Lecture 9: Search 8

Victor R. Lesser

CMPSCI 683
Fall 2010

ANNOUNCEMENTS

+ REMEMBER LECTURE ON TUESDAY!!

* EXAM ON OCTOBER 18
= OPEN BOOK
= ALL MATERIAL COVERED IN LECTURES
= REQUIRED READINGS

¢+ WILL MOST PROBABLY NOT COVER

MATERIAL ON PLANNING

Today’s Lecture

+ Another Form of Local Search

= Repair/Debugging in Constraint Satisfaction Problems
e GSAT

+ A Systematic Approach to Constraint Satisfaction
Problems
= Simple Backtracking Search

Constraint Satisfaction Problems (CSP)

¢ A set of variables X,... X, and a set of
constraints C,...C,,. Each variable X; has a
domain D, of possible values.

+ A solution to a CSP: a complete assignment
to all variables that satisfies all the

constraints.
* Representation of constraints as predicates.
¢ Visualizing a CSP as a constraint graph.

Example: Map coloring

Constraint graph: nodes are vanabl?s_
arcs show constraints

e

NORTHERN
TERRITORY

WESTERN AUSTRALIA QUEENSLAND

SOUTH
AUSTRALIA

SOUTH

UICTORIA

‘ TRSMANIA

Variables WA, NT, Q, NSW,V, SA, T
Domains D; = {red, green,blue}
Constraints: adjacent regions must have different colors
e.g.,, WA # NT (if the language allows this), or
. HgWA, NT) € {(red, green), (red, blue), (green, red), (green, blue), ...}

©

A Valid Map Assignment

VN

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT =green,Q=red, NSW =green,V =red, SA=blue, T = green}

s, CS683,F10

Example 3: N queens

» What are the variables? domains? constraints?

V. Lessers CS683. F10

Lessr, CS683,F10

8 queens

¢ 8 variables X, 1=1 to 8; for each column

¢ Domain for each variable {1,2,...,8}

+ Constraints are:
= X;=X; forallj=1to 8, j=I; not on same row
= |X;-Xj| = [i-j| forallj=1to 8, j=I; not on diagonal
= Note that all constraints involve 2 variables

¢ Generate-and-test with no redundancies requires
“only” NN combinations...

Task scheduling

TZ/ Tl\\m
\ iE!

T1 must be done during T3

T2 must be achieved before T1 starts
T2 must overlap with T3

T4 must start after T1 is complete

» What are the variables? domains? constraints?

V. Lossers 683, F10

- 0+0 = R+10-X1

© X +WHW = U+10-X,
© X, +T+T = 0+10-X,
© Xy = F

Non-Binary Constraints

TWO
+TWO
FOUR

a”diff(F,T,U,W,R,O)

3 or more variables
+ Between0O-9(F,T,U,W,R,0) constraints

+ Between0—-1 (X;,X,,X;)

Constraint optimization

¢ Representing preferences versus absolute
constraints.
= Weighted by constraints violated/satisfied

¢ Constraint optimization is generally more
complicated.

¢ Can also be solved using local search
techniques.

¢ Hard to find optimal solutions.

Local search for CSPs:
Heuristic Repair

+ Start state is some assignment of values to variables that may
violate some constraints.

= Create a complete but inconsistent assignment
+ Successor state: change value of one variable.

¢ Use heuristic repair methods to reduce the number of conflicts
(iterative improvement).

= The min-conflicts heuristic: choose a value for a variable
that minimizes the number of remaining conflicts.

= Hill climbing on the number of violated constraints
¢ Repair constraint violations until a consistent assignment is
achieved.

+ Can solve the million-queens problem in an average of 50 steps!

Heuristic Repair Algorithm

function MIN-CONFLICTS(csp, max-steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max-steps, the number of steps allowed before giving up
local variables: current, a complete assignment
var, a variable
value, a value for a variable

current + an initial complete assignment for csp
for i = 1 to max-steps do
var < a randomly chosen, conflicted variable from VARIABLES[csp]
value + the value v for var that minimizes CONFLICTS(var, v, current, csp)
set var=value in current -
if current is a solution for csp then return current
end
return failure

V. Lessers CS683. F10

N-Queens Heuristic Repair

¢ Pre-processing phase to generate initial
assignment

= Greedy algorithm that iterates through rows
placing each queen on the column where it
conflicts with the fewest previously placed

queens

¢ Repair phase

e Select (randomly) a queen in a specific row that is

in conflict and moves it to the column (within the
same row) where it conflicts with the fewest other

queens

V Losier, CS683,F10

Example of min-conflicts:
N-Queens Problem

[

A two-step solution of an 8-queens problem. The number of remaining
conflicts for each new position of the selected queen is shown. Algorithm
moves the queen to the min-conflict square, breaking ties randomly.

V. Lessers CS683. F10

SAT- Satisfiability Problem

Given a propositional sentence, determine if it is
satisfiable, and if it is, show which propositions
have to be true to make the sentence true. 3SAT is
the problem of finding a satisfying truth
assignment for a sentence in a special format

Why are we interested in this representational

framework?

¥ Losier, CS683,F10

Definition of 3SAT

+ A literal is a proposition symbol or its negation (e.g., P or = P).

+ A clause is a disjunction of literals; a 3-clause is a disjunction of exactly 3
literals (e.g., P vO v~ R).

+ A sentence in CNF or conjunctive normal form is a conjunction of clauses; a 3-
CNF sentence is a conjunction of 3-clauses.

