective functions and atti-
tude parameters and make this distinction explicit.

Using OAR and the extended formal model built for a typ-
ical negotiation system, we are able to show:
• The degree of cooperativeness and that of self-

directedness are not directly related to each other;
• Reward splitting is needed in addition to attitude param-



eters as a local mechanism to further improve the perfor-
mance, in both cooperative and non-cooperative systems;

• An agent has to dynamically adjust its local negotiation
parameters, i.e., attitude parameters and reward splitting,
in order to achieve optimal performance.
Research in Multi-Agent Systems community has been

largely heuristic and experimental. (Sen & Durfee 1998)
modeled a meeting scheduling problem and is one of the first
formal studies of a multi-agent system. Most formal work
on negotiation is done in systems with self-interested agents
(Sandholm, Sikka, & Norden 1999; Sen 2002; Saha, Sen, &
Dutta 2003). (Decker & Lesser 1993) analyzes the need for
meta level communication in constructing a dynamic organi-
zational structure. (Vidal 2004) studies the benefits of team-
ing and selflessness when using multi-agent search to solve
task-oriented problems. Work on dynamic coalition forma-
tion studies the problem of finding a payoff distribution for a
given game and coalition structure such that no agent has in-
centive to leave the coalition (Klusch & Gerber 2002). This
is similar to the reward splitting issue we study in OAR. The
difference is that the agents in the coalition find a payoff
distribution through negotiation, while the reward splitting
in OAR is a local mechanism and it is decided by the con-
tractor agent locally to better achieve its goal in the current
environment. (Levine 1998) introduced a model in which
agents’ utilities are linear in their own monetary income and
their opponents’, controlled by a parameter calledaltruism
coefficient. This is similar to the calculations of both the
objective function and the virtual utility in the OAR frame-
work. However, their model is studied in a competitive set-
ting. Neither does it make the distinction between the goal
of an agent and the mechanism that an agent may employ
to realize its goal. In OAR, we make this distinction clear
by controlling these two related but distinct concepts with
two different parameters: the objective parameter and the
attitude parameter. We demonstrate that this clear distinc-
tion is important and necessary. Additionally, OAR enables
us to study agents with different organizational goals in a
unified setting by simply varying their objective parameters.
The uniqueness of OAR lies in the fact that it represents an
agent’s goal and its local negotiation mechanisms formally,
which allows us to model different multi-agent systems with
different negotiation protocols in this framework and under-
stand their performance in various environments.

General Problem
Let us formally define the class of problems we study.

There are a group of agentsA1, A2, . . . , An and a set of
tasksT1, T2, . . . , Tt. Each task has a number of parameters
that observe a distribution:
• ri: taskTi arrives at timet with a probability of1/ri.
• ei: the difference between the arrival time of a taskTi and

its earliest start timeesti.
• duri: the duration of the taskTi.
• sli: the difference between the earliest possible finish

time of a taskTi and the deadlinedli.
• Ri: the reward of a taskTi if it’s finished.
The relationship ofei, esti, duri, sli anddli is illustrated in
Figure 1.
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Figure 1: The relationship of different parameters of a task

Each taskTi, 1 ≤ i ≤ t can be decomposed into a set
of subtasks:Ti1, Ti2, . . . , Timi , wheremi is the number of
subtasks ofTi. All of the subtasks need to be completed
in order for the agentAs at whomTi arrives to collect the
reward. The agent can contract out some or all of the sub-
tasks to other agents or it can finish the task on its own. As
a special case,As can contract out the entire taskTi. Each
subtaskTij , 1 ≤ i ≤ t, 1 ≤ j ≤ mi has a set of parameters
as well, and they have to observe certain relationships with
each other and with the original taskTi. rij , eij , durij and
slij are similar to those ofTi. Rij is the reward of the sub-
taskTij if it is finished.

∑
j Rij + Ri0 = Ri, whereRi0

is the rewardAs gets after handing out the rewards to each
subtask if all of the subtasks are completed. This reward as-
signment for subtasks can be decided by either the system or
As, the contractor of the task.

