
Lecture 8: Search 7

Victor R. Lesser
CMPSCI 683

Fall 2010

This Lecture

 Continuation of Local Search
  Hill-Climbing/Iterative Improvement

  Simulated Annealing (Stochastic Hill Climbing)

  Beam Search
  Genetic Algorithm

V. Lesser; CS683, F10

Iterative Improvement Algorithms

  What is the search space

  Search space of complete solutions vs. partial solutions

  When useful:

  “Reasonable” complete solution can be generated

  Importance of good starting point

  Operator to modify complete solution

  Some notion of progress
  Measure of complete solution in terms of constraint violations or an

evaluate function

V. Lesser; CS683, F10

Example: 4 queens

  Almost
always
solves
very large
problems
almost
instantly
(e.g., n =
1 million)

V. Lesser; CS683, F10

Hill-Climbing(HC) Search

  The main iterative improvement algorithm is hill-
climbing:

Continually move in the direction of increasing
value of all successor states until a maximum

is reached.
  This is sometimes called steepest-ascent HC, and is

called gradient descent search if the evaluation
function is based on minimizing cost rather than
maximizing quality.

V. Lesser; CS683, F10

Steepest Ascent Hill-Climbing

Looks at all
successors

V. Lesser; CS683, F10

An Example of Hill-Climbing Problems

L(local) evaluation function: Add 1 point for every block that is resting on the thing it is
supposed to be resting on. Subtract 1 point for every block that is sitting on the wrong
thing.	

Gl(gobal) evaluation function : For each block that has the correct support structure (i.e., the
complete structure underneath it is exactly as it should be), add 1 point for every block in the
support structure. For each block that has an incorrect support structure, subtract one point
for every block in the existing support structure.

goal state	

L= 4 G= -28!
initial state	
L=6 G= -21	

A	

H	

G	

F	

E	

D	

C	

B	

H	

G	

F	

E	

D	

C	

B	

A	
A	

H	

G	

:	

:	

:	

:	

:	

L= 8 G= 28	
Only possible move

V. Lesser; CS683, F10

An Example of Hill-Climbing Problems (cont’d)
Next Possible Moves

A	

H	

G	

F	

E	

D	

C	

B	

(a)	
 (b)	
 (c)	

A	

H	

G	

F	

E	

D	

C	

B	
 A	
 H	

G	

F	

E	

D	

C	

B	

L=4 G= -28 ! L=4 G= -16	
 L=4 G= -15	

Local criterion results in no available moves that increase
evaluation

V. Lesser; CS683, F10

Hill-climbing search
 A simple form of local search: Continually move in the direction of
increasing value.
  Greedy Local search; grabs good neighbor without thinking ahead

Useful to
consider
what
happened at
different
points in the
state space
landscape

V. Lesser; CS683, F10

Problems with Hill Climbing
  Can get stuck at a local maximum.

  Unable to find its way off a plateau with single moves.

  Cannot climb along a narrow ridge when almost all steps go down
(continuous space).

Local maximum	

Plateau	

Ridge/Knife edges	

dead-end!
X"

solution"

dead-end!
X"

solution"

V. Lesser; CS683, F10

Especially serious
when you can not
evaluate all
potential moves

Variants of hill-climbing

Ways to overcome the weaknesses:
  Stochastic hill-climbing (Simulated Annealing): choose at

random an uphill move among the successors

  Sometimes take downhill steps

  You may have to get worse to get better!!

  First-choice hill climbing: generate successors randomly
until finding an uphill move

  Random-restart hill climbing: restart search from randomly
generated initial states if not making progress

V. Lesser; CS683, F10

Simulated Annealing

“Simulated annealing is a variation of hill
climbing in which, at the beginning of the
process, some downhill moves may be made. The
idea is to do enough exploration of the whole
space early on so that the final solution is
relatively insensitive to the starting state. This
should lower the chances of getting caught at a
local maximum, a plateau, or a ridge.”

V. Lesser; CS683, F10

Simulated annealing search

  Generate successors randomly
  Allow “bad” moves with some probability eΔE/T

  Proportional to the value (or “energy”) difference ΔE
  Modulated by a “temperature” parameter T

  Gradually decrease the frequency of such moves and their
size by reducing the “temperature”
  more time goes, less willing to explore non-optimal path

  Originated in modeling physical processes
  Optimal when T is decreased “slowly”

V. Lesser; CS683, F10

Simulated Annealing Algorithm

1. Evaluate the initial state. If it is also a goal
state, then return it and quit. Otherwise,
continue with the initial state as the current
state.

2. Initialize BEST-SO-FAR as the current state.

3. Initialize T according to the annealing
schedule

V. Lesser; CS683, F10

Simulated Annealing Algorithm
(cont’d)

4.  Loop until a solution is found or until there are no new operators left to be applied
in the current state.

 a) Select an operator (randomly) that has not yet been applied to the current state
and apply it.

 b) Evaluate the new state. Compute
 ΔE = (value of current) - (value of new state)
  If the new state is a goal state, return it and quit.
  If it is not a goal state but is better than the current state, then make it the current

state.
  set BEST-SO-FAR to this new state if better than current BEST-SO-FAR .

