23.1 Review of Approximation Algorithm Classes

Most approximation algorithms fall into one of several well-defined categories. We review these and provide examples of each kind.

23.1.1 The worst case: \(n^c \)

Examples in this class include Clique, Independent Set, and the Graph-Coloring problem. Problems in this class have, in essence, no good approximations. For example, if \(P \neq NP \), then there is no approximation algorithm for Clique within \(|V|^{1-c} \). Furthermore, if all problems in \(NP \) cannot be solved by Las Vegas type randomized algorithms in polynomial time, the best known approximation is \(O\left(\frac{|V|}{\log |V|}\right) \). Interestingly, although Clique and Vertex-Cover seem to be closely related \(NP \)-Complete problems, they have wildly divergent approximation algorithms (Vertex-Cover has a 2-approximation).

It is not surprising that Independent Set also falls into this class as it is closely coupled to Clique (to convert from one to the other, just use \(\overline{G} \), the complement of the graph \(G \)).

The Graph-Coloring problem is also in this class. It takes as input a graph \(G = (V, E) \) and outputs a coloring of \(G \) using the smallest number of colors (this number is called the chromatic number of \(G \)). A coloring is a mapping, \(f \):

\[
f : V \rightarrow \text{colors}
\]

from the vertices of \(G \) to colors such that if \(v_1 \) is adjacent to \(v_2 \) then \(f(v_1) \neq f(v_2) \). That is, adjacent vertices must have different colors. The graph below is an example of a graph whose chromatic number is 3.

![Graph with chromatic number 3]

Figure 23.1: A graph whose chromatic number is 3

Coloring has practical applications in scheduling where we map:

\[
\begin{align*}
\text{vertices} & \rightarrow \text{items} \\
\text{edges} & \rightarrow \text{constraints} \\
\text{colors} & \rightarrow \text{time slots}
\end{align*}
\]

In this case, we want to minimize the time-slots required to schedule all of the items while maintaining the constraints specifying that some items may not be scheduled at the same time.
Graph-Coloring is clearly related to Clique since the chromatic number of a graph is at least as large as the maximum clique. As in Clique, the news is not good. If $P \neq \text{NP}$, then there is no approximation algorithm for Graph-Coloring within $|V|^{1-c}$. Furthermore, if all of \text{NP} cannot be solved by Las Vegas type randomized algorithms in polynomial time, then there is no $|V|^{1-c}$ approximation for $\epsilon \geq 0$. The best known approximation algorithm is within $O\left(\frac{|V|^{\log \log |V|^3}}{\log |V|^2}\right)$.

23.1.2 $O(\log n)$ Approximations

The Set-Cover problem is analogous to SAT for this class in that it is (relatively) easy to prove things about Set-Cover and this makes it possible to prove things about other problems in this class. Set-Cover takes as input a finite set S and a collection, C, of subsets of S. The output is a minimal subset $C' \subseteq C$ such that every element of S is contained in at least one element of C'. For example:

$S = \{e_1, e_2, e_3, e_4\}$

$C = \{\{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_1, e_2, e_3\}\}$

both $C' = \{\{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}\}$

and $C'' = \{\{e_1, e_2\}, \{e_1, e_3\}\}$

are solutions but C'' is minimal.

There exist $\log |S|$ approximation algorithms (in fact a greedy algorithm works for this) but if $P \neq \text{NP}$, then there is no $c|S|$ approximation algorithm for some c. Furthermore there are other conditions believed to be false such that if they are false then we cannot find a $(1-\epsilon)|S|$ approximation for any $\epsilon > 0$. That is, the $\log |S|$ approximation is the best that we do.

23.1.3 Reasonable categories: Constant, PTAS and FPTAS

We have seen all of these in previous lectures. Examples of them are:

- **Constant**
 - Vertex-Cover
 - Metric-TSP
 - Max-Cut

- **PTAS**
 - Euclidean-TSP

- **FPTAS**
 - Knapsack

Another example of a class of Constant ratio approximation problems is Max-k-SAT which is like k-SAT in that its input is a boolean formula, ϕ, in k-CNF form but differs in that its output is not whether or not ϕ is satisfiable but rather an assignment that maximizes the number of clauses in ϕ that are satisfied. For Max-k-SAT with $k \geq 3$, we have $1/k^2$ approximation (notice that as k gets larger, we have better and better approximations). If $P \neq \text{NP}$ then we cannot do better, i.e., there is no $1/k^2 - \epsilon$ approximation for any $\epsilon > 0$. Interestingly, Max-2-SAT is \text{NP}-Complete(!) and there is no 1.0476-approximation for Max-2-SAT.