For each subtaskTij there is a set of agentsASij who
can performTij . When a taskTi arrives at agentAs, As

starts to negotiate with one of the agent(s) inASij for each
subtaskTij and transmit the related parameters. When an
agentAl receives a request from agentAs to do subtaskTij ,
it decides whetherTij can be fit onto its own schedule or can
be contracted out (contracting out a subtask follows the afore
mentioned procedure of a regular task). If yes, it commits to
the subtask. If there is a conflict betweenTij andAl’s own
schedule andAl cannot subcontractTij out to other agents,
it compares the values of the conflicting tasks and commits
to the one with highest value, decommitting from the other.

There are three important questions that we need to an-
swer for such a system:

1. What is each agent’s goal in the system? Does it want to
optimize its local reward, or the total global reward, or a
combination of the two?

2. If there is a conflict between tasks, how does an agent
evaluate each task and decide which to commit to?

3. When an agent needs to contract out a task, how does it
split the reward between itself and the subtasks?

The next section introduces OAR, a formal framework de-
signed to answer these questions.

OAR: The Framework
There are three components in OAR:Objective functions
that specify the agents’ goal,Attitude parametersthat de-
termine how an agent values each task, andReward splitting
that decides the reward allocation of a task that needs co-
operation among agents. The closed form statistical model
developed in (Shen, Zhang, & Lesser 2004) is extended to
incorporate both objective functions and reward splitting in
addition to the attitude parameters (Weber, Shen, & Lesser
2005). Due to the space limitation, we do not present the
mathematical details of this model, but only discuss the anal-
ysis shown in optimality graphs plotted based on this model.
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Figure 2: An example three agent organization structure
with the necessary inter-agent interactions

Please refer to the Appendix for the formulas used to gener-
ate these graphs.

An Example System
Before introducing OAR, we describe a three agent system
with the necessary inter-agent interactions during the nego-
tiation process (shown in Figure 2) that exemplifies the class
of problems. Being a simple system, it is sufficient to illus-
trate the complex interactions among the agents. We will
use this as an example throughout the rest of the paper.

There are three agents in the system.A1 has one type of
taskT1 with a reward ofR1 and an arrival rate ofr1 coming
in, of which there are two different subtasksT12 and T13

that need to be contracted out toA2 and A3 respectively.
Suppose at the same time, tasksT2 andT3 arrive at agents
A2 andA3 with rewards ofR2 andR3 and arrival rates of
r2 andr3. As a result, there may be conflicts betweenT2

andT12, or betweenT3 andT13, which force the agents to
choose one task between the two. Upon completion of both
T12 andT13, A1, A2 andA3 each collects a reward ofR11,
R12 andR13 respectively.

Objective Functions
Traditionally, research on negotiation is categorized into
two general classes: cooperative negotiation and competi-
tive negotiation. In competitive negotiation, agents are self-
interested and negotiate to maximize their expected local re-
ward. In cooperative negotiation, agents work to find a so-
lution that increases the sum of the expected reward of all
involved agents. However there are other types of agents,
whose goal is instead to reach a balance between its local
gain and the reward of the rest of the system.

The first component of OAR isobjective function. It spec-
ifies the goal of each agent:

Oi = wi · ERi + (1− wi)
∑
j 6=i

ERj , (1)

whereERi is the expected reward of agenti. wi ∈ [0, 1]
is calledobjective parameterand reflects how important its
local reward is toAi as compared to that received by the rest
of the system. For a fully cooperative agent,wi = 1/2. Its
goal is to maximize the expected social utility of the entire
system, i.e.,

∑
i ERi. A completely self-interested agent is

interested only in its own expected reward, andwi = 1. An
agent withwi = 0 is altruistic and considers the gains of
the other agents only. The objective function unites the tra-
ditionally separate views of cooperative systems and a self-
interested systems. By simply varying the objective param-
eter, we can study agents with different goals.

If all the agents are cooperative, the system is a cooper-
ative system, and it achieves its optimal performance when

the social utility is maximized. If at least some of the agents
are not cooperative, the system is non-cooperative, and a
Pareto Nash equilibrium needs to be found.

