
Lecture 9: Search 8

Victor R. Lesser
CMPSCI 683

Fall 2010

ANNOUNCEMENTS

 REMEMBER LECTURE ON TUESDAY!

 EXAM ON OCTOBER 18
  OPEN BOOK
  ALL MATERIAL COVERED IN LECTURES
  REQUIRED READINGS

 WILL MOST PROBABLY NOT COVER
MATERIAL ON PLANNING

V. Lesser; CS683, F10

Today’s Lecture

  Another Form of Local Search
  Repair/Debugging in Constraint Satisfaction Problems

  GSAT

  A Systematic Approach to Constraint Satisfaction
Problems
  Simple Backtracking Search

V. Lesser; CS683, F10

Constraint Satisfaction Problems (CSP)

 A set of variables X1…Xn, and a set of
constraints C1…Cm. Each variable Xi has a
domain Di of possible values.

 A solution to a CSP: a complete assignment
to all variables that satisfies all the
constraints.

 Representation of constraints as predicates.
 Visualizing a CSP as a constraint graph.

V. Lesser; CS683, F10

Example: Map coloring

T"

V. Lesser; CS683, F10

A Valid Map Assignment

V. Lesser; CS683, F10

Example 3: N queens

•  What are the variables? domains? constraints?"

V. Lesser; CS683, F10

  8 variables Xi, i = 1 to 8; for each column
  Domain for each variable {1,2,…,8}
  Constraints are:

  Xi ≠ Xj for all j = 1 to 8, j≠I; not on same row
  |Xi - Xj| ≠ |i - j| for all j = 1 to 8, j≠I; not on diagonal
  Note that all constraints involve 2 variables

  Generate-and-test with no redundancies requires
“only” NN combinations…

V. Lesser; CS683, F10

T1 must be done during T3
T2 must be achieved before T1 starts
T2 must overlap with T3
T4 must start after T1 is complete

T1

T2

T3

T4

•  What are the variables? domains? constraints?"

V. Lesser; CS683, F10

Non-Binary Constraints

•  O + O = R + 10•X1	

•  X1 + W + W = U + 10•X2	

•  X2 + T + T = O + 10•X3	

•  X3 = F	

•  alldiff(F,T,U,W,R,O)	

•  Between0–9(F,T,U,W,R,O)	

•  Between0–1 (X1,X2,X3)	

T W O	

 + T W O	

F O U R

F	

 T	

 U	

 W	

 R	

 O	

X3 X2 X1

3 or more variables
constraints

V. Lesser; CS683, F10

Constraint optimization

 Representing preferences versus absolute
constraints.
  Weighted by constraints violated/satisfied

 Constraint optimization is generally more
complicated.

 Can also be solved using local search
techniques.

 Hard to find optimal solutions.

V. Lesser; CS683, F10

Local search for CSPs:
Heuristic Repair

  Start state is some assignment of values to variables that may
violate some constraints.
  Create a complete but inconsistent assignment

  Successor state: change value of one variable.
  Use heuristic repair methods to reduce the number of conflicts

(iterative improvement).
  The min-conflicts heuristic: choose a value for a variable

that minimizes the number of remaining conflicts.
  Hill climbing on the number of violated constraints

  Repair constraint violations until a consistent assignment is
achieved.

  Can solve the million-queens problem in an average of 50 steps!

V. Lesser; CS683, F10

Heuristic Repair Algorithm

V. Lesser; CS683, F10

N-Queens Heuristic Repair
  Pre-processing phase to generate initial

assignment
  Greedy algorithm that iterates through rows

placing each queen on the column where it
conflicts with the fewest previously placed
queens

  Repair phase
  Select (randomly) a queen in a specific row that is

in conflict and moves it to the column (within the
same row) where it conflicts with the fewest other
queens

V. Lesser; CS683, F10

Example of min-conflicts:
N-Queens Problem

A two-step solution of an 8-queens problem. The number of remaining
conflicts for each new position of the selected queen is shown. Algorithm
moves the queen to the min-conflict square, breaking ties randomly.

V. Lesser; CS683, F10

SAT- Satisfiability Problem

Given a propositional sentence, determine if it is
satisfiable, and if it is, show which propositions
have to be true to make the sentence true. 3SAT is
the problem of finding a satisfying truth
assignment for a sentence in a special format

Why are we interested in this representational
framework?

V. Lesser; CS683, F10

Definition of 3SAT

  A literal is a proposition symbol or its negation (e.g., P or ¬ P).

  A clause is a disjunction of literals; a 3-clause is a disjunction of exactly 3
literals (e.g., P ∨ Q ∨ ¬ R).

  A sentence in CNF or conjunctive normal form is a conjunction of clauses; a 3-
CNF sentence is a conjunction of 3-clauses.

  For example,

(P ∨ Q ∨ ¬ S) ∧ (¬ P ∨ Q ∨ R) ∧ (¬ P ∨ ¬ R ∨ ¬ S) ∧ (P ∨ ¬ S ∨ T)
Is a 3-CNF sentence with four clauses and five proposition symbols.
V. Lesser; CS683, F10

Mapping 3-Queens into 3SAT

 At least 1 has a Q not exactly 2 have Q's not all 3 have Q's
 (Q1,1 ∨ Q1,2 ∨ Q1,3) ∧ (Q1,1 ∨ ¬Q1,2 ∨ ¬Q1,3)
 ∧ (¬Q1,1 ∨ Q1,2 ∨ ¬Q1,3)
 ∧ (¬Q1,1 ∨ ¬Q1,2 ∨ Q1,3) ∧ (¬Q1,1 ∨ ¬Q1,2 ∨ ¬Q1,3)