23.1.4 Summary

A useful list of the known good news and bad news about many important problems can be found at http://www.nada.kth.se/~viggo/problemlist/compendium.html. This reference includes information on general problems and special cases.
23.2 Linear Programming

A linear program is an optimization problem which has a linear objective function and linear inequalities as constraints. Many optimization problems of interest can be expressed as a linear program.

23.2.1 The Diet Problem

An example is the Diet Problem: designing a diet such that the daily nutritional requirement will be satisfied with minimum cost.

input: an integer n, the number of different foods;
an integer m, the number of required nutrients;
a matrix a_{ij}, containing the amount of nutrient i in a single unit of food j;
a vector b_i, containing the minimum daily requirement of nutrient i; and
a vector c_i, containing the cost of a unit of food j.

goal: Find vector $x = \{x_1, x_2, \ldots, x_n\} \in \mathbb{R}^n$
that minimizes $\sum_{j=1}^{n} c_j x_j$,
where x_j is the quantity of food j to consume per day.

requirements: For each $i \in \{1, \ldots, m\}$, $\sum_{j=1}^{n} a_{ij} x_j \geq b_i$, and
for each $j \in \{1, \ldots, n\}$, $x_j \geq 0$.

23.2.2 Maximum flow

input: A directed graph $G = (V, E)$,
a matrix C_{uv} holding the edge capacities (0 if no edge from u to v), and
two distinguished node s and t.

The familiar Max-Flow problem can also be stated as a linear programming problem.

Variables: f_{uv}: flow from u to v for every pair of vertices (u, v),
F: value of the flow.

Objective function: Maximize variable F.

Subject to constraints:
capacity: $\forall u, v \in E, u \neq v, f_{uv} \leq C_{uv}$,
skew-symmetry: $f_{uv} + f_{vu} = 0$, and
conservation: $B \cdot f + F \cdot d = 0$.

The rows of the matrix B represent vertices of G and the columns represent ordered pairs of vertices (u, v) such that $u \neq v$.

Here is how to fill in values of the matrix B. For every column (u, v):

If $(u, v) \in E$ put $+1$ in row u, -1 in row v, and 0 elsewhere in the column.
If $(u, v) \notin E$ then fill the column with zeroes.

For example, given G:
Figure 23.2:

The matrix B would be (all skipped columns are 0's):

<table>
<thead>
<tr>
<th>B</th>
<th>(1,2)</th>
<th>(1,3)</th>
<th>(1,4)</th>
<th>(2,1)</th>
<th>...</th>
<th>(3,2)</th>
<th>...</th>
<th>(4,2)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>-1</td>
<td>...</td>
<td>-1</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>+1</td>
<td>...</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>...</td>
<td>+1</td>
<td>...</td>
</tr>
</tbody>
</table>

and d is a $|V|$-vector which has $+1$ at vertex t, -1 at vertex s and 0 everywhere else.

23.2.3 General Linear Programming problems

Linear programming problems often have the form:

Minimize: $C \cdot x$, such that

Set of constraints: $a_j x \geq b_i$ or
$a_j x = b_i$ or
$a_j x \leq b_i$ and
$x_j \leq 0$ or x_j unconstrained
$x_j \geq 0$

We want to convert general linear programming problems into a standard form so they can be more easily solved.

Minimize: $c \cdot x$,
Subject to: $Ax = b$, and $x \geq 0$
where x is a n-vector,
c is a n-vector,
b is a m-vector, and
A is a $m \times n$ matrix.

The conversion proceeds as follows:

- If $a_i x \geq b_i$ is one of the constraints then replace the constraint with the new constraint $a'_i x \leq b'_i$, and let $a'_i = -a_i$, and $b'_i = -b_i$.
- If $x_j \leq 0$ is one of the constraints then replace it with $x_j \geq 0$, multiply the jth column of A by -1 and the jth entry of c by -1.
- If x_j is unconstrained then replace all occurrences of it with $x'_j - x''_j$ and add constraints $x'_j \geq 0$ and $x''_j \geq 0$, where x'_j and x''_j are new variables.
- If $a_i x \leq b_i$ is one of the constraints then replace it with $a_i x + y = b_i$ and $y \geq 0$. y is called a surplus variable.