Lecture 9: Search 8

Victor R. Lesser CMPSCI 683 Fall 2010 ANNOUNCEMENTS

• REMEMBER LECTURE ON TUESDAY!

• EXAM ON OCTOBER 18

- OPEN BOOK
- ALL MATERIAL COVERED IN LECTURES
- REQUIRED READINGS

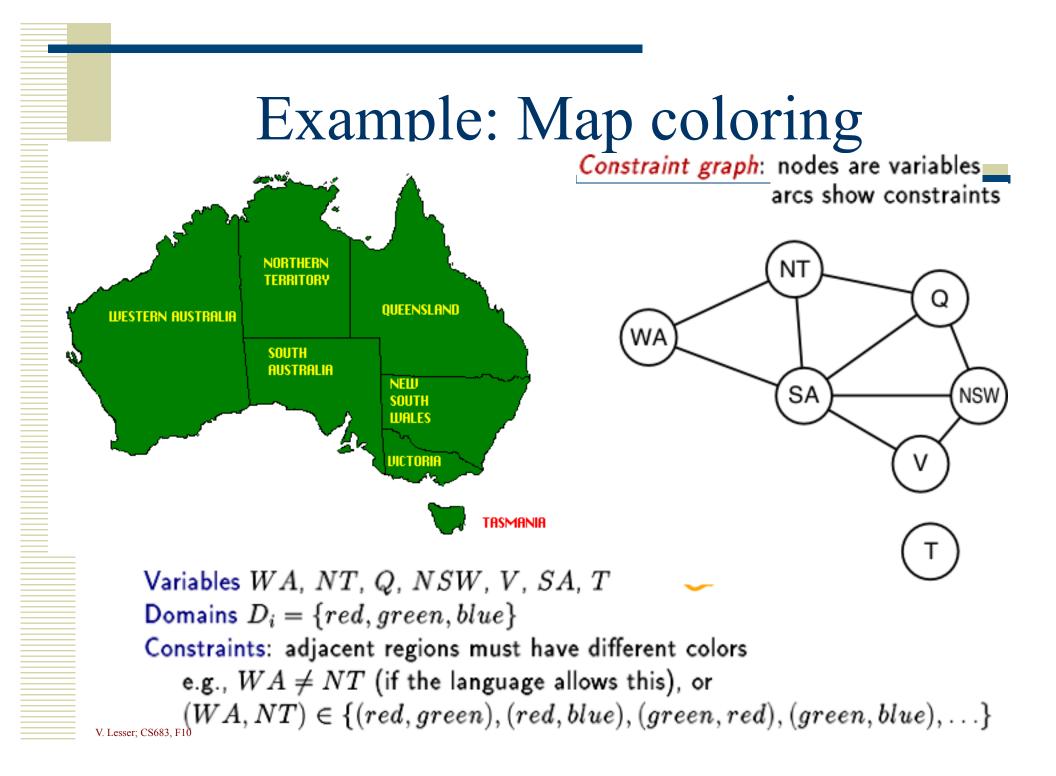
• WILL MOST PROBABLY NOT COVER MATERIAL ON PLANNING

