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This lecture

Other Time and Space Variations of A*
Finish off RBFS

SMA*

Anytime A*

RTA* (maybe if have time)
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RBFS - Recursive Best-First Search

Mimics best-first search with linear space
Similar to recursive depth-first

Limits recursion by keeping track of the f-value of the best 
alternative path from any ancestor node – one step look-ahead
If current node exceeds this value, recursion unwinds back to 
the alternative path – same idea as contour
As recursion unwinds, replaces f-value of node with best f-
value of children

Allows to remember whether to re-expand path at later time

Exploits information gathered from previous 
searches about minimum f so as to focus further 
searches
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RBFS - Recursive Best-First Search Algorithm

; Pathmax heuristic; 
guarantee monotonic f

Defines next highest f-contour

Recursive search on best successor, 
remember when to backup

f(10)  INF

f(12) 14 f(14) f(16)

Define contour 
limit
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RFBS(Sibiu,447/Timiso
ara)

RFBS(Riminicu,415/Fagaras)

All successors above 
limit of 415, Back up 
value of Pitesti 417 as 
lowest

Avoids going down this past again 
unless lowest unexplored f-contour is 
417
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447

447
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RBFS -- Pro’s and Con’s
More efficient than IDA* and still optimal

Best-first Search based on next best f-contour; fewer 
regeneration of nodes

Exploit results of search at a specific f-contour by saving next f-
countour associated with a node who successors have been 
explored. 

Like IDA* still suffers from excessive node regeneration
IDA* and RBFS not good for graphs

Can’t check for repeated states other than those on current path

Both are hard to characterize in terms of expected 
time complexity
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SMA*(Simplified Memory-Bounded A*)

Uses a given amount of memory to remember 
nodes so that they don’t have to be repeatedly 
regenerated

It will utilize whatever memory is made 
available to it.

It avoids repeated states as far as its memory 
allows.
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SMA*

• Expand deepest lowest f-cost leaf-node

• Best first search on f-cost

• Update f-cost of nodes whose successors 
have higher f-cost

• Drop shallowest & highest f-cost leaf node

• remember best forgotten descendant

• Paths longer than node limit get ∞ cost.
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SMA* Example

A

B

C D

E F

G

H I

J K

0+12=12

8+5=13

24+0=2416+2=18

24+5=2924+0=24

10+5=15

1010

1010

10

88

8

8

16

20+5=25

30+5=35 30+0=30

20+0=20
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SMA* Example  (3-node limit)

A A A A

B GG

H

B

12

15

13

15 13

13(15)

13

18
inf

12

Update A 
based on 
lowest cost f 
successor?

Remember next 
lowest cost f node 
B that is removed
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SMA* Example  (3-node limit) cont.

Why don’t 
we need to 
search 
anymore 
after finding 
D.

A A AA

G G

I

B B B

C D

15(15)

24

15

15

15(24)

25
inf

20(24)

20(inf)

20

24(inf) 24 15

Reach goal 
node I but it 
is not the 
cheapest so 
continue 
search

Regenerate node B, 
remember that there 
was node with f =15 
that had been 
removed, remember 
successor of G has 
f=24 

C is not 
goal node 
and it is at 
max depth



SMA* Analysis
It is complete, provided the available memory is 
sufficient to store the shallowest solution path.
It is optimal, if enough memory is available to store the 
shallowest optimal solution path. Otherwise, it returns 
the best solution (if any) that can be reached with the 
available memory.
Can keep switching back and forth between a set of 
candidate solution paths, only a few of which can fit in 
memory (thrashing)
Memory limitations can make a problem intractable wrt time

With enough memory for the entire tree, same as A*
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Sketch of SMA* Algorithm

; parent could have been removed previously
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Memory-bounded heuristic search

IDA* - Iterative-deepening A* 
Use f-cost (g+h) as cutoff
At each iteration, the cutoff value is the smallest f-cost of any node that 
exceeded the cutoff on the previous iteration 

Recursive best-first search (RBFS)
Best-first search with only linear space
Keep track of the f-value of the best alternative
As the recursion unwinds, it forgets the sub-tree and back-up the f-value of 
the best leaf as its parent’s f-value.

