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ANNOUNCEMENTS 

 REMEMBER LECTURE ON TUESDAY! 

 EXAM ON OCTOBER 18 
  OPEN BOOK 
  ALL MATERIAL COVERED IN LECTURES 
  REQUIRED READINGS 

 WILL MOST PROBABLY NOT COVER 
MATERIAL ON PLANNING 
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Today’s Lecture 

  Another Form of Local Search 
  Repair/Debugging in Constraint Satisfaction Problems 

  GSAT 

  A Systematic Approach to Constraint Satisfaction 
Problems 
  Simple Backtracking Search 
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Constraint Satisfaction Problems (CSP) 

 A set of variables X1…Xn, and a set of 
constraints C1…Cm.  Each variable Xi has a 
domain Di of possible values. 

 A solution to a CSP: a complete assignment 
to all variables that satisfies all the 
constraints. 

 Representation of constraints as predicates. 
 Visualizing a CSP as a constraint graph. 
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Example: Map coloring 

T"
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A Valid Map Assignment 
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Example 3: N queens 

•  What are the variables? domains? constraints?"
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   8 variables Xi, i = 1 to 8; for each column 
   Domain for each variable {1,2,…,8} 
   Constraints are: 

  Xi ≠ Xj  for all j = 1 to 8, j≠I; not on same row 
  |Xi - Xj| ≠ |i - j|  for all j = 1 to 8, j≠I; not on diagonal 
  Note that all constraints involve 2 variables 

  Generate-and-test with no redundancies requires 
“only” NN combinations… 
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T1 must be done during T3 
T2 must be achieved before T1 starts 
T2 must overlap with T3 
T4 must start after T1 is complete 

T1 

T2 

T3 

T4 

•  What are the variables? domains? constraints?"
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Non-Binary Constraints 

•  O + O = R + 10•X1	


•  X1 + W + W = U + 10•X2	


•  X2 + T + T = O + 10•X3	


•  X3 = F	


•  alldiff(F,T,U,W,R,O)	


•  Between0–9(F,T,U,W,R,O)	


•  Between0–1 (X1,X2,X3)	



T W O	


 + T W O	


F O U R 

F	

 T	
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X3 X2 X1 

3 or more variables 
constraints 
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Constraint optimization 

 Representing preferences versus absolute 
constraints. 
  Weighted by constraints violated/satisfied 

 Constraint optimization is generally more 
complicated. 

 Can also be solved using local search 
techniques. 

 Hard to find optimal solutions. 
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Local search for CSPs: 
Heuristic Repair 

  Start state is some assignment of values to variables that may 
violate some constraints. 
  Create a complete but inconsistent assignment 

  Successor state: change value of one variable. 
  Use heuristic repair methods to reduce the number of conflicts 

(iterative improvement). 
  The min-conflicts heuristic: choose a value for a variable 

that minimizes the number of remaining conflicts. 
  Hill climbing on the number of violated constraints 

  Repair constraint violations until a consistent assignment is 
achieved. 

  Can solve the million-queens problem in an average of 50 steps! 
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Heuristic Repair Algorithm 

V. Lesser; CS683, F10 



N-Queens Heuristic Repair 
  Pre-processing phase to generate initial 

assignment 
  Greedy algorithm that iterates through rows 

placing each queen on the column where it 
conflicts with the fewest previously placed 
queens 

  Repair phase 
  Select (randomly) a queen in a specific row that is 

in conflict and moves it to the column (within the 
same row) where it conflicts with the fewest other 
queens 
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Example of min-conflicts:  
N-Queens Problem 

A two-step solution of an 8-queens problem.  The number of remaining 
conflicts for each new position of the selected queen is shown. Algorithm 
moves the queen to the min-conflict square, breaking ties randomly. 
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SAT-  Satisfiability Problem  

Given a propositional sentence, determine if it is 
satisfiable, and if it is, show which propositions 
have to be true to make the sentence true. 3SAT is 
the problem of finding a satisfying truth 
assignment for a sentence in a special format 

Why are we interested in this representational 
framework? 
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Definition of 3SAT 

  A literal is a proposition symbol or its negation (e.g., P or ¬ P). 

  A clause is a disjunction of literals; a 3-clause is a disjunction of exactly 3 
literals (e.g., P  ∨ Q  ∨ ¬ R ). 

  A sentence in CNF or conjunctive normal form is a conjunction of clauses; a 3-
CNF sentence is a conjunction of 3-clauses. 

  For example, 

(P ∨ Q ∨ ¬ S) ∧ (¬ P ∨ Q ∨ R) ∧ (¬ P ∨ ¬ R ∨ ¬ S) ∧ (P ∨ ¬ S ∨ T) 
Is a 3-CNF sentence with four clauses and five proposition symbols. 
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Mapping 3-Queens into 3SAT 

  

 At least 1 has a Q         not exactly 2 have Q's        not all 3 have Q's
  (Q1,1 ∨  Q1,2  ∨  Q1,3)     ∧   (Q1,1 ∨  ¬Q1,2 ∨  ¬Q1,3)
                                                       ∧   (¬Q1,1 ∨  Q1,2  ∨  ¬Q1,3)
                                     ∧   (¬Q1,1 ∨  ¬Q1,2 ∨  Q1,3)    ∧   (¬Q1,1 ∨  ¬Q1,2  ∨  ¬Q1,3) 