Attitude Parameters

When an agent receives a subtask proposal from another
agent that conflicts with another potential task, it needs to
evaluate the subtask in order to decide which task to com-
mit to. Oftentimes it not only cares about the real reward
for doing the task but also the reward the rest of the system
may gain from it. (Zhang, Lesser, & Wagner 2003) intro-
duced an integrative negotiation mechanism which enables
agents to interact over a spectrum of different local coop-
eration degrees. There are different degrees of local coop-
eration when an agent is considering whether to cooperate
with other agents on an external task (Shen, Zhang, & Lesser
2004). An agent iscompletely self-directedwhen it does not
take into consideration how much utility the other agent can
potentially gain if it commits to the requested task. In con-
trast, an agent iscompletely externally-directedif it sees the
other agent’s gain as its own when negotiating.

Let us take Figure 2 for example. There are two types
of rewards that are transferred from agentA1 to agentA2

with the successful accomplishment of taskt: real reward
R12 and relational rewardRr12. Real rewardR12 has posi-
tive benefits to agentA2. The agent collects real reward for
its own utility increase and is calculated into the social wel-
fare increase as well. In contrast, the relational rewardRr12

does not contribute to agentA2’s actual utility increase, and
is not included in the social utility computation. Instead, it
is transferred to reflect how important taskt is for agentA1

and makes it possible for agentA2 to considerA1’s utility
increase when it makes its negotiation decision. Relational
reward is a form of meta-information transferred between
agents to estimate how an agent’s action may affect the rest
of the system. In this work, we will not be concerned with
lying with respect toRr. How Rr12 is mapped into agent
A2’s virtual utility depends on agentA2’s negotiation atti-
tude towards taskt with agentA1.

The second component of OAR isattitude parameterk,
0 ≤ k ≤ 1. It specifies the negotiation attitude of each agent
towards another agent. For acompletely externally-directed
agent,k = 1, while k = 0 for a completely self-directed
agent. When an agentAi receives a task fromAj with a real
reward ofR and a relational reward ofRr, it evaluates the
task by calculating the virtual utility as:Rn = R + k ·Rr.

In the previous example,A2 has an attitude parameterk2

towardsA1. During its negotiation session with agentA1

about taskt, agentA2 calculates its virtual utility for the
task asRn2 = R12 + k2 · (Rr12) and usesRn2 to compare
t against conflicting tasks, if any.

Attitude parameter and objective parameter are related but
different. They are both used as weight parameters measur-
ing an agent’s regard for the other agents’ reward in compar-
ison with its own in the calculations of its objective function
and a potential task’s virtual utility, respectively. However,
the objective function and the virtual utility are used in dif-
ferent contexts. The objective function illustrates the goal
of an agent and is not a part of the decision process, while



the virtual utility is calculated as the expected return of a
potential task and is a key component of the local decision
process. The agent uses the virtual utilities of conflicting
tasks to decide which task to commit to and which to deny.
The objective parameter is often set by the system, and usu-
ally does not change over time constantly. In contrast, the
attitude parameters is a local negotiation mechanism that an
agent dynamically adjusts in response to the change in the
environment in order to maximize its objective function.

In a complex distributed system, where the environment
is evolving over time, an agent does not know all the infor-
mation about its environment and the other agents. It often
has to estimate the value of its objective function. It needs
to dynamically choose the level of local cooperation, i.e., the
attitude parameter, that is optimal for its organizational goals
based on its limited local vision and the information pro-
vided by other agents. Experimental work showed that it is
not always beneficial for the agents in a cooperative system
to be completely externally-directed (Zhang, Lesser, & Wag-
ner 2003). When the uncertainty associated with the utility
increase is high, it is better for the agent to be more self-
directed. This indicates that complete local cooperation does
not always lead to optimal global cooperation. Similarly, the
optimal behavior for a self-interested agent is not necessar-
ily always completely self-directed. (Shen, Zhang, & Lesser
2004) demonstrates that appropriate adjustment of attitude
parameters is an effective local mechanism to deal with un-
certainties caused by the interaction among the agents and
the change in the environment.

Reward Splitting
When an agent needs to subcontract several subtasks to other
agents in order to finish a task, it is this agent’s decision
how much to offer the other agents for accomplishing their
subtasks. We call this issuereward splitting.

In our example system, the shared taskT1 is imposed on
A1, who then negotiates withA2 andA3 over the subtasks
T12 andT13. AgentA1 has to figure out how much of the
overall rewardR1 to pay to the other agents. The rewards for
the subtasks areR12 andR13, andA1 keepsR11 for itself.