SMA* proceeds like A*
Expanding the best leaf until memory is full
Drop the worst leaf node, and back-up the value of the forgotten node to its 
parent.
Complete IF there is any reachable solution.
Optimal IF any optimal solution is reachable.
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Approaches for Reducing Search Cost

Staged search involves periodically pruning 
unpromising paths 

SMA* is an example of a staged search

Node expansion may be so costly (because the 
branching factor is high or the cost to apply operators 
is high) that exhaustive node expansion is not practical.
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Heuristic node expansion

Use a generator approach to incrementally produce 
successors ordered by quality (must have operator-
ordering function);
Limit expansion so that only likely successors are 
generated (often called plausible-move generator);
Prune unpromising successors immediately 
following node expansion;
Delay state computation until expansion time when 
possible (must be able to compute h without state 
only on operator/previous state)



Real-Time Concerns
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Real-time problem solving

Practical and theoretical difficulties:
Agents have limited computational power.
They must react within an acceptable time.
Computation time normally reduces the value of 
the result.
There is a high degree of uncertainty regarding 
the rate of progress.
The “appropriate” level of deliberation is 
situation dependent.
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Simon’s “Bounded-Rationality”
“A theory of rationality that does not give an account of 
problem solving in the face of complexity is sadly 
incomplete.  It is worse than incomplete; it can be 
seriously misleading by providing “solutions” that are 
without operational significance”

“The global optimization problem is to find the least-
cost or best-return decision, net of computational 
costs.”

-- Herbert Simon, 1958
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Satisficing

A Scottish word which means satisfying.

Denotes decision making that searches until an 
alternative is found that is satisfactory by the 
agent's aspiration level criterion.

Heuristic search as satisficing.

Formalizing the notion of satisficing.
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Satisficing versus Optimizing

“It appears probable that, however adaptive the 
behavior of organisms in learning and choice 
situations, this adaptiveness falls far short of the 
ideal “maximizing” postulated in economic 
theory.  Evidently, organisms adapt well enough 
to ‘satisfice’; they do not, in general, ‘optimize.’
”
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Optimizing in the Real-World
“In complex real-world situations, optimization 
becomes approximate optimization since the 
description of the real-world is radically simplified 
until reduced to a degree of complication that the 
decision maker can handle.  Satisficing seeks 
simplification in a somewhat different direction, 
retaining more of the detail of the real-world situation, 
but settling for a satisfactory, rather than approximate-
best, decision.”

Which approach is preferable?
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Anytime algorithms

Ideal (maximal quality in no time)

Decision
Quality

Time

Ideal
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Anytime algorithms

Ideal (maximal quality in no time)
Traditional (quality maximizing)

Decision
Quality

Time

Ideal
Traditional
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Anytime algorithms

Ideal (maximal quality in no time)
Traditional (quality maximizing)
Anytime (utility maximizing)

Value is a combination of quality of solution and 
amount of time to arrive at solution

Decision
Quality

Time

Ideal
Traditional

Time cost

Anytime
Value



Anytime A*
A* is best first search with f(n) = g(n) + h(n)

Three changes make it an anytime algorithm:

(1) Use a non-admissible heuristic so that sub-optimal solutions are 
found quickly.

(2) Continue the search after the first solution is found using it to 
prune the open list ?????

(3) When the open list is empty, the best solution generated is 
optimal.

How to choose a non-admissible heuristic?
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Weighted evaluation functions

Use  f’(n) = (1 − w)∗g(n) + w∗h(n)

Higher weight on h(n) tends to search deeper.

Admissible if h(n) is admissible and w ≤ 0.5
Same relative node ordering as admissible heuristic 

h(n) >= w∗h(n)/ (1 − w)  and  f(n) = f’(n)/ (1 − w) 

Otherwise, the search is non-admissible, but it 
normally finds solutions much faster.
An appropriate w makes possible a tradeoff between 
the solution quality and the computation time.
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Pseudocode of A
nytim

e W
A

*

; if have found shorter path to node update 
node and put it back in play

; can prune node if it cannot be 
better than existing solution

; keep track of real and
non-admissible f

Incumbent represent best 
complete solution so far found

; bound error

Could you prune 
open list after 
each new 
incumbent ??
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Pruning States in Anytime A*

For each node, store real f(n) = g(n)+h(n)
f(n) is the lower bound on the cost of the best solution 
path through n

When find solution/goal node n1
f(n1) is an upper bound of the cost of the optimal 
solution
Prune all nodes n on the open list that have 

real f(n) >= f(n1)  ??
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Adjusting W Dynamically*

Suppose you had the following situations, how would you adjust 
w. 

the open list has gotten so large that you are running out of 
memory?

you are running out of time and you have not yet reached an 
answer?

there are a number of nodes on the open list whose h value is 
very small?
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