
Lecture 7: Search 6

Victor R. Lesser
CMPSCI 683

Fall 2010

This Lecture

 RTA*

 Hierarchical A*

 Beginning of Local Search
  Hill-Climbing/Iterative Improvement

V. Lesser; CS683, F10

RTA* - Real-Time A*
Intermix partial search with execution of action
  Goal: reduce the execution time of A*.
  Method: limit the search horizon of A* and select an

action (single move) in constant time.
  Make decision about next move in real-world without a

complete plan (path) to reach goal state
  Two stages

  Make individual move decision: Perform mini-min search
with alpha pruning

  Make a sequence of decisions to arrive at a solution
  recovering from inappropriate actions
  avoid loops

V. Lesser; CS683, F08

First Phase - Minimin Search
with Alpha-Pruning

  Mini-min depth-first look-ahead search
  Returns back-up f value for a node from looking ahead to the

frontier node at the horizon
  Can viewed as simply a more accurate and computationally expensive

heuristic function
  Reason: If the heuristic function h is consistent/monotone and

admissible, then the error in the backed-up cost estimate
cannot increase with search depth, f is always increasing and
thus better estimate of actual cost

  Alpha pruning
  If current minimum f of horizon node (alpha value) is less than

f of an intermediate node, the intermediate node (and any
successors) can be eliminated from further consideration

  Reason: f is monotonic (never can get lower f) and you are only
searching to horizon (don’t need goal state to prune)

V. Lesser; CS683, F08

Basis of RTA*

 h(a) ≤ g(a to c) + h(c) ≤ h*(a);
  assuming you need to go to the goal state thru c from a

 As a result of exploring in the search space from a to c, you can
replace h(a) with the better (more informed) estimate g(a to c) + h(c)

 This leads to a more informed decision at S whether to take the
“action in the real world of moving” to either state y, a, or x.

a
y

S

x

a b c
h(c) 	

V. Lesser; CS683, F08

Procedure for Calculating Backed-Up
Value of a Move

procedure evaluate(move,limit)
/* return backed-up estimate f´ (move) by ∝-pruning search to depth limit */

1.  Open ← {move}; ∝← ∞
2. f (move) ← g (move) + h (move);
3. While (open not empty) do
4. node ← pop (Open);
5. expand node; for each child of node do
6. g (child) ← g (node) + move-cost;
7. f (child) ← g (child) + h (child);
 Prune child if f (child) >= ∝
8. if f (child) < ∝ do
9. if (depth = limit or goal(child)) then

 ∝← f (child);
10. else put child on Open; od od od
11. Return ∝;

V. Lesser; CS683, F08

RTA* - Controlling the Sequence of
Moves Executed in Real-World

Basic Principle:
“One should backtrack to a previously visited real world state when the estimate

of solving the problem from that state plus the cost of returning to that
state is less than the estimated cost of going forward from the current state.” -
Korf

 Merit of every node f(n) = g(n) + h(n) is measured relative to the current
position of the problem solver in the real-world

  initial state is irrelevant

 If one moves back to a previously visited real-world state, then it needs to take
into account that one already has taken action there

  value of state is next best f

Remember Interplay between partial search and execution of action
in real-world

RTA* Algorithm
  Maintains in a hash table a list of those states/nodes that have been

visited by an actual move in the real world of the problem solver;
  At each cycle in the real-world, the current state is expanded and the

heuristic function, possibly augmented by look-ahead search, is
applied to each successor state which is not in the hash table;

  The f value of each neighboring state is computed by adding the h
value plus the cost of the link to the current state;

  The neighbor with the minimum f value is chosen for the current state;
  The second best f value is stored in the hash table for the current

state
  Represents the estimated h cost of solving the problem by

returning to this state
  Second best avoids loops

V. Lesser; CS683, F08

Example of RTA*
4	

 5	

1	

9	

3	

 2	

6	

8	

 7	

e	

 i	

b	

a	

d	

 c	

node h f

a

b 1 2

c 2 3

d 3 4

e

i

node h f

a 3

b 1 2

c 2 3

d 3 4

e

i

node h f

a 3 4

b 1 2

c 2 3

d 3 4

e 4 5

i 5 6

node h f

a 3 4

b 5

c 2 3

d 3 4

e 4 5

i 5 6

node h f

a 3 4

b 5 6

c 2 3

d 3 4

e 4 5

i 5 6

node h f

a 4

b 5 6

c 2 3

d 3 4

e 4 5

i 5 6

V. Lesser; CS683, F08

Characteristics of RTA*

 Completeness of RTA*
  In a finite problem space with positive edge costs and

finite heuristic value, in which a goal state is
reachable from every state, RTA* will find a solution.

 Local optimal of RTA*
  Each move made by RTA* on a tree is along a path

whose estimated cost of reaching a goal is minimum,
based on the cumulative search frontier at the time.

V. Lesser; CS683, F08

Hierarchical Problem Solving

V. Lesser; CS683, F10

1

2

3

4

Hierarchical Heuristic A* Search

?

?

V. Lesser; CS683, F10

Generate
heuristic h(s)
for a state s
in base/
original state
space S

Automatically Generating State Space Abstraction
“Max-degree” Star Abstraction

 The state with the highest degree is
grouped together with its neighbors
within a certain distance (the
abstraction radius) to form a single
abstract state.

V. Lesser; CS683, F10

Star abstraction with radius = 1
State with the largest degree within a certain distance/

radius is grouped together with neighbors, repeat
for non-grouped states

⇒	

 ⇒	

start

goal

goal

start

start

goal

*

* *

V. Lesser; CS683, F10

Naive Hierarchical A*

V. Lesser; CS683, F10

Naïve Hierarchical A* - Cache h in abstract space; avoid search for h(s2) if h
(s1) already computed [h(Φ(s1))] and Φ(s1) = Φ(s2)

Reducing Search in Abstract Spaces

 Observation: all searches related to the same
base level problem have the same goal.

 This allows additional types of caching of
values.

  It leads to variants of Hierarchical A* Search
(Valtorta’s barrier) requiring less effort in 5
out of 8 search spaces.

V. Lesser; CS683, F10

Exploit Information for Repeated Blind
Search in Abstract Space

  V1 - h*caching
  Cache exact h’s (h*) along optimal solution in abstract space

  Cache for use in base level search (don’t need to search again since already know
optimal distant to goal in abstract space) [h(Φ(s1)), h(Φi).. [h(Φj))]

  V2
  Cache optimal path in abstract space (optimal-path caching)

  Exploit in further searches in abstract space (if reach such a node in abstract space
can stop search along this path) – can stop further search in Φ once you have h(Φi)
that you found was on optimal path in previous search

  V3
  pertains to states that were opened (or closed) during abstract search but are

not on the solution path
  Remember optimal path length in abstract search space (P-g caching)

  P being optimal path length from start to goal in abstract space

V. Lesser; CS683, F10

Hierarchical A*

*
*

*

V. Lesser; CS683, F10

The Granularity of Abstraction

  Increasing the radius of abstraction has two
contradictory effects:	

+ abstract spaces contain fewer states and each
abstract search produces values for more
states, but	

- the heuristic is less discriminating 	

  Using the best case radius Hierarchical A* Search
(Valtorta’s barrier) is more effective every search
space.	

V. Lesser; CS683, F10

Hierarchical A*
 with best abstraction radius

V. Lesser; CS683, F10

Local Search

  In many optimization problems, path is irrelevant (no path
cost); the goal state itself is the solution
  8-queens problem, job-shop scheduling
  circuit design, computer configuration
  automatic programming, automatic graph drawing

  Then state space = set of “complete” configurations; need to
find optimal configuration

  Can use iterative improvement algorithms; keep single
“current” state and try to improve it
  Paths followed by search are not retained

  Contrast with open and closed node lists; search tree

V. Lesser; CS683, F10

Advantages of local search

  Very simple to implement.

  Very little memory is needed.

  Can often find reasonable solutions in very
large (continuous) state spaces for which
systematic algorithms are not suitable.

V. Lesser; CS683, F10

Stochastic vs. Systematic Search

  Unsolvability -- Is there a solution?
  Systematic: can require exhaustive examination of exponential search

space
  Stochastic: cannot determine unsolvability

  Completeness/Optimality
  Systematic: complete
  Stochastic: incomplete

  Speed
  Neither is uniformly superior; each does better for different sorts of

problems

Local Search is an example of Stochastic Search
V. Lesser; CS683, F10

Iterative Improvement
(Smart version of Generate & Test)

  Start Search with complete but non-optimal solution
  Modify incorrect/non-optimal solution to move it

closer to correct/optimal solution

Path Cost
Minimization

 versus

Value
optimization

V. Lesser; CS683, F10

Example: Traveling Salesperson
Problem

  Start with any complete tour and perform pair wise
exchanges of the end points of two segments

  Only make change if exchange reduces tour cost

  Variants of this approach get within 1% of optimal very
quickly with thousands of cities

V. Lesser; CS683, F10

A[1,2] A [1,4] B[3,4] B [3,2]

1

2

3

4
2 exch 4

1

4

3

5

2

5

Next Lecture

 Continuation of Local Search
  Hill-Climbing/Iterative Improvement

  Simulated Annealing (Stochastic Hill Climbing)

  Beam Search
  Genetic Algorithm

  Repair/Debugging (to be done next time)
  GSAT

V. Lesser; CS683, F10

