
Lecture 6: Search 5

Victor R. Lesser
CMPSCI 683

Fall 2010

This lecture

Other Time and Space Variations of A*
Finish off RBFS

SMA*

Anytime A*

RTA* (maybe if have time)

V. Lesser; CS683, F08

V. Lesser; CS683, F08

RBFS - Recursive Best-First Search

Mimics best-first search with linear space
Similar to recursive depth-first

Limits recursion by keeping track of the f-value of the best
alternative path from any ancestor node – one step look-ahead
If current node exceeds this value, recursion unwinds back to
the alternative path – same idea as contour
As recursion unwinds, replaces f-value of node with best f-
value of children

Allows to remember whether to re-expand path at later time

Exploits information gathered from previous
searches about minimum f so as to focus further
searches

V. Lesser; CS683, F08

RBFS - Recursive Best-First Search Algorithm

; Pathmax heuristic;
guarantee monotonic f

Defines next highest f-contour

Recursive search on best successor,
remember when to backup

f(10) INF

f(12) 14 f(14) f(16)

Define contour
limit

V. Lesser; CS683, F08

V. Lesser; CS683, F08

RFBS(Sibiu,447/Timiso
ara)

RFBS(Riminicu,415/Fagaras)

All successors above
limit of 415, Back up
value of Pitesti 417 as
lowest

Avoids going down this past again
unless lowest unexplored f-contour is
417

V. Lesser; CS683, F08

447

447

V. Lesser; CS683, F08

RBFS -- Pro’s and Con’s
More efficient than IDA* and still optimal

Best-first Search based on next best f-contour; fewer
regeneration of nodes

Exploit results of search at a specific f-contour by saving next f-
countour associated with a node who successors have been
explored.

Like IDA* still suffers from excessive node regeneration
IDA* and RBFS not good for graphs

Can’t check for repeated states other than those on current path

Both are hard to characterize in terms of expected
time complexity

V. Lesser; CS683, F08

SMA*(Simplified Memory-Bounded A*)

Uses a given amount of memory to remember
nodes so that they don’t have to be repeatedly
regenerated

It will utilize whatever memory is made
available to it.

It avoids repeated states as far as its memory
allows.

V. Lesser; CS683, F08

SMA*

• Expand deepest lowest f-cost leaf-node

• Best first search on f-cost

• Update f-cost of nodes whose successors
have higher f-cost

• Drop shallowest & highest f-cost leaf node

• remember best forgotten descendant

• Paths longer than node limit get ∞ cost.

V. Lesser; CS683, F08

SMA* Example

A

B

C D

E F

G

H I

J K

0+12=12

8+5=13

24+0=2416+2=18

24+5=2924+0=24

10+5=15

1010

1010

10

88

8

8

16

20+5=25

30+5=35 30+0=30

20+0=20

V. Lesser; CS683, F08

SMA* Example (3-node limit)

A A A A

B GG

H

B

12

15

13

15 13

13(15)

13

18
inf

12

Update A
based on
lowest cost f
successor?

Remember next
lowest cost f node
B that is removed

V. Lesser; CS683, F08

SMA* Example (3-node limit) cont.

Why don’t
we need to
search
anymore
after finding
D.

A A AA

G G

I

B B B

C D

15(15)

24

15

15

15(24)

25
inf

20(24)

20(inf)

20

24(inf) 24 15

Reach goal
node I but it
is not the
cheapest so
continue
search

Regenerate node B,
remember that there
was node with f =15
that had been
removed, remember
successor of G has
f=24

C is not
goal node
and it is at
max depth

SMA* Analysis
It is complete, provided the available memory is
sufficient to store the shallowest solution path.
It is optimal, if enough memory is available to store the
shallowest optimal solution path. Otherwise, it returns
the best solution (if any) that can be reached with the
available memory.
Can keep switching back and forth between a set of
candidate solution paths, only a few of which can fit in
memory (thrashing)
Memory limitations can make a problem intractable wrt time

With enough memory for the entire tree, same as A*

V. Lesser; CS683, F08

Sketch of SMA* Algorithm

; parent could have been removed previously

V. Lesser; CS683, F08

Memory-bounded heuristic search

IDA* - Iterative-deepening A*
Use f-cost (g+h) as cutoff
At each iteration, the cutoff value is the smallest f-cost of any node that
exceeded the cutoff on the previous iteration

Recursive best-first search (RBFS)
Best-first search with only linear space
Keep track of the f-value of the best alternative
As the recursion unwinds, it forgets the sub-tree and back-up the f-value of
the best leaf as its parent’s f-value.

SMA* proceeds like A*
Expanding the best leaf until memory is full
Drop the worst leaf node, and back-up the value of the forgotten node to its
parent.
Complete IF there is any reachable solution.
Optimal IF any optimal solution is reachable.

V. Lesser; CS683, F08

Approaches for Reducing Search Cost

Staged search involves periodically pruning
unpromising paths

SMA* is an example of a staged search

Node expansion may be so costly (because the
branching factor is high or the cost to apply operators
is high) that exhaustive node expansion is not practical.

V. Lesser; CS683, F08

Heuristic node expansion

Use a generator approach to incrementally produce
successors ordered by quality (must have operator-
ordering function);
Limit expansion so that only likely successors are
generated (often called plausible-move generator);
Prune unpromising successors immediately
following node expansion;
Delay state computation until expansion time when
possible (must be able to compute h without state
only on operator/previous state)

Real-Time Concerns

V. Lesser; CS683, F08

Real-time problem solving

Practical and theoretical difficulties:
Agents have limited computational power.
They must react within an acceptable time.
Computation time normally reduces the value of
the result.
There is a high degree of uncertainty regarding
the rate of progress.
The “appropriate” level of deliberation is
situation dependent.

V. Lesser; CS683, F08

Simon’s “Bounded-Rationality”
“A theory of rationality that does not give an account of
problem solving in the face of complexity is sadly
incomplete. It is worse than incomplete; it can be
seriously misleading by providing “solutions” that are
without operational significance”

“The global optimization problem is to find the least-
cost or best-return decision, net of computational
costs.”

-- Herbert Simon, 1958

V. Lesser; CS683, F08

Satisficing

A Scottish word which means satisfying.

Denotes decision making that searches until an
alternative is found that is satisfactory by the
agent's aspiration level criterion.

Heuristic search as satisficing.

Formalizing the notion of satisficing.

V. Lesser; CS683, F08

Satisficing versus Optimizing

“It appears probable that, however adaptive the
behavior of organisms in learning and choice
situations, this adaptiveness falls far short of the
ideal “maximizing” postulated in economic
theory. Evidently, organisms adapt well enough
to ‘satisfice’; they do not, in general, ‘optimize.’
”

V. Lesser; CS683, F08

Optimizing in the Real-World
“In complex real-world situations, optimization
becomes approximate optimization since the
description of the real-world is radically simplified
until reduced to a degree of complication that the
decision maker can handle. Satisficing seeks
simplification in a somewhat different direction,
retaining more of the detail of the real-world situation,
but settling for a satisfactory, rather than approximate-
best, decision.”

Which approach is preferable?

V. Lesser; CS683, F08

Anytime algorithms

Ideal (maximal quality in no time)

Decision
Quality

Time

Ideal

V. Lesser; CS683, F08

Anytime algorithms

Ideal (maximal quality in no time)
Traditional (quality maximizing)

Decision
Quality

Time

Ideal
Traditional

V. Lesser; CS683, F08

Anytime algorithms

Ideal (maximal quality in no time)
Traditional (quality maximizing)
Anytime (utility maximizing)

Value is a combination of quality of solution and
amount of time to