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This Lecture 

 Continuation of Local Search 
  Hill-Climbing/Iterative Improvement 

  Simulated Annealing (Stochastic Hill Climbing) 

  Beam Search 
  Genetic Algorithm 

V. Lesser; CS683, F10 



Iterative Improvement Algorithms 

  What is the search space 

  Search space of complete solutions vs. partial solutions 

  When useful: 

  “Reasonable” complete solution can be generated 

  Importance of good starting point 

  Operator to modify complete solution 

  Some notion of progress 
  Measure of complete solution in terms of constraint violations or an 

evaluate function 
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Example: 4 queens 

  Almost 
always 
solves 
very large 
problems 
almost 
instantly 
(e.g., n = 
1 million) 
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Hill-Climbing(HC) Search 

  The main iterative improvement algorithm is hill-
climbing:  

Continually move in the direction of increasing 
value of all successor states until a maximum 

is reached. 
  This is sometimes called steepest-ascent HC, and is 

called gradient descent search if the evaluation 
function is based on minimizing cost rather than 
maximizing quality. 
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Steepest Ascent Hill-Climbing 

Looks at all 
successors 
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An Example of Hill-Climbing Problems 

L(local) evaluation function: Add 1 point for every block that is resting on the thing it is 
supposed to be resting on.  Subtract 1 point for every block that is sitting on the wrong 
thing.	


Gl(gobal) evaluation function : For each block that has the correct support structure (i.e., the 
complete structure underneath it is exactly as it should be), add 1 point for every block in the 
support structure. For each block that has an incorrect support structure, subtract one point 
for every block in the existing support structure. 

goal state	

L= 4 G= -28!
initial state	
L=6  G= -21	
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L= 8 G= 28	
Only possible move 
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An Example of Hill-Climbing Problems (cont’d) 
Next Possible Moves 
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L=4 G= -28 ! L=4  G= -16	
 L=4  G= -15	


Local criterion results in no available moves that increase 
evaluation 
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Hill-climbing search 
 A simple form of local search: Continually move in the direction of 
increasing value. 
  Greedy Local search; grabs good neighbor without thinking ahead 

Useful to 
consider 
what 
happened at 
different 
points in the  
state space 
landscape 
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Problems with Hill Climbing 
  Can get stuck at a local maximum. 

  Unable to find its way off a plateau with single moves. 

  Cannot climb along a narrow ridge when almost all steps go down 
(continuous space). 

Local maximum	


Plateau	


Ridge/Knife edges	


dead-end!
X"

solution"

dead-end!
X"

solution"
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Especially serious 
when you can not 
evaluate all 
potential moves 



Variants of hill-climbing 

Ways to overcome the weaknesses: 
  Stochastic hill-climbing (Simulated Annealing): choose at 

random an uphill move among the successors 

  Sometimes take downhill steps 

  You may have to get worse to get better!! 

  First-choice hill climbing: generate successors randomly 
until finding an uphill move 

  Random-restart hill climbing: restart search from randomly 
generated initial states if not making progress 
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Simulated Annealing 

“Simulated annealing is a variation of hill 
climbing in which, at the beginning of the 
process, some downhill moves may be made. The 
idea is to do enough exploration of the whole 
space early on so that the final solution is 
relatively insensitive to the starting state. This 
should lower the chances of getting caught at a 
local maximum, a plateau, or a ridge.” 
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Simulated annealing search 

  Generate successors randomly 
  Allow “bad” moves with some probability eΔE/T 

  Proportional to the value (or “energy”) difference ΔE 
  Modulated by a “temperature” parameter T  

  Gradually decrease the frequency of such moves and their 
size by reducing the “temperature” 
  more time goes, less willing to explore non-optimal path 

  Originated in modeling physical processes 
  Optimal when T is decreased “slowly” 
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Simulated Annealing Algorithm 

1.  Evaluate the initial state. If it is also a goal 
state, then return it and quit. Otherwise, 
continue with the initial state as the current 
state. 

2. Initialize BEST-SO-FAR as the current state. 

3. Initialize T according to the annealing 
schedule 
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Simulated Annealing Algorithm 
(cont’d) 

4.  Loop until a solution is found or until there are no new operators left to be applied 
in the current state. 

 a) Select an operator (randomly) that has not yet been applied to the current state 
and apply it. 

 b) Evaluate the new state. Compute 
  ΔE = (value of current) - (value of new state) 
  If the new state is a goal state, return it and quit. 
  If it is not a goal state but is better than the current state, then make it the current 

state. 
  set BEST-SO-FAR to this new state if better than current BEST-SO-FAR . 