It is a commonly used technique to use real reward as an
incentive to manipulate the decisions of other agents. Simi-
lar to the use of attitude parameters as a mechanism for the
contractee agents to achieve their goals, the reward splitting
can be used as a local mechanism for the contractor agents
to improve its performance, and is the third component of
the OAR framework.

The additional flexibility introduced by reward splitting
is necessary to further improve an agent’s performance, es-
pecially if its goal is not to maximize the social utility. We
have seen up to 36% performance difference between differ-
ent reward splitting settings for non-cooperative agents.

Relational Reward
By taking into account the relational reward instead of just
the local reward, an agent that is requested to do a subtask
bases its decision whether to do the task not solely on the
real reward it may receive, but also on the other agents’ re-
wards. We examine three different ways to calculate the re-
lational reward and their expressiveness.

In the example,A1 needs to complete taskT1 in order to
collect a reward ofR1 and asksA2 to complete one of its
subtasks. It promises a real reward ofR12 and a relational
reward ofRr12. If all the subtasks ofT1 are finished suc-
cessfully,A1 itself can collectR11 after handing out all the
real rewards.Rr12 can be calculated in one of the following
three ways:

• Rr
(1)
12 = 1

2R11;

• Rr
(2)
12 = R11;

• Rr
(3)
12 = R1 −R12.

Each of the three calculations have its own motivation.
Using Rr

(2)
12 as the relational reward,A2 considers the re-

wardA1 may receive if it commits to the subtask. The moti-
vation behindRr

(1)
12 is thatA2 alone committing to the task

is not going to getA1 the reward, but only with some proba-
bility, and 1

2 is a fair estimate. On the other hand,R1−R12 is
a more accurate measure of the reward the rest of the system
would get ifA2 chooses to do the subtask. As a result, by us-
ing Rr

(3)
12 , k2 would be reflectingA2’s attitude towards the

rest of the system instead of its attitude towardsA1 alone.
There are other ways to calculate the relational reward, but
the three discussed here are among the most natural and in-
tuitional.

The choice of relational reward calculation depends on
the goal of the agents as well as the control mechanisms
available to the system. In a cooperative system where the
agents strive to maximize the system reward, one calcula-
tion of the relational reward is more expressive than another
when it potentially allows a higher optimal expected social
utility. We say that one calculation of the relational reward
Rri is moreexpressivethan anotherRrj if any relational re-
ward that can be expressed usingRrj can also be calculate
with Rri. We have the following proposition about the ex-
pressiveness of the three relational reward calculations in a
cooperative system. Its formal proof is based on the close
form mathematical model we developed (Weber, Shen, &
Lesser 2005).

Proposition 1. In a cooperative system, when the reward
splitting is fixed and attitude parameterk2 can be varied
between 0 and 1,Rr

(3)
12 is at least as expressive asRr

(2)
12 ,

and Rr
(2)
12 is at least as expressive asRr

(1)
12 . If the re-

ward splitting is adjustable as well, then the expressiveness
of Rr

(2)
12 × Rr

(2)
13 and Rr

(3)
12 × Rr

(3)
13 are the same, while

Rr
(1)
12 ×Rr

(1)
13 is less expressive.

Optimality Graphs
In a cooperative system within a certain environment, there
is a maximum expected utility for all settings of attitude
parameters and reward splitting. It can be derived from
the mathematical model we developed using OAR (Weber,
Shen, & Lesser 2005). In this model, an agent’s objective
function is expressed in terms of the attitude parameter and
reward splitting settings. Oftentimes, we want to show the
optimality of a setting of the attitude parameters only, or a
specific reward splitting alone.Optimality graphis designed



r dur sl e R

T1 30 [20,40] [0,20] [0,20] 30

T12 30 [20,40] [0,20]

T13 30 [20,40] [0,20]

T2 30 [10,20] [0,20] [0,20] [2,4]

T3 50 [70,80] [0,20] [0,20] [30,50]