+ For example,

PvOv-S)ACPVOVRACPV-Rv-S)APv—-SvI)

Is a 3-CNF sentence with four clauses and five proposition symbols.

V. Lossers 683, F10

Mapping 3-Queens into 3SAT

Atleast 1 hasa Q not exactly 2 have Q's not all 3 have Q's
Q,vQ,vQy A~ @Q,v-Q,v-Qy

A (=Q,vQ, v Q)

AGQuV-Q,vQy A (=Q, v -Q,Vv-Qy

Do the same for each row, the same for each column, the same for each
diagonal, and'ing them all together.

A
Q) vQ, v Q) A QyVv-Q,v Q)
AGEQy v Qv mQu) A (5Qy v mQy, V Q) A (5Qy v —Qy, v -Q,)

A
Qv Q,vQy) A (Qv-Q,v-Qa (=Q, vQ,v-Qy
A Qv =Qy, v Q) A (=Q, v —Qy, v —Qyy)

etc.

Converting N-SAT into 3-SAT

AvBvCvD
Add in dummy variable E, not
interested in its truth value

(Av Bv EYN(~ Ev Cv D) from problem perspective nor

A=T A=F A=F doesitsiih affect
satisfiability of original

B=F B=T B=F proposition

C=F C=F C=T --e---

D=F D=F D=F

E=F E=F E=T

2 - SAT polynomial time but can' t
map all problem into 2 - SAT

Lessr, 683, F10

Davis-Putnam Algorithm
(Depth-First Search)

(AVCO)A(mAVO)A(BV=0)
A (Av=B)

CA(Bv=C)an =B
B
X

CA(Bv-=C)

GSAT Algorithm

Problem: Given a formula of the propositional calculus, find an interpretation of the variables under which the formula
comes out true, or report that none exists.

procedure GSAT
Input: a st of clauses %, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignments of o, if found
begin
for i:= 1 to MAX-TRIES ; random restart mechanism
T := a randomly generated truth assignment
for j := 1 to MAX-FLIPS
if 7'satisfies o then return 7'
p = apropositional variable such that a change in its truth assignment gives the largest increase in
total number of clauses of ¢ that are satisfied by 7.
T := T with the truth assignment of p reversed
end for
end for
return “no satisfying assignment found”

end

V. Lessers CS683, F10

GSAT Performance

GSAT versus
Davis-Putnam

(a backtracking
style algorithm)

Domain: hard
random 3CNF
formulas, all satisfiable
(hard means chosen
from a region in which

formulas TR about 50% of problems
Queens | vars | 2]
8 105 are unsolvable)

l 54
20| 400
30 560
50 | 2500
100

GSAT Performance (cont’d)

¢ GSAT Biased Random Walk
+ With probability p, follow the standard GSAT scheme,
= i.e., make the best possible flip.
+ With probability 1 - p, pick a variable occurring in some unsatisfied clause
and flip its truth assignment. (Note: a possible uphill move.)
+ GSAT-Walk < Simulated-Annealing < GSAT-Noise < GSAT-Basic

noise
time nips
g 5575
396534

892048

23%10%

Comparing noise strategies on hard random 3CNF formulas. (Time in seconds on an SGI Challenge)

V. Lessers CS683. F10

3SAT Phase Transition

+ Easy -- Sastifiable problems where many solutions
+ Hard -- Sastifiable problems where few solutions
+ Easy -- Few Satisfiable problems

", | 30-varisble formulas +

S0-variabl formulas ©

Fraction of unsatisfiable formulac

Ratio of clauses-to-variables

Fig. 2 Fraction of unsatisfiable 3AT probletns,

Ratio of clauses-to-variables
Fig. | Solving 3SAT problems.

+ Assumes concurrent search in the satisfiable space and the non-satisfiable space
(negation of proposition)

A Simplistic Approach to Solving CSPs
using Systematic Search

¢+ Initial state: the empty assignment

+ Successor function: a value can be
assigned to any variable as long as no
constraint 1s violated.

* Goal test: the current assignment is
complete.

+ Path cost: a constant cost for every
step. — not relevant

What more is needed?

+ Not just a successor function and goal test

¢ But also a means to propagate the
constraints imposed by variables already
bound along the path on the potential fringe
nodes of that path and an early failure test

¢ Thus, need explicit representation of
constraints and constraint manipulation
algorithms

Exploiting Commutativity

+ Naive application of search to CSPs:
= If use breath first search
= Branching factor is n ¢d at the top level, then (n-1)d, and so on
for n levels (n variables, and d values for each variable).
= The tree has n/ ed" leaves, even though there are only d” possible
complete assignments!

+ Naive formulation ignores commutativity of all CSPs:
the order of any given set of actions has no effect on the
outcome.

= [WA=red, NT=green] same as [NT=green, WA=red]

+ Solution: consider a single variable at each depth of the

tree.

Part of the map-coloring search tree

Variable 1 - WA [Whered | [Wsgeen [Whstlue |
.
Variable 2 -- NT Wh=red Wh=red
NT=green NT=blue
. Wh=red Whsred
Variable 3 - Q NT=green NT=qreen
Q=red Q=blue
™ T

Next Lecture

* Informed-Backtracking Using
Min-Conflicts Heuristic

» Arc Consistency for Pre-processing
« Intelligent backtracking

* Reducing the Search by structuring the CSP
as a tree search

» Extending the model of simple heuristic search

* Interacting subproblem perspective

