
CMPSCI 683 Fall 2010

Prof. Victor Lesser October 18, 2010

General Comments: I will grade the exam based on 91 points total

rather than 100 points. So many people were unprepared to answer

question 1F. The grade on the answer to this question can be thought

of as extra credit.

MID-TERM EXAM

The answers to these questions should be specific and

to the point; we are not looking for essays! There are

two types of questions: 6 short essay like questions

(each worth 9 points for a total of 54 points) and 2 long

questions (one worth 22 points and the other worth 24

point for a total of 46 points). Please be careful about

timing!

1. Short questions (54 points)

A. (9 points) Suppose you had two admissible A* heuristics (h1

and h2) for a specific problem application and there was

respectively cost (c1 and c2) every time you applied the

heuristic in a search. How would you go about deciding which

heuristic to use for the entire class of problems?

 2

Run experiments on a number of comparison cases using

each of the heuristics to get the average time for each search

with different heuristics. The heuristic whose average search

time over the set of examples that is the lowest would be the

one chosen. Another way of thinking about it would be E of h1

(average number of nodes expanded) *c1; and similarly for

h2.. Another way to do it, is get the average number of nodes

expanded in each search. Then it would be E of h1 (average

number of nodes expanded) *c1; and similarly for h2. The

formula that gave the lowest value would determine what

heuristic to choose. Obviously, if h2 dominates h1 and the

cost of applying h1 (c2) has lower cost than c2, you would

choose heuristic h1 for all problems and no experimentation is

necessary. In my answer, I did not think of trying

experimentally the case of max (h1,h2) which incurs the cost

of applying both heuristics to each search node expanded.

However, in some cases that could be the best choice but I

suspect it is very rare. Further in considering which heuristic to

choose for a class of problems, I was only considering which

would lead to the smallest expected search cost for solving a

problem. Another criterion could be to minimize the number of

nodes expanded, this would lead to a slightly different

reasoning about which heuristic to choose.

B. (9 points) What are the similarities and differences between

Anytime A* and RTA*?

 3

Both are doing an approximate search given a fixed amount of

time that can be used. They both exploit an admissible and

monotonically increasing h* heuristic. However, their search

strategies are very different. RTA* use a limited depth-first

searches to get a better approximation of a node’s f value to

make a decision what operator to apply. It then applies after

each search the chosen operator in the real world and then

repeats the procedure to choose the next operator after the

move is completed. Anytime A* in contrast is doing a complete

search trying to get an acceptable solution quickly and then

over time improving the solution. When it is finally terminated

either because of time limits or an optimal solution is found,

the best (lowest cost) complete path/plan that has been

encountered is chosen.

C. (9 points) What are the similarities and differences between

SMA* and RBFS?

Both exploit the fact that f is monotonically increasing and

there is a remembrance of the f values of previously

encountered partial solutions to focus what node should be

next (re)expanded; they also both are trying to reduce the

amount of memory necessary for the search, and for that

reason both may generate repeatedly the same node. In the

case of SMA*, it deletes nodes due to fixed memory

limitations while RBFS may delete nodes because it keeps a

 4

very restricted open list based on a depth-first type of search.

SMA* needs to have as much memory as the length of the

optimal path otherwise it will be able to find this optimal path.

D. (9 points) Explain the common reason/principle for the use of

the techniques of beam search in Genetic Algorithms and

random restart in GSAT. Could you apply beam search to

GSAT?

Both search techniques are trying to avoid getting stuck in

local minima. The beam search has the potential advantage

over random restart since it is able to constantly readjust what

solutions are in the beam according to the quality and

potentially the diversity of these solutions, and to be able to

take parts of one solution and combine with parts of another

solution in the beam to create a new solution. Maybe, the

beam search could be applied to GSAT, it is interesting

question of how often in GSAT do you need to do random

restarts versus paying the overhead of concurrently

processing multiple solutions. To really exploit the beam

search idea in GSAT, you would in some sense need to alter

the basic search strategy of GSAT so that there was more

than one next solution generated at each iteration. In this way,

at each stage, the beam could be narrowed back to k width

based on “fitness” of the current solutions in the beam.

E. (9 points) What would be your explanation for why GSAT does

 5

not exploit a specialized procedure to generate a “good” initial

assignment for the truth values of the literals?