  If it is not better than the current state, then make it the current state with
probability p´= f(ΔE,T).

 c) Revise T according to the annealing schedule

5.  Return BEST-SO-FAR as the answer. ; anytime property
V. Lesser; CS683, F10

Simulated Annealing Algorithm

V. Lesser; CS683, F10

Gradient ascent methods

V. Lesser; CS683, F10

Beam Search vs
Random-Restart Hill Climbing

  Keep track of K states rather than just one
  Modified breadth-first, contour created dynamically

  Start with K randomly generated states
  Stop if any goal state
  Multiple Successors generated for each of the k states
  Choose top K successor states in next cycle

  Contrast with Random Restart
  Positive -- Sharing information across different searches by choosing top

K successor states
  Negative - May eliminate diversity coming from random starting points

V. Lesser; CS683, F10

Evolutionary Computation

 Beam Search patterned after biological
evolution

  Learning as Search

 Metaphor of Natural Selection
  Offspring are similar to their parents
  The more fit are more likely to have children
  Occasionally random mutations occur

V. Lesser; CS683, F10

Genetic (Search) Algorithms

 Localized Beam Search
  Specialized approach for generating successors and

for selecting next states
  An individual solution is represented by a

sequence of “genes”.
  The selection strategy is randomized with

probability of selection proportional to “fitness”.
  Individuals selected for reproduction are randomly

paired, certain genes are crossed-over, and some
are mutated.

V. Lesser; CS683, F10

Basic Operation of Genetic
Search

  Selection

  More fit members are likely to be in next generation

  Mutation

  Random altering of characteristics

  Crossover

  Combine two members of population
  Cross-over is probably the key idea
  Exploit relative independence of certain subproblem solutions

imbedded in different members

V. Lesser; CS683, F10

Operators for Genetic Algorithms

V. Lesser; CS683, F10

Key Questions for Genetic Search
  What is the fitness function?

  How is an individual
represented?

  How are individuals
selected?

  How do individuals
reproduce?

V. Lesser; CS683, F10

Genetic Algorithms Example

V. Lesser; CS683, F10

GA (Fitness, Fitness-threshold, p, r, m)
 GA (Fitness, Fitness-threshold, p, r, m)

  Initialize: P p random hypotheses
  Evaluate for each h in P, compute-fitness (h)
  While [maxh fitness (h)] < Fitness-threshold

1.  Select probabilistically select (1-r)⋅ p members to add to Ps
 Pr (hi)= fitness (hi)/ Sum of fitness of all members of P

2.  Crossover: probabilistically select r⋅p/2 pairs of hypotheses
from P. For each pair (hj,hk), produce two offspring by
applying the Crossover operator. Add all offspring to Ps

V. Lesser; CS683, F10

…continued from previous slide

3. Mutate: Invert a randomly selected bit
in m⋅ p random members of Ps!

4. Update: P← Ps!

5. Evaluate: for each h in P, compute
Fitness(h)!

• Return the hypothesis from P that has
the highest fitness.!

V. Lesser; CS683, F10

Selecting Most Fit Hypotheses

  Tournament Selection:
  Pick h1, h2 at random with uniform probability.
  With probability p, select the more fit

  Rank Selection:
  Sort all hypotheses by fitness
  Probability of selection is proportional to rank

Fitness proportionate selection:!

…can lead to crowding (lack of diversity)"

 Pr (hi)= fitness (hi)/ Sum of fitness of all members of P

V. Lesser; CS683, F10

Genetic Algorithms Example

Tournament
V. Lesser; CS683, F10

Genetic Programming

Population of programs represented by trees
sin(x) + √(x2 + y)

+"

sin"

x" +"

y!∧"

x! 2"
V. Lesser; CS683, F10

Crossover

+"
sin"

x" +"
y	
+"

x! y	

+"
sin"

x" +"
y	
∧"

x! 2"

+"
sin"

x" +"
y!x"

2"
∧"

+"
sin"

x"
2!x!

2!

∧"
∧"

V. Lesser; CS683, F10

Two Offspring

(OR (AND (NOT D0) (NOT D1))
(AND D0 D1))

(OR (OR D1 (NOT D0))
 (NOT D1))

OR"

NOT"

AND"

D0" D1"

D1"

OR"

OR"

D1" NOT"

D0"

V. Lesser; CS683, F10

Two Parents in Crossover

 (OR (NOT D1)
 (AND D0 D1))

 (OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

OR"

AND"

D0" D1"D1"

OR"

OR"

D1" NOT"

D0"

1!

2!

3!

4!

5! 6!

1!

2!

3! 4!

5!

6!

7!

8!

9!

10!

V. Lesser; CS683, F10

Genetic Programming
 More interesting example: design electronic

filter circuits
  Individuals are programs that transform

beginning circuit to final circuit, by adding/
subtracting components and connections

 Use population of 640,000, run on 64-node
parallel processor

 Discovers circuits competitive with best
human designs

V. Lesser; CS683, F10

Summary: Genetic algorithms

 Have been applied to a wide range of
problems.

 Results are sometimes very good and
sometimes very poor.

 The technique is relatively easy to apply
and in many cases it is beneficial to see if
it works before thinking about another
approach.

V. Lesser; CS683, F10

Next Lecture

  Another Form of Local Search
  Repair/Debugging in Constraint Satisfaction Problems

  GSAT

  A Systematic Approach to Constraint Satisfaction
Problems
  Simple Backtracking Search
  Informed-Backtracking Using

 Min-Conflicts Heuristic
  Arc Consistency for Pre-processing
  Other approaches to ordering variables and values in search

V. Lesser; CS683, F10