Do the same for each row, the same for each column, the same for each
diagonal,  and'ing them all together.
                                                            ∧
    (Q2,1 ∨  Q2,2 ∨  Q2,3)     ∧   (Q2,1 ∨  ¬Q2,2 ∨  ¬Q2,3)
∧ (¬Q2,1 ∨  Q2,2  ∨  ¬Q2,3) ∧   (¬Q2,1 ∨  ¬Q2,2 ∨  Q2,3)  ∧   (¬Q2,1 ∨  ¬Q2,2 ∨  ¬Q2,3) 
                                                            ∧
     (Q1,1 ∨  Q2,2 ∨  Q3,3)     ∧    (Q1,1 ∨  ¬Q2,2 ∨  ¬Q3,3) ∧   (¬Q1,1 ∨  Q2,2 ∨  ¬Q3,3)
∧  (¬Q1,1 ∨  ¬Q2,2 ∨  Q3,3) ∧   (¬Q1,1 ∨  ¬Q2,2  ∨  ¬Q3,3) 
                                          
                                        etc.
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Converting N-SAT into 3-SAT 

  

A ∨ B ∨C ∨ D
≡

(A ∨ B∨ E)∧(~ E ∨C ∨ D)
A = T          A = F          A = F
B = F           B = T          B = F
C = F           C = F          C = T      
D = F          D = F          D = F
E = F           E = F          E = T

2 - SAT polynomial time but can' t
map all problem into 2 - SAT
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Add in dummy variable E, not 
interested in its truth value 
from problem perspective nor 
does its truth affect 
satisfiability of original 
proposition 



Davis-Putnam Algorithm 
(Depth-First Search) 
(A∨C)∧(¬A∨C)∧ (B∨¬C)
          ∧  (A∨¬B)
          

  

C∧(B∨¬C)∧¬B                           C∧(B∨¬C)
                                                          
                                                          

F	

 A	


T"

F	


B	



T	



x	
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GSAT Algorithm 

Problem:  Given a formula of the propositional calculus, find an interpretation of the variables under which the formula 
comes out true, or report that none exists. 

procedure GSAT 

Input: a set of clauses ∝, MAX-FLIPS, and MAX-TRIES  

Output: a satisfying truth assignments of ∝, if found 
begin 

 for i:= 1 to MAX-TRIES ; random restart mechanism 
  T := a randomly generated truth assignment 
  for j := 1 to MAX-FLIPS  

   if T satisfies ∝ then return T 

   p :=  a propositional variable such that a change in its truth assignment gives the largest increase in 

total number of clauses of ∝ that are satisfied by T. 
   T := T with the truth assignment of p reversed 
  end for 
 end for 
 return “no satisfying assignment found” 

end 
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GSAT Performance 
GSAT versus 
Davis-Putnam  
(a backtracking 
style algorithm) 

Domain:  hard 
random 3CNF 
formulas, all satisfiable 
(hard means chosen 
from a region in which 
about 50% of problems 
are unsolvable)	
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GSAT Performance (cont’d) 
  GSAT Biased Random Walk 
  With probability p, follow the standard GSAT scheme, 

  i.e., make the best possible flip. 
  With probability 1 - p, pick a variable occurring in some unsatisfied clause 

and flip its truth assignment. (Note: a possible uphill move.) 
  GSAT-Walk < Simulated-Annealing < GSAT-Noise < GSAT-Basic 

Comparing noise strategies on hard random 3CNF formulas. (Time in seconds on an SGI Challenge)	
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3SAT Phase Transition 

20--variable formulas ♦	


40--variable formulas +	


50--variable formulas  	



Ratio of clauses-to-variables	
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  Easy -- Sastifiable problems where many solutions 
  Hard -- Sastifiable problems where few solutions 
  Easy -- Few Satisfiable problems 

  Assumes concurrent search in the satisfiable space and the non-satisfiable space 
( negation of proposition) 
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A Simplistic Approach to Solving CSPs 
using Systematic Search 

 Initial state: the empty assignment 
 Successor function: a value can be 

assigned to any variable as long as no 
constraint is violated. 

 Goal test: the current assignment is 
complete. 

 Path cost: a constant cost for every 
step. – not relevant 



 Not just a successor function and goal test 
 But also a means to propagate the 

constraints imposed by variables already 
bound along the path on the potential fringe 
nodes of that path and an early failure test 

 Thus, need explicit representation of 
constraints and constraint manipulation 
algorithms 
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Exploiting Commutativity
  Naïve application of search to CSPs: 

  If use breath first search 
  Branching factor is n•d at the top level, then (n-1)d, and so on 

for n levels (n variables, and d values for each variable). 
  The tree has n!•dn leaves, even though there are only dn possible 

complete assignments! 

  Naïve formulation ignores commutativity of all CSPs: 
the order of any given set of actions has no effect on the 
outcome.  
  [WA=red, NT=green] same as [NT=green, WA=red] 

  Solution: consider a single variable at each depth of the 
tree. 
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Part of the map-coloring search tree 

Variable 1  - WA 

Variable 2 -- NT 

Variable 3 -- Q 



Next Lecture 
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•  Informed-Backtracking Using  
 Min-Conflicts Heuristic 
•  Arc Consistency for Pre-processing 
•  Intelligent backtracking 
•   Reducing the Search by structuring the CSP 
as a tree search 

•   Extending the model of simple heuristic search 

•   Interacting subproblem perspective 