One possible explanation is that the cost of getting a good

initial solution is quite expensive and it is better just searching

based on a random initial solution and if that is not

progressing well just try another random initial solution. It also

may be that there are no general heuristics for a getting a

good initial solution for an arbitrary problem though there may

be good heuristics for a specific class of problems.

F. (9 points) The HEARSAY-II speech understanding system as

described in class is not based on the A* search because of

the difficult of constructing an admissible and effective

heuristic. However, it uses a termination procedure

resembling Anytime A*. When Hearsay-II search found a

complete solution that was above a certain rating, it could

prune partial solutions (nodes) on the blackboard based on

calculating a measure using all the words that had been

constructed either through bottom-up or top-down processing

at the point that a complete solution was generated. Explain

the basis for the pruning and also why this approach could

potentially lead to incorrectly pruning a correct partial solution

though we never saw an example of this.

 6

Based on an analysis of the word lattice, a measure can be

constructed for the highest ranking word in each segment of

the speech signal. This rating can be used to construct the

“highest” possible score that a partial solution could get when

it is completed. This is not totally accurate because in

expanding a partial solution, it is possible that new higher

rated words could be generated as a result the top-down word

verification process. For this reason, the heuristic is not

admissible and thus could lead to pruning of a partial solution

that could have created a higher score than the current best

solution.

2. Long Questions (46 points)

A. (22 points) Sketch out an algorithm for bi-directional A*. As part

of the sketch you should discuss why your algorithm will always

find the minimal cost solution.

In order to do this problem, I would need to have both a heuristic

admissible function that worked for both directions and obviously

a well defined goal and start state (for example in route finding

problem the city I am starting at the and city that I am going to)

and appropriate operators for going in both directions. Obviously

if you were doing the route finding you could do the search in

 7

both directions using the same operators and heuristic function.

Additionally the cost g between two directly connected nodes

should be the same no matter what direction you are coming

from. There are two issues that must be resolved. First is how do

I make a decision about which direction to next proceed. I would

have two open lists one for each direction. I would choose for the

node to next expand which has the smallest f value on either list.

This way if I expand a node on backward search which is the

smallest f and it is the initial state I have found the lowest cost

solution and vice versa. I also have to understand how to handle

the situation where in expanding a node one or more of its

successors is on the other direction’s open list. In that case you

can combine the two paths and generate a new node on the

open list of the node that was a complete path with appropriate

cost. Like A* generating a complete solution does not mean you

can immediately terminate the search, you need to wait until this

solution is taken off the open list to make the decision that this is

the minimal cost path. However, if the node was on the other

agent’s closed list then you could immediately stop.

B. (24 points) Consider the following graph-coloring example.

 8

It involved six nodes (CT, MA ,ME, NH, RI, VT) with the following

adjacency links ME-NH, VT-(NH,MA), (VT,MA), MA-

(VT,NH,CT,RI), CT-(MA,RI) and RI-(CT,MA). Each node can

take on one of three colors (red, blue, yellow) and no nodes that

are adjacent can be assigned the same color.

B.1 (8 points) Sketch out very briefly how this problem can be

translated into an N-SAT problem in order to perform a stochastic

search. You do not need to do the full translation!

For each node (state) in the graph there would be three literals.

For example CT-red, CT-blue and CT-yellow. You would then

have clauses indicating the one and only one of those literals is

true. Similar to the mapping of the n-queens problem. You would

then have clauses indicating the constraints among nodes. For

instance there would be clauses indicating that if CT-red is true

 9

then MA-red needs to be false and RI red needs to be false; this

would require multiple 2-literal clauses to express this ((not CT-

red) OR (not MA-red)) AND ((not CT-red) OR (not RI-red))

B.2 (8 points) How would you formulate it as a systematic

constraint satisfaction search? Give representative examples of

the different types of constraints.

I would have a variable associated with each node (e.g, CT) in

the map whose domain of values include red, blue and yellow. I

would then have a set of pairwise constraints (such as CT not

equal to MA) for each node in the map that is directly connected

with another node. I would use min-conflict heuristic search

paradigm.

B.3 (8 points) If you had a larger graph, coloring problem, let us

say the entire map of the US which has 50 states, which search

approach (systematic or stochastic) would you use. Briefly

explain your reasoning!

I don’t think there is an obvious answer since using the mini-

conflict heuristic search at least for the N-queens problems is in

the same ballpark as a stochastic search. I would see first

whether I could find a good and cheap way to generate a

heuristic starting solution. Probably, if that was the case, I would

go with the systematic search otherwise stochastic search.

 10