  If it is not better than the current state, then make it the current state with 
probability p´= f(ΔE,T). 

 c) Revise T according to the annealing schedule 

5.  Return BEST-SO-FAR as the answer. ; anytime property 
V. Lesser; CS683, F10 



Simulated Annealing Algorithm 
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Gradient ascent methods 
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Beam Search vs 
Random-Restart Hill Climbing 

  Keep track of K states rather than just one 
  Modified  breadth-first, contour created dynamically 

  Start with K randomly generated states 
  Stop if any goal state 
  Multiple Successors generated for each of the k states 
  Choose top K successor states in next cycle 

  Contrast with Random Restart 
  Positive -- Sharing information across different searches by choosing top 

K successor states 
  Negative - May eliminate diversity coming from random starting points 
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Evolutionary Computation 

 Beam Search patterned after biological 
evolution 

  Learning as Search 

 Metaphor of Natural Selection   
  Offspring are similar to their parents 
  The more fit are more likely to have children 
  Occasionally random mutations occur 
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Genetic (Search) Algorithms 

 Localized Beam Search 
  Specialized approach for generating successors and 

for selecting next states 
  An individual solution is represented by a 

sequence of “genes”. 
  The selection strategy is randomized with 

probability of selection proportional to “fitness”. 
  Individuals selected for reproduction are randomly 

paired, certain genes are crossed-over, and some 
are mutated. 
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Basic Operation of Genetic 
Search 

  Selection 

  More fit members are likely to be in next generation 

  Mutation 

  Random altering of characteristics 

  Crossover 

  Combine two members of population 
  Cross-over is probably the key idea 
  Exploit relative independence of certain subproblem solutions 

imbedded in different members 
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Operators for Genetic Algorithms 
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Key Questions for Genetic Search 
  What is the fitness function? 

  How is an individual 
represented? 

  How are individuals 
selected? 

  How do individuals 
reproduce? 
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Genetic Algorithms Example 
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GA (Fitness, Fitness-threshold, p, r, m) 
 GA (Fitness, Fitness-threshold, p, r, m) 

  Initialize: P  p random hypotheses 
  Evaluate for each h in P,  compute-fitness (h) 
  While [maxh fitness (h)] < Fitness-threshold 

1.  Select probabilistically select (1-r)⋅ p members to add to Ps 
     Pr (hi)= fitness (hi)/ Sum of fitness of all members of P 

2.  Crossover: probabilistically select r⋅p/2 pairs of hypotheses 
from P. For each pair (hj,hk), produce two offspring by 
applying the Crossover operator. Add all offspring to Ps 
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…continued from previous slide 

3. Mutate: Invert a randomly selected bit 
in m⋅ p  random members of Ps!

4. Update: P← Ps!

5. Evaluate: for each h in P, compute 
Fitness(h)!

• Return the hypothesis from P that has 
the highest fitness.!
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Selecting Most Fit Hypotheses 

  Tournament Selection:  
  Pick h1, h2  at random with uniform probability. 
  With probability p, select the more fit 

  Rank Selection: 
  Sort all hypotheses by fitness 
  Probability of selection is proportional to rank 

Fitness proportionate selection:!

…can lead to crowding (lack of diversity)"

 Pr (hi)= fitness (hi)/ Sum of fitness of all members of P 
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Genetic Algorithms Example 

Tournament  
V. Lesser; CS683, F10 



Genetic Programming  

Population of programs represented by trees     
sin(x)  +  √(x2 + y) 
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Crossover 
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Two Offspring 

(OR  (AND  (NOT D0)  (NOT D1)) 
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Two Parents in Crossover 

  (OR  (NOT  D1) 
  (AND D0 D1)) 

  (OR  (OR D1 (NOT D0)) 
    (AND  (NOT D0)  (NOT D1)) 

OR"

AND"

D0" D1"D1"

OR"

OR"

D1" NOT"

D0"

1!

2!

3!

4!

5! 6!

1!

2!

3! 4!

5!

6!

7!

8!

9!

10!

V. Lesser; CS683, F10 



Genetic Programming 
   More interesting example: design electronic 

filter circuits 
  Individuals are programs that transform 

beginning circuit to final circuit, by adding/
subtracting components and connections 

 Use population of 640,000, run on 64-node 
parallel processor 

 Discovers circuits competitive with best 
human designs 

V. Lesser; CS683, F10 



Summary: Genetic algorithms 

 Have been applied to a wide range of 
problems. 

 Results are sometimes very good and 
sometimes very poor. 

 The technique is relatively easy to apply 
and in many cases it is beneficial to see if 
it works before thinking about another 
approach. 
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Next Lecture 

  Another Form of Local Search 
  Repair/Debugging in Constraint Satisfaction Problems 

  GSAT 

  A Systematic Approach to Constraint Satisfaction 
Problems 
  Simple Backtracking Search 
  Informed-Backtracking Using  

 Min-Conflicts Heuristic 
  Arc Consistency for Pre-processing 
  Other approaches to ordering variables and values in search 
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