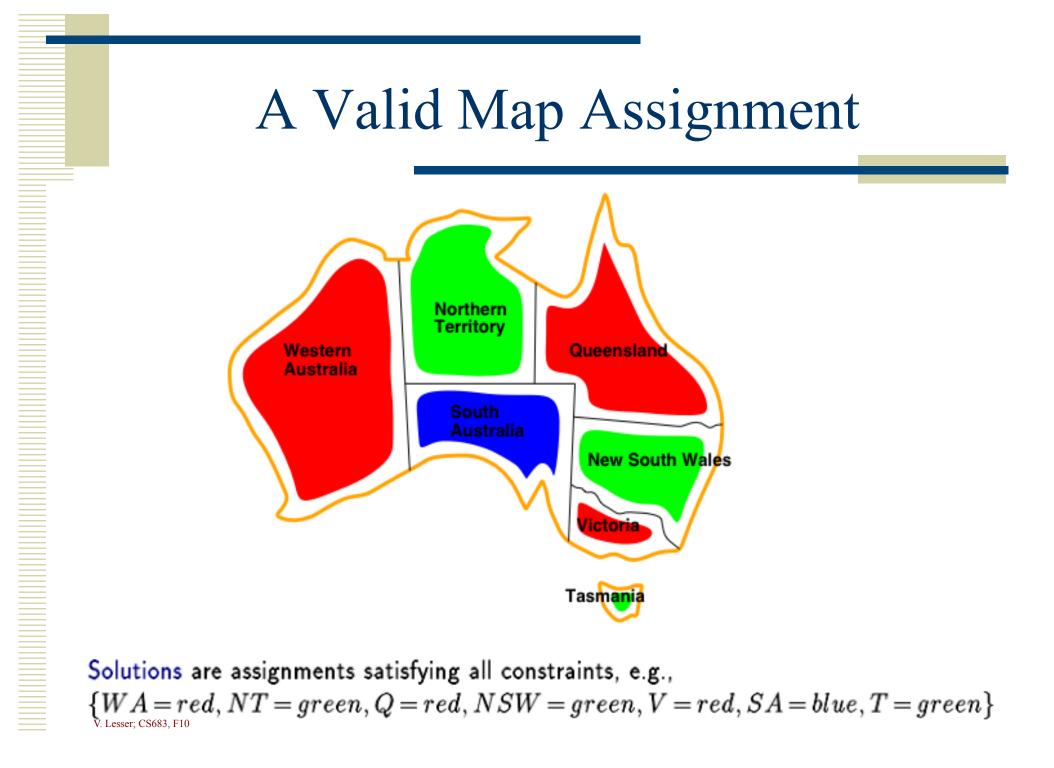
Today's Lecture

- Another Form of Local Search
 - Repair/Debugging in Constraint Satisfaction Problems
 GSAT
- A Systematic Approach to Constraint Satisfaction Problems
 - Simple Backtracking Search

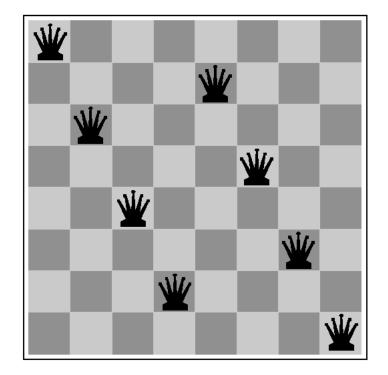
Constraint Satisfaction Problems (CSP)

- A set of variables X₁...X_n, and a set of constraints C₁...C_m. Each variable X_i has a domain D_i of possible values.
- A **solution** to a CSP: a complete assignment to all variables that satisfies all the constraints.
- Representation of constraints as predicates.
- Visualizing a CSP as a **constraint graph**.





Example 3: N queens

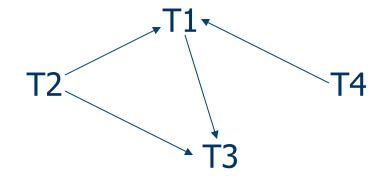


• What are the variables? domains? constraints?

8 queens

- 8 variables X_i , i = 1 to 8; for each column
- Domain for each variable {1,2,...,8}
- Constraints are:
 - $X_i \neq X_j$ for all j = 1 to 8, $j \neq I$; not on same row
 - $|X_i X_j| \neq |i j|$ for all j = 1 to 8, $j \neq I$; not on diagonal
 - Note that all constraints involve 2 variables
- Generate-and-test with no redundancies requires "only" N^N combinations...

Task scheduling



T1 must be done during T3T2 must be achieved before T1 startsT2 must overlap with T3T4 must start after T1 is complete

• What are the variables? domains? constraints?

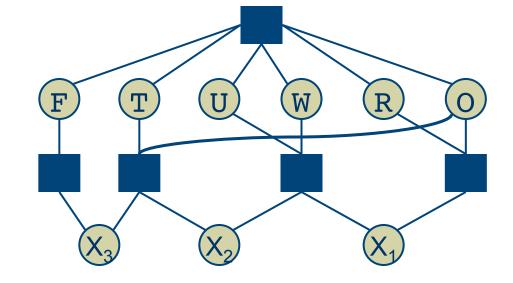
Non-Binary Constraints

TWO <u>+ T W O</u> FOUR

 \cdot O + O = R + 10 \cdot X1 • $X_1 + W + W = U + 10 \cdot X_2$ • $X_2 + T + T = 0 + 10 \cdot X_3$

•

 $\cdot X_3 = F$ alldiff(F,T,U,W,R,O) Between 0-9(F,T,U,W,R,O)Between 0–1 (X_1, X_2, X_3) V. Lesser; CS683, F10



3 or more variables constraints

Constraint optimization

- Representing *preferences* versus absolute constraints.
 - Weighted by constraints violated/satisfied
- Constraint optimization is generally more complicated.
- Can also be solved using local search techniques.
- Hard to find optimal solutions.