Table 1: Environmental parameters of Scenario 1

for this purpose. Its dimensions are labeled as the different
attitude parameters or reward splittings. In order to examine
the optimality of a certain setting of attitude parameters in
the system, we fix the attitude parameters, vary the reward
splitting and record the maximum social utility calculated
using the mathematical model. If this maximum value is the
same as the optimum achieved by varying all the different
parameters, then we call this attitude parameter setting opti-
mal. The corresponding point of this setting in the optimal-
ity graph is colored dark grey. If the setting is not optimal,
the corresponding point is shown in light gray. When a set-
ting of attitude parameters is chosen that lies within a dark
gray area, it is possible to have a reward splitting such that
the system achieves the optimal social utility in the current
environment. For any reward splitting in a light gray area,
the optimal social utility cannot be achieved no matter what
the reward splitting is. Similarly, an optimality graph can be
plotted for reward splitting as well to examine the optimality
of different reward splitting settings. Figures 3(a) and 3(b)
show examples of optimality graphs for a cooperative sys-
tem. With the optimality graphs, we are able to discuss the
interaction between different negotiation parameters without
the mathematical details of the statistical model itself.

(Shen, Zhang, & Lesser 2004) demonstrates that attitude
parameters can be used as an effective local mechanism to
deal with the uncertainty associated with an external task
that an agent receives from other agents. Unfortunately,
there are cases where an attitude parameterk ∈ [0, 1] cannot
fully deal with such uncertainty and guarantee the optimal
system performance. As an example, consider the scenario
in Table 1 and the case whereR12 is much bigger thanR2.
In this situation,A3 is unlikely to commit toT13. There-
fore there is very little chance thatA2 will actually get the
R12 since the reward is awarded only if bothT12 andT13 are
completed. ThusA2 is much better off ignoring the subtask
and doing its local task. Unfortunately, even if we setk2 to
its lowest 0,A2 will still choose to commit toT12 instead.

One way to deal with such uncertainty is to extend the
range of the attitude parameters:ki ∈ [aki , bki ], aki ≤ 0,
bki ≥ 1. As shown in Figure 3(a), this extended range can
potentially lead to better system performance. This opti-
mality graph is produced based on Scenario 1 withki ∈
[−1, 2]. The square in this graph denotes the original range
of ki ∈ [0, 1]. We can see that the optimal social utility can
be achieved only with ak2 > 1.3 and not the original range.

As we mentioned previously, reward splitting is very im-
portant for non-cooperative agents to improve their perfor-
mance. In a cooperative system, the reward splitting may
still improve the system performance, as shown in Figure
3(b). However, we proved that in a cooperative system, a
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Figure 3: (a) An attitude parameter optimality graph for
Scenario 1 showing the need for larger attitude parameter
ranges. (b) The reward splitting optimality graph for Sce-
nario 1. The white cross denotes the setting from (Shen,
Zhang, & Lesser 2004) that lies in the suboptimal area,
marked in medium gray. This shows that different reward
splittings can lead to higher gains for a cooperative system.

r dur sl e R

T1 40 [20,40] [0,20] [0,20] 30

T12 40 [20,40] [0,20] - -

T13 40 [20,40] [0,20] - -

T2 50 [70,80] [0,20] [0,20] [14,18]

T3 50 [70,80] [0,20] [0,20] [14,18]

Table 2: Environmental parameters of Scenario 2

reward splitting of assigning no real reward to any of the
subtasks always lies in the optimal area, i.e., the optimal so-
cial utility can be achieved even when no real reward is given
to the agents who complete the subtasks if all of the agents
are cooperative (Weber, Shen, & Lesser 2005).We also dis-
covered that the density of optimal solutions for a coopera-
tive system is fairly high. In most environments a number
of reward splittings may lead to the optimal behavior. This
is particularly beneficial for a distributed system where the
agent only has a local view of the system and can decide
on the reward splitting with limited information. With the
high density of optimal settings, the agent is more likely
to choose an optimal reward splitting even with its limited
local knowledge. We can also introduce a secondary goal
to choose among the multiple optimal solutions. Examples
for such goals include fairness and a minimal reward for the
subtasks.