Do the same for each row, the same for each column, the same for each
diagonal, and'ing them all together.
 ∧
 (Q2,1 ∨ Q2,2 ∨ Q2,3) ∧ (Q2,1 ∨ ¬Q2,2 ∨ ¬Q2,3)
∧ (¬Q2,1 ∨ Q2,2 ∨ ¬Q2,3) ∧ (¬Q2,1 ∨ ¬Q2,2 ∨ Q2,3) ∧ (¬Q2,1 ∨ ¬Q2,2 ∨ ¬Q2,3)
 ∧
 (Q1,1 ∨ Q2,2 ∨ Q3,3) ∧ (Q1,1 ∨ ¬Q2,2 ∨ ¬Q3,3) ∧ (¬Q1,1 ∨ Q2,2 ∨ ¬Q3,3)
∧ (¬Q1,1 ∨ ¬Q2,2 ∨ Q3,3) ∧ (¬Q1,1 ∨ ¬Q2,2 ∨ ¬Q3,3)
 
 etc.

V. Lesser; CS683, F10

Converting N-SAT into 3-SAT

A ∨ B ∨C ∨ D
≡

(A ∨ B∨ E)∧(~ E ∨C ∨ D)
A = T A = F A = F
B = F B = T B = F
C = F C = F C = T 
D = F D = F D = F
E = F E = F E = T

2 - SAT polynomial time but can' t
map all problem into 2 - SAT

V. Lesser; CS683, F10

Add in dummy variable E, not
interested in its truth value
from problem perspective nor
does its truth affect
satisfiability of original
proposition

Davis-Putnam Algorithm
(Depth-First Search)
(A∨C)∧(¬A∨C)∧ (B∨¬C)
 ∧ (A∨¬B)

C∧(B∨¬C)∧¬B C∧(B∨¬C)
 
 

F	

 A	

T"

F	

B	

T	

x	

V. Lesser; CS683, F10

GSAT Algorithm

Problem: Given a formula of the propositional calculus, find an interpretation of the variables under which the formula
comes out true, or report that none exists.

procedure GSAT

Input: a set of clauses ∝, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignments of ∝, if found
begin

 for i:= 1 to MAX-TRIES ; random restart mechanism
 T := a randomly generated truth assignment
 for j := 1 to MAX-FLIPS

 if T satisfies ∝ then return T

 p := a propositional variable such that a change in its truth assignment gives the largest increase in

total number of clauses of ∝ that are satisfied by T.
 T := T with the truth assignment of p reversed
 end for
 end for
 return “no satisfying assignment found”

end
V. Lesser; CS683, F10

GSAT Performance
GSAT versus
Davis-Putnam
(a backtracking
style algorithm)

Domain: hard
random 3CNF
formulas, all satisfiable
(hard means chosen
from a region in which
about 50% of problems
are unsolvable)	

V. Lesser; CS683, F10

GSAT Performance (cont’d)
  GSAT Biased Random Walk
  With probability p, follow the standard GSAT scheme,

  i.e., make the best possible flip.
  With probability 1 - p, pick a variable occurring in some unsatisfied clause

and flip its truth assignment. (Note: a possible uphill move.)
  GSAT-Walk < Simulated-Annealing < GSAT-Noise < GSAT-Basic

Comparing noise strategies on hard random 3CNF formulas. (Time in seconds on an SGI Challenge)	

V. Lesser; CS683, F10

3SAT Phase Transition

20--variable formulas ♦	

40--variable formulas +	

50--variable formulas 	

Ratio of clauses-to-variables	

of

 D
P

ca
lls
	

Ratio of clauses-to-variables	

Fr

ac
tio

n
of

 u
ns

at
is

fia
bl

e
fo

rm
ul

ae	

  Easy -- Sastifiable problems where many solutions
  Hard -- Sastifiable problems where few solutions
  Easy -- Few Satisfiable problems

  Assumes concurrent search in the satisfiable space and the non-satisfiable space
(negation of proposition)

V. Lesser; CS683, F10

V. Lesser; CS683, F10

A Simplistic Approach to Solving CSPs
using Systematic Search

 Initial state: the empty assignment
 Successor function: a value can be

assigned to any variable as long as no
constraint is violated.

 Goal test: the current assignment is
complete.

 Path cost: a constant cost for every
step. – not relevant

 Not just a successor function and goal test
 But also a means to propagate the

constraints imposed by variables already
bound along the path on the potential fringe
nodes of that path and an early failure test

 Thus, need explicit representation of
constraints and constraint manipulation
algorithms

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Exploiting Commutativity
  Naïve application of search to CSPs:

  If use breath first search
  Branching factor is n•d at the top level, then (n-1)d, and so on

for n levels (n variables, and d values for each variable).
  The tree has n!•dn leaves, even though there are only dn possible

complete assignments!

  Naïve formulation ignores commutativity of all CSPs:
the order of any given set of actions has no effect on the
outcome.
  [WA=red, NT=green] same as [NT=green, WA=red]

  Solution: consider a single variable at each depth of the
tree.

V. Lesser; CS683, F10

Part of the map-coloring search tree

Variable 1 - WA

Variable 2 -- NT

Variable 3 -- Q

Next Lecture

V. Lesser; CS683, F10

•  Informed-Backtracking Using
 Min-Conflicts Heuristic
•  Arc Consistency for Pre-processing
•  Intelligent backtracking
•  Reducing the Search by structuring the CSP
as a tree search

•  Extending the model of simple heuristic search

•  Interacting subproblem perspective