Local search for CSPs: Heuristic Repair

- Start state is some assignment of values to variables that may violate some constraints.
 - Create a complete but inconsistent assignment
- Successor state: change value of one variable.
- Use **heuristic repair** methods to reduce the number of conflicts (iterative improvement).
 - The min-conflicts heuristic: choose a value for a variable that minimizes the number of remaining conflicts.
 - Hill climbing on the number of violated constraints
- Repair constraint violations until a consistent assignment is achieved.
- Can solve the *million*-queens problem in an average of 50 steps!

Heuristic Repair Algorithm

function MIN-CONFLICTS(csp, max-steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
 max-steps, the number of steps allowed before giving up
local variables: current, a complete assignment
 var, a variable
 value, a value for a variable

current \leftarrow an initial complete assignment for *csp*

for i = 1 to max-steps do

 $var \leftarrow$ a randomly chosen, conflicted variable from VARIABLES[*csp*] $value \leftarrow$ the value v for var that minimizes CONFLICTS(var, v, current, csp) set var=value in current

if current is a solution for csp then return current

end

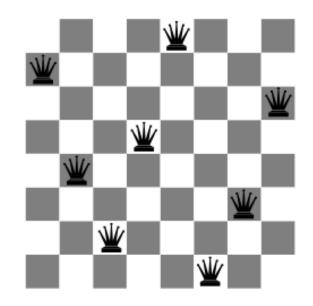
return failure

N-Queens Heuristic Repair

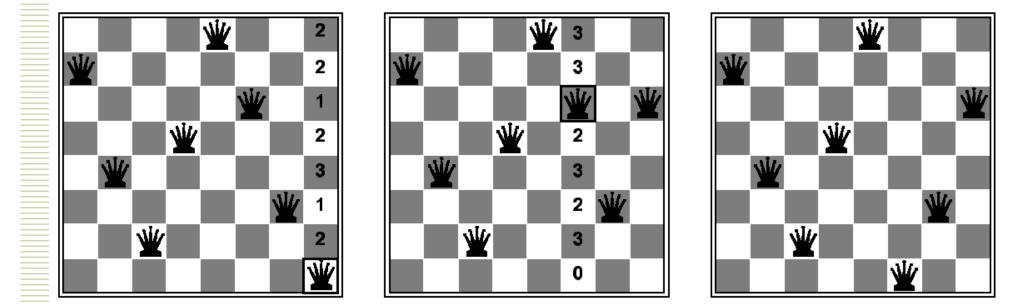
- Pre-processing phase to generate initial assignment
 - Greedy algorithm that iterates through rows placing each queen on the column where it conflicts with the fewest previously placed queens

Repair phase

• Select (randomly) a queen in a specific row that is in conflict and moves it to the column (within the same row) where it conflicts with the fewest other queens



Example of min-conflicts: N-Queens Problem



A two-step solution of an 8-queens problem. The number of remaining conflicts for each new position of the selected queen is shown. Algorithm moves the queen to the min-conflict square, breaking ties randomly.

SAT- Satisfiability Problem

Given a propositional sentence, determine if it is satisfiable, and if it is, show which propositions have to be true to make the sentence true. 3SAT is the problem of finding a satisfying truth assignment for a sentence in a special format

Why are we interested in this representational framework?

Definition of 3SAT

- A literal is a proposition symbol or its negation (e.g., P or $\neg P$).
- A clause is a disjunction of literals; a 3-clause is a disjunction of exactly 3 literals (e.g., P ∨ Q ∨ ¬ R).
- A sentence in CNF or **conjunctive normal form** is a conjunction of clauses; a 3-CNF sentence is a conjunction of 3-clauses.
- For example,

 $(P \lor Q \lor \neg S) \land (\neg P \lor Q \lor R) \land (\neg P \lor \neg R \lor \neg S) \land (P \lor \neg S \lor T)$ Is a 3-CNF sentence with four clauses and five proposition symbols.

Mapping 3-Queens into 3SAT

At least 1 has a Q not exactly 2 have Q's not all 3 have Q's $(Q_{1,1} \lor Q_{1,2} \lor Q_{1,3})$ $\land (Q_{1,1} \lor \neg Q_{1,2} \lor \neg Q_{1,3})$ $\land (\neg Q_{1,1} \lor Q_{1,2} \lor \neg Q_{1,3})$ $\land (\neg Q_{1,1} \lor \neg Q_{1,2} \lor \neg Q_{1,3})$ $\land (\neg Q_{1,1} \lor \neg Q_{1,2} \lor Q_{1,3})$ $\land (\neg Q_{1,1} \lor \neg Q_{1,2} \lor \neg Q_{1,3})$

Do the same for each row, the same for each column, the same for each diagonal, and ing them all together.

$$(Q_{2,1} \lor Q_{2,2} \lor Q_{2,3}) \land (Q_{2,1} \lor \neg Q_{2,2} \lor \neg Q_{2,3}) \land (\neg Q_{2,1} \lor \neg Q_{2,2} \lor Q_{2,3}) \land (\neg Q_{2,1} \lor \neg Q_{2,2} \lor Q_{2,3}) \land (\neg Q_{2,1} \lor \neg Q_{2,2} \lor \neg Q_{2,3}) \land (\neg Q_{1,1} \lor Q_{2,2} \lor \neg Q_{3,3}) \land (\neg Q_{1,1} \lor Q_{2,2} \lor \neg Q_{3,3}) \land (\neg Q_{1,1} \lor Q_{2,2} \lor \neg Q_{3,3}) \land (\neg Q_{1,1} \lor \neg Q_{2,2} \lor \neg Q_{3,3}) \land (\neg Q_{1,1} \lor \neg Q_{2,2} \lor \neg Q_{3,3}) \land (\neg Q_{1,1} \lor \neg Q_{2,2} \lor \neg Q_{3,3})$$

$$\vdots$$
etc.

