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Today’s Lecture

¢ Another Form of Local Search

»s Repair/Debugging in Constraint Satisfaction Problems

o GSAT

+ A Systematic Approach to Constraint Satisfaction
Problems

= Simple Backtracking Search

V. Lesser; CS683, F10



Constraint Satisfaction Problems (CSP)

* A set of variables X,...X . and a set of
constraints C,...C, . Each variable X has a
domain D; of possible values.

+ A solution to a CSP: a complete assignment
to all variables that satisfies all the
constraints.

¢ Representation of constraints as predicates.
¢ Visualizing a CSP as a constraint graph.



Example: Map coloring

Constraint graph: nodes are variables
| . |
arcs show constraints

4N .

NORTHERN

TERRITORY
WESTERN AUSTRALIA QUEENSLAND
SOUTH

AUSTRALIA
NELW

SOUTH
LUALES

VICTORIA o

‘ TASMANIA
Variables WA, NT, Q, NSW,V,SA, T @
Domains D; = {red, green, blue}
Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}
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A Valid Map Assignment

o ——

Tasm"a

Solutions are assignments satisfying all constraints, e.g.,

{WA=red, NT =green,Q =red, NSW =green,V =red, SA=blue, T = green}
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3 queens

+ & variables X, 1= 1 to §; for each column

¢ Domain for each variable {1,2,...,8}

¢ (Constraints are:
s X;= X, forallj=1 to 8, j=I; not on same row
s [X;-Xi|=[1-]| forallj=1to 8, j=I; not on diagonal
= Note that all constraints involve 2 variables

¢ Generate-and-test with no redundancies requires
“only” NN combinations...
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Task scheduling

TZ/ Tl\v\m
s

T1 must be done during T3

T2 must be achieved before T1 starts
T2 must overlap with T3

T4 must start after T1 is complete

« What are the variables? domains? constraints?
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Non-Binary Constraints

TWO
+TWO

FOUR

- 0+0 = R+10-X1
© X, +W4+W = U+10-X,
+ X,+T+T = 0+10-X,

+ X, = F
* alldiff(F,T,U,W,R,0) 3 or more variables
- Between0-9(F¥,T,U,W,R,0) constraints

- Between0O-1 (X;,X,,X;)



Constraint optimization

¢ Representing preferences versus absolute
constraints.

= Weighted by constraints violated/satisfied

¢ Constraint optimization 1s generally more
complicated.

¢ Can also be solved using local search
techniques.

¢ Hard to find optimal solutions.



LLocal search for CSPs:
Heuristic Repair

¢ Start state 1s some assignment of values to variables that may
violate some constraints.

s Create a complete but inconsistent assignment
¢ Successor state: change value of one variable.

¢ Use heuristic repair methods to reduce the number of conflicts
(iterative improvement).

= The min-conflicts heuristic: choose a value for a variable
that minimizes the number of remaining conflicts.

= Hill climbing on the number of violated constraints

¢ Repair constraint violations until a consistent assignment is
achieved.

¢ (Can solve the million-queens problem in an average of 50 steps!
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Heuristic Repair Algorithm

function MIN-CONFLICTS(csp, max-steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max-steps, the number of steps allowed before giving up
local variables: current, a complete assignment
var, a variable
value, a value for a variable

current — an mitial complete assignment for csp
for i = | to max-steps do
var +— a randomly chosen, conflicted variable from VARIABLES[csp]
value + the value v for var that minimizes CONFLICTS(var, v, current,csp)
set var=value in current
if current 1s a solution for csp then return current
end
return failure
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N-Queens Heuristic Repair

¢ Pre-processing phase to generate initial
assignment

s Greedy algorithm that iterates through rows
placing each queen on the column where it
conflicts with the fewest previously placed

queens

¢ Repair phase

e Sclect (randomly) a queen in a specific row that is

in conflict and moves it to the column (within the
same row) where it conflicts with the fewest other

queens
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Example of min-conflicts:
N-Queens Problem

N Byl =
[

B
_F
B
L

L
W Il
Il
Nyl =
B N N¥N

BB

A two-step solution of an 8-queens problem. The number of remaining
conflicts for each new position of the selected queen is shown. Algorithm
moves the queen to the min-conflict square, breaking ties randomly.
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SAT- Satisfiability Problem

Given a propositional sentence, determine 1f 1t 1s
satisfiable, and if 1t 1s, show which propositions
have to be true to make the sentence true. 3SAT 1s
the problem of finding a satisfying truth
assignment for a sentence 1n a special format

Why are we interested in this representational

framework?