Using OAR
OAR is a formal framework that can be used to model differ-
ent negotiation systems and study various negotiation strate-
gies. (Shen, Zhang, & Lesser 2004) shows in detail how a
statistical model is built for the example system shown in
Figure 2 where the reward splitting is fixed. In their model
a simple negotiation strategy was used. It shows us the re-
lationship between the environment, the level of local coop-
eration and the global system performance in a formal clear
way that allows us to explain system behavior and predict
system performance. The analysis also results in a set of de-
sign equations that can be used directly to design distributed
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Figure 4: (a) An attitude parameter optimality graph, gath-
ered from Scenario 2 for a cooperative object function. The
black cross marks where(k2, k3) = (0, 0), which is not
an optimal solution. (b) An attitude parameter optimality
graph, gathered from Scenario 3 for a cooperative object
function. The black cross marks where(k2, k3) = (1, 1),
which is a suboptimal solution.

r dur sl e R

T1 40 [20,40] [0,20] [0,20] 30

T12 40 [20,40] [0,20] - -

T13 40 [20,40] [0,20] - -

T2 40 [10,20] [0,20] [0,20] [12,15]

T3 40 [10,20] [0,20] [0,20] [12,15]

Table 3: Environmental parameters of Scenario 3

local mechanisms that optimize the performance of the sys-
tem dynamically. Similar models can be built for other sys-
tems and negotiation strategies (Zheng & Zhang 2005).

We distinguish the notion of “self-interested” versus “co-
operative” from “self-directed” versus “externally-directed”.
The degree of cooperativeness illustrate the goal of an agent,
while self-directness is the local mechanism used to achieve
the goal. This is very different from traditional research,
where the self-interested agents are assumed to be com-
pletely self-directed and cooperative agents are assumed to
be completely externally-directed. In this section, we ex-
amine the traditional approaches and show that these two
notions are not directly related to each other and the distinc-
tion needs to be made. We explore three different scenarios.
Please refer to the appendix for the formulas used to gener-
ate the optimality graphs for these scenarios.

In the first scenario, the contractee agents are completely
self-directed while the contractor agent is cooperative and
wants to maximize the social utility of the system. As an
example, in Figure 2A2 andA3 are both completely self-
directed, i.e.,k2 = k3 = 0. A1 is cooperative, and its ob-
jective functionO1 = 1/2 ·

∑
i ERi, i.e.,w1 = 1

2 . Figure
4(a) shows the attitude parameter optimality graph for Sce-
nario 2 from Table 2. The lower left corner, marked with a
black cross, corresponds tok2 = k3 = 0 and is far from the
optimal, dark gray area. This shows that in certain environ-
ments, no matter how much real reward incentive is given
to the completely self-directed agents,A1 cannot achieve its
goal, i.e., the optimal social utility.
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Figure 5: An attitude parameter optimality graph, gathered
from Scenario 2 for a self-interested agentA2 whose objec-
tive function isO2 =

∑
ER2.

In the second scenario, let us assume that all the agents in
the system are cooperative, butA2 andA3 are completely
externally-directed. Table 3 is an example environment set-
ting for the system shown in Figure 2 wherek2 = k3 = 1
and Oi = 1/2 ·

∑
i ERi. Figure 4(b) shows its attitude

parameter optimality graph. The black cross in the graph,
where(k2, k3) = (1, 1), lies in the suboptimal area. This
scenario demonstrates that even when the agents are com-
pletely externally-directed, the optimal social utility cannot
be guaranteed no matter what the reward splitting is.

On the other hand, if an agent is self-interested and only
tries to maximize its own reward, it may still be beneficial
not to be completely self-directed all the time. We extend the
definition of optimality graphs to represent non-cooperative
objective functions. An attitude parameter (or reward split-
ting) setting is optimal if it can potentially maximize the
specified objective function. Let us look at the example sys-
tem with Scenario 2 whereA2 is self-interested, i.e., its ob-
jective functionO2 = ER2. Figure 5 shows the attitude
parameter optimality graph forO2 = ER2. As shown, in
certain environments only whenk2 6= 0 (i.e.,A2 is not com-
pletely self-directed) can it achieve the optimal local reward.

The counter-intuitive behaviors illustrated in the three
scenarios are caused by the uncertainty related a task that
requires multiple agents’ cooperation. An agent often is not
aware of other agents’ agenda and cannot guarantee how
their behaviors may affect its own return. For example, in
an environment with high uncertainty, the system may gain
more social utility if the agents choose ignoring the non-
local tasks to avoid wasting resource unnecessarily. Simi-
larly, a self-interested agent may occasionally decide to be
externally directed towards a non-local task that has a good
return and a high likelihood of being finished. Therefore, in
order to best achieve its goal, an agent needs a local con-
trol mechanism such as the attitude parameter to respond
to the uncertainties in the environment and make decisions
that concern other agents. The scenarios discussed above
demonstrate that the degree of cooperativeness and the de-
gree of self-directedness are not directly related. It is nec-
essary to make a clear distinction between them in order to
optimize the agents’ performance. This is the distinction be-
tween the goal of an agent and the local mechanism used to
achieve the goal. The above examples also show that it is
often the case that there is not one single attitude parameter



setting that guarantees optimal performance in all environ-
ments. It is the same case for reward splitting. Therefore, it
is beneficial for the agents to dynamically adjust their local
parameters in response to the ever changing environment.