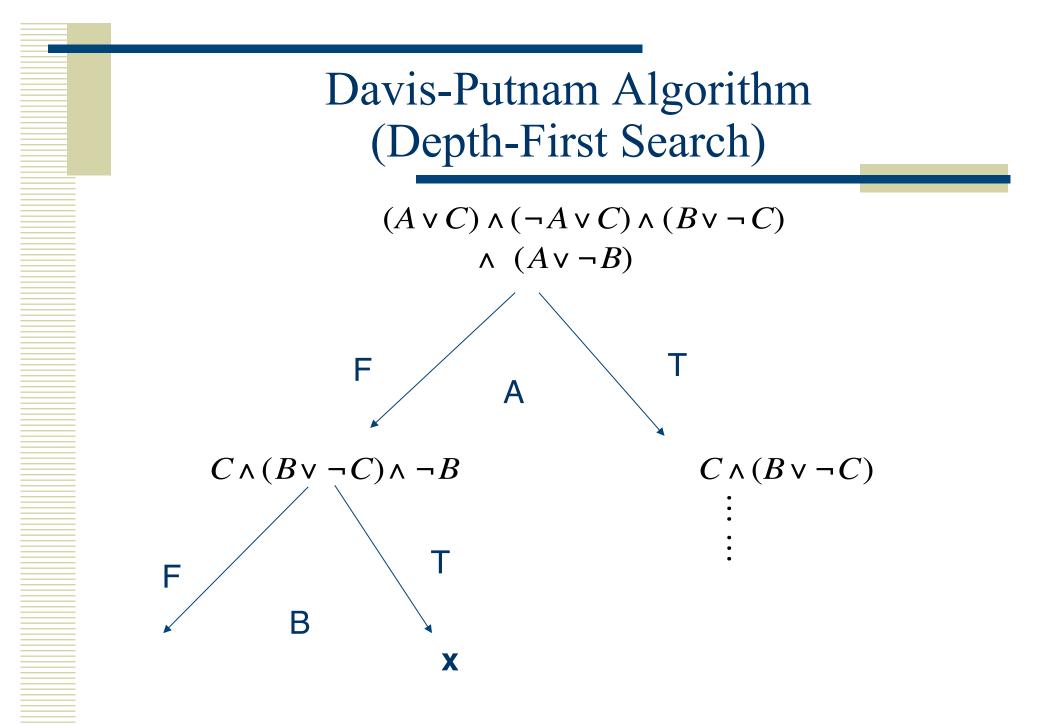
Converting N-SAT into 3-SAT

 $A \lor B \lor C \lor D$

= $(A \lor B \lor E) \land (\sim E \lor C \lor D)$ A = FA = TA = FB = F $\mathbf{B} = \mathbf{F}$ B = TC = FC = F $\mathbf{C} = \mathbf{T}$ $\mathbf{D} = \mathbf{F}$ D = FD = F $\mathbf{E} = \mathbf{F}$ $\mathbf{E} = \mathbf{F}$ $\mathbf{E} = \mathbf{T}$

Add in dummy variable E, not interested in its truth value from problem perspective nor does its truth affect satisfiability of original proposition

2 - SAT polynomial time but can' t map all problem into 2 - SAT



GSAT Algorithm

Problem: Given a formula of the propositional calculus, find an interpretation of the variables under which the formula comes out true, or report that none exists.

procedure GSAT

Input: a set of clauses ∝, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignments of \propto , if found

begin

for *i*:= 1 to MAX-TRIES ; random restart mechanism

T := a randomly generated truth assignment

for j := 1 to MAX-FLIPS

if T satisfies \propto then return T

p := a propositional variable such that a change in its truth assignment gives the largest increase in total number of clauses of \propto that are satisfied by *T*.

T := T with the truth assignment of p reversed

end for

end for

return "no satisfying assignment found"

end

GSAT Performance

<u> </u>									
formulas		GSAT			DP				
vars	clauses	M-FLIPS	tries	time	choices	depth	time		
50	215	250 .	6.4	0.4s	77	 i i	1.4s		
j 70	301	350	11.4	0.9s	42	15	1.45 15s		
100	430	500	42.5	6s	84×10^{3}	19	2.8m		
120	516	600	\$1.6	J4s	0.5×10^{6}	$\tilde{22}$	18m		
140	602	700	52.6	14s	$2.2 imes10^6$	27	4.7h		
150	645	1300	100.5	45s			т.г.п 		
200	860	2000	248.5	2.8m					
250	1062	2500	268.6	4.1m					
300	1275	6000	231.8	12m	[
400	1700	8000	440.9	34m					
500	2150	10000	995.8	1.6h		[]		

Domain: *n*-queens

	GSAT				
Queens	vars	clauses	flips	tries	time
8	64	736	105	2	0.15
20	400	12560	319	2	0.9s
30	900	43240	549	1	2.58
50	2500	203400	1329	1	17s
100	10000	1.6×10^{6}	5076	1	195s

GSAT versus Davis-Putnam (a backtracking style algorithm)

Domain: *hard* random 3CNF formulas, all satisfiable (hard means chosen from a region in which about 50% of problems are unsolvable)

GSAT Performance (cont'd)

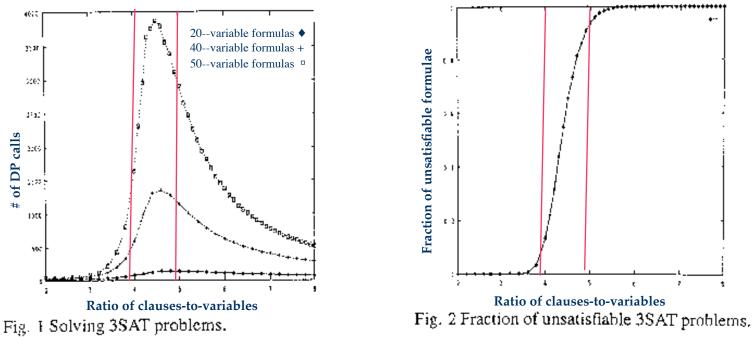
- GSAT Biased Random Walk
- With probability *p*, follow the standard GSAT scheme,
 - *i.e.*, make the best possible flip.
- With probability 1 *p*, pick a variable occurring in some unsatisfied clause and flip its truth assignment. (Note: a possible uphill move.)
- GSAT-Walk < Simulated-Annealing < GSAT-Noise < GSAT-Basic

formula GSAT						Simul. Ann.			
10mm		basic		walk		noise		1.	1 to
vars]	clauses	time	flips	time	flips	time	<u> nips</u>	time	flips
100	430	.4	7554	.2	2385	.6	9975	.6	4748
	860	22	284693	4	27654	47	396534	21	106643
200		• •	2.6×10^{6}	7	59744	95	892048	75	552433
400	1700	122		35	241651	929	7.8×10^{6}	427	2.7×10^{6}
600	2550	1471	30×10^{6}			*	*	*	*
800	3400	*	*	286	1.8×10^{6}	*	*	*	*
1000	4250	*	*	1095	5.8×10^{6}		i *	*	*
2000	8480	*	*	3255	23×10^{6}	*		<u> </u>	

Comparing noise strategies on hard random 3CNF formulas. (Time in seconds on an SGI Challenge)

3SAT Phase Transition

- Easy -- Sastifiable problems where many solutions
- Hard -- Sastifiable problems where few solutions
- Easy -- Few Satisfiable problems



• Assumes concurrent search in the satisfiable space and the non-satisfiable space (negation of proposition)

A Simplistic Approach to Solving CSPs using Systematic Search

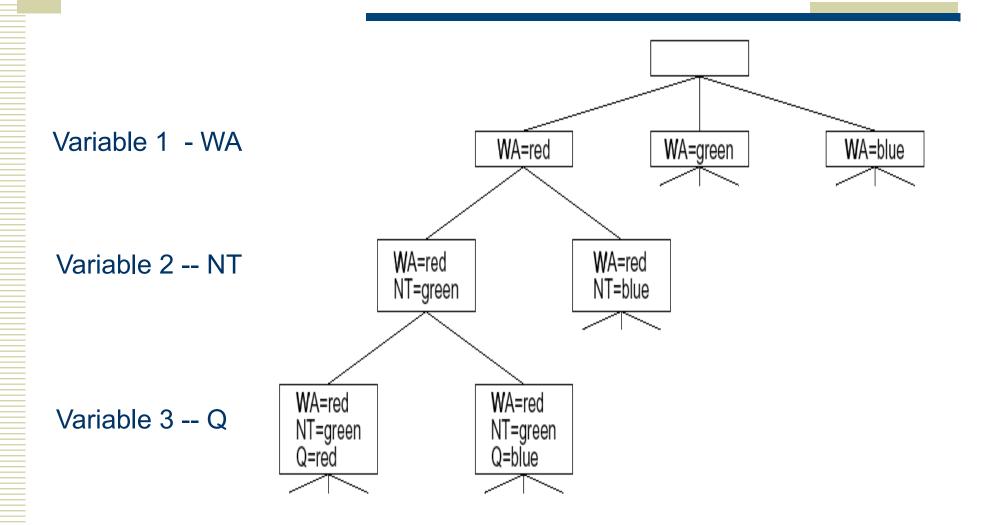
- Initial state: the empty assignment
- Successor function: a value can be assigned to any variable as long as no constraint is violated.
- Goal test: the current assignment is complete.
- Path cost: a constant cost for every step. not relevant

What more is needed?

- Not just a successor function and goal test
- But also a means to propagate the constraints imposed by variables already bound along the path on the potential fringe nodes of that path and an early failure test
- Thus, need explicit representation of constraints and constraint manipulation algorithms

Exploiting Commutativity

- Naïve application of search to CSPs:
 - If use breath first search
 - Branching factor is n d at the top level, then (n-1)d, and so on for n levels (n variables, and d values for each variable).
 - The tree has *n*! *d*^{*n*} leaves, even though there are only *d*^{*n*} possible complete assignments!
- Naïve formulation ignores commutativity of all CSPs: the order of any given set of actions has no effect on the outcome.
 - [WA=red, NT=green] same as [NT=green, WA=red]
- Solution: consider a single variable at each depth of the tree.



Next Lecture

- Informed-Backtracking Using Min-Conflicts Heuristic
 - Arc Consistency for Pre-processing
 - Intelligent backtracking
 - Reducing the Search by structuring the CSP as a tree search
- Extending the model of simple heuristic search
 - Interacting subproblem perspective