Definition of 3SAT

+ A literal 1s a proposition symbol or its negation (e.g., P or — P).

¢ A clause 1s a disjunction of literals; a 3-clause is a disjunction of exactly 3
literals (e.g., P vQO v R).

+ A sentence in CNF or conjunctive normal form is a conjunction of clauses; a 3-

CNF sentence 1s a conjunction of 3-clauses.

¢ For example,
PvOv—-S)A(CPVOVR)A(CPVv—-Rv—-8S)APv—~-SvT
Is a 3-CNF sentence with four clauses and five proposition symbols.
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Mapping 3-Queens into 3SAT

Atleast 1 hasa Q not exactly 2 have Q's not all 3 have Q's
(Ql,l v Q1,2 v Q1,3) A (Qm v _'Ql,z v _'Q1,3)
A (_'Ql,l v Q1,2 v _'Q1,3)
A (_'Ql,l v _'Q1,2 v Q1,3) A (_'Ql,l v ﬁQl,Z v _'Q1,3)

Do the same for each row, the same for each column, the same for each

diagonal, and'ing them all together.
A

(Qz,l v Qz,z v Q2,3) A (QZ,I v _'Qz,z v _'Q2,3)
A (ﬁQZ,l v Qz,z v _'Qz,s) A (_'Qz,l v _'Qz,z v Q2,3) A (_'Qz,l v ﬂQz,z v _'Q2,3)

A

(Q1,1 v Qz,z v Qs,s) A (Ql,l v _'Qz,z v _'Q3,3) A (_'Ql,l v Qz,z v ﬁQ3,3)
A (_'Ql,l v _'Qz,z v Q3,3) A (_'Ql,l v _'Qz,z v _'Q3,3)

etc.
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Converting N-SAT into 3-SAT

Av BvCv D

(Av B

A=T A
B=F B
C=F C
D=F D
E=F E

v EYN(~ Ev C v D)

|
T = T T

oQwp»

(7]
|

~

Add in dummy variable E, not
interested in its truth value
from problem perspective nor
does its truth affect
satisfiability of original
proposition

2 - SAT polynomial time but can't

map all problem into 2 - SAT
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Davis-Putnam Algorithm
(Depth-First Search)

AvO)A(CAVO)A(BV=0)
A (Av = B)

CAn(Bv-C)an—-B CA(Bv-0)

VAN



GSAT Algorithm

Problem: Given a formula of the propositional calculus, find an interpretation of the variables under which the formula
comes out true, or report that none exists.

procedure GSAT
Input: a set of clauses ¢, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignments of o, if found
begin
for i:-= 1 to MAX-TRIES ; random restart mechanism

T := arandomly generated truth assignment
for j .= 1 to MAX-FLIPS

if T satisfies X then return 7
p = apropositional variable such that a change in its truth assignment gives the largest increase in
total number of clauses of & that are satistied by 7.
T := T with the truth assignment of p reversed
end for
end for
return “no satisfying assignment found”

end
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GSAT Performance

formulas GSAT DpP
vars | clauses §| M-FLIPS | :ries | time choices | depth { time
=0 775 TS0 B4 [ 0.4s 77 L T4s
70 301 350 | 114 | 0.0s 42 15 ' 15e
150 430 800 | <25 6s § 84x10° 19 | 2.8m
120 516 600 4 £1.6 l4s | 0.5 x 105 2 { 18m
140 602 T00 | 326 | 14s12.2x 105 27 1 4.7h
150 545 1300 | 100.5 [ 45s — . _
200 260 2000 1 2485 1 2.8m — — _
280 1062 2800 | 2686 1 4.1m — — —_
300 1275 6000 | 251.8 | 12m — _ _
400 1700 8000 | +20.0 | 34m — _ _
500 2150 | 10000 | €558 | 1.64 — — _
Domain: n-queens

formulas "GSAT |

Queens vars | clauses || flips | tries | time |

5 64 P36 105 20 00s

201 400 | 12560 | 31| 2| oo |

30 960 43240 |i 540 bl 2.5

a0 | 2500 1 203400 | 13920 1] 17s ]

100 | 10000 { 1.6x10% || 5076 | 1| 195 ,-
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GSAT versus
Davis-Putnam

(a backtracking
style algorithm)

Domain: hard
random 3CNF
formulas, all satisfiable
(hard means chosen
from a region in which
about 50% of problems
are unsolvable)



GSAT Performance (cont’d)

¢ GSAT Biased Random Walk
+ With probability p, follow the standard GSAT scheme,
= i.e., make the best possible flip.

¢ With probability 1 - p, pick a variable occurring in some unsatisfied clause
and flip its truth assignment. (Note: a possible uphill move.)

¢ GSAT-Walk < Simulated-Annealing < GSAT-Noise < GSAT-Basic

formula GSAT Bl; Stmul. Ann.
) basic walk noise ] . ips
[ ips ine ips ime Nips timme
urs lauscs time lips tiine 1ips tme
Vl;;; - duchS .4 7554 .2 2385 .6 99735 .6 Oggjg
200 860 22 284693 4 27654 47 396534 21 ;52433
400 1700 122 | 2.6x10° 7 59744 95 892048 ;3 352432
600 25560 1471 30x 10° 35 241653{} 929 7.8 % 10* 4 7 . N
800 3400 * * 286 1.8x 106 * N N .
1000 4250 * - 1095 5.8x 106 : l . . )
* * 3255 23 <10
2000 8480

Comparing noise strategies on hard random 3CNF formulas. (Time in seconds on an SGI Challenge)
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3SAT Phase Transition

¢ Easy -- Sastifiable problems where many solutions
¢+ Hard -- Sastifiable problems where few solutions

¢ FEasy -- Few Satisfiable problems
s 1 T ) T T : ] .'.' et iy -
e'b'-‘ .
¢ 20--variable formulas ¢ | f
narp i % | 40--variable formulas + 1 © i !
. L 50--variable formulas © -'—4; e f
: ) ) ;
‘ S : !
1y n 2 b l’ I| M
’ [ S ¢
2 : e fi=] 1
=Y S E {
r: ."n 3 1 "
¢ c |
E : . "hu =} f
4=°I: .'.. : \ ’U ‘S !
1% i ., %y g i ;
¢ ’.‘ \,.‘ 55" ."3 (13 ;
. b “In.
; T Sy &
e { ._r ""*--«..,.‘ o = .
-‘l../ '0'..~'- E
. i T g et ey e i - ‘/; ; : : :
: 1 ] ] 3 1 L] °
Ratio of clauses-to-variables

Ratio of clauses-to-variables ) . k :
Fig.  Solving 3SAT problems. Fig. 2 Fraction ot unsatisfiable 3SAT problems,

¢ Assumes concurrent search in the satisfiable space and the non-satisfiable space
( negation of proposition)
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A Simplistic Approach to Solving CSPs
using Systematic Search

¢+ Initial state: the empty assignment

¢ Successor function: a value can be
assigned to any variable as long as no
constraint 1s violated.

* Goal test: the current assignment 1s
complete.

¢ Path cost: a constant cost for every
step. — not relevant



What more 1s needed?

* Not just a successor function and goal test

+ But also a means to propagate the
constraints imposed by variables already
bound along the path on the potential fringe
nodes of that path and an early failure test

¢ Thus, need explicit representation of
constraints and constraint manipulation
algorithms



Exploiting Commutativity

¢ Naive application of search to CSPs:
s If use breath first search

= Branching factor is n ed at the top level, then (n-1)d, and so on
for n levels (n variables, and d values for each variable).

= The tree has n!/ ed" leaves, even though there are only d” possible
complete assignments!

¢ Naive formulation 1ignores commutativity of all CSPs:
the order of any given set of actions has no effect on the
outcome.

s [WA=red, NT=green]| same as [NT=green, WA=red]
¢ Solution: consider a single variable at each depth of the

[ ]
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Part of the map-coloring search tree

Variable 1 - WA

Variable 2 -- NT

Variable 3 -- Q
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WA=red

WA=red
NT=green

WA=red
NT=green
Q=red

e

WA=green

WA=red
NT=blue

WA=red
NT=green
Q=hlue

P

WA=blue
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Next Lecture

 Informed-Backtracking Using
Min-Conflicts Heuristic

* Arc Consistency for Pre-processing

* Intelligent backtracking

* Reducing the Search by structuring the CSP

as a tree search

« Extending the model of simple

* Interacting subproblem pers

neuristic search

nective