(Shen, Zhang, & Lesser 2004) discusses the dynamic ad-
justment of attitude parameters in a cooperative system. It
is proven that it is safe for the agents to adjust their attitude
parameters locally and reach a global equilibrium. In a non-
cooperative system, i.e., when not all the agents in the sys-
tem are cooperative, we need to take a game theoretic view
and find a Pareto Nash Equilibrium for the different utility
functions of the agents. This is part of our future research.

Conclusions and Future Work
In this paper, we introduced OAR, a formal framework to
study different issues related to negotiation. It is designed
to answer the question of how the agents should interact in
an evolving environment in order to achieve their different
goals. There are three components in OAR. Objective func-
tions specify different goals of the agents involved in nego-
tiation. Attitude parameters reflect the negotiation attitude
of each agent towards another agent. Reward splitting spec-
ifies how a contractor agent divides the reward between the
subtasks it needs to contract out. The traditional categoriza-
tion of self-interested and cooperative agents is unified by
adopting a utility view. Both attitude parameters and reward
splitting can be used as effective local mechanisms for the
agents to realize their goals. We illustrate empirically that
the degree of cooperativeness of an agent and the degree of
its self-directness are not directly related.

In our future work, we intend to use OAR to model and
evaluate different systems with various negotiation strate-
gies. Specifically, we are currently studying the role of de-
commitment penalty as a new parameter in OAR. In (We-
ber, Shen, & Lesser 2005) we start exploring the role of
explicit decommitment in a more complex negotiation pro-
tocol using OAR framework with success. Another topic
of interest is how the dynamic adjustment of local parame-
ters may play out in a non-cooperative system. The study
of such issues will help us to understand the behaviors of
a system with complex agent interactions and guide us in
the design process. In OAR, the objective function repre-
sents the goal of each agent from a local perspective. We are
looking into explicitly representing other criteria that may
be used to measure a system’s overall performance such as
fairness and load balancing.

Appendix
This appendix lists the formulas developed for the three
agent model that are used to generate the optimality graphs
in this paper. For their complete derivation, please refer to
(Shen, Zhang, & Lesser 2004) and (Weber, Shen, & Lesser
2005).

Objective functions of the three agents:

∀i, Oi =
∑

j

ERj .

When a task of typei arrives at a given time, the proba-
bility of there being a task of typej that has conflict with it:

Pcij

= P (sli − durj ≤ estj − esti ≤ duri − slj)

=
+∞∑

z=−∞

+∞∑
y=z

y∑
x=z

Pestj−esti
(x)Pduri−slj (y)Psli−durj

(z),
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(x) =
1
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The expected reward thatA2 or A3 collects at each time
unit:

ERi =
1
ri

(ER
(1)
i +ER

(2)
i +ER

(3)
i +ER

(4)
i )+

1
r1

ER
(5)
i ,

where
ER

(1)
i = Pc1i,i · (1− Pcii) · E(Ri|Ri > Rni),
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(2)
i

= (1− Pc1i,i) · Pcii · [E(Ri|Ri > R′
i)
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1
2
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and
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i = R1i · Pcommit2 · Pcommit3;



where
E(Ri|Ri > Rni)
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The expected reward thatA1 collects at each time unit:

ER1 =
1
r1

·R11 · Pcommit2 · Pcommit3.

The optimal setting fork2, k3, R12 andR13 is:
argmaxk2,k3,R12,R13

(ER1 + ER2 + ER3).

If we fix R12 andR13, we can get the optimal attitude
settingk2 andk3:

argmaxk2,k3
(ER1 + ER2 + ER3).

Similarly, if we fix k2 andk3, the optimal reward splitting
is:

argmaxR12,R13
(ER1 + ER2 + ER3).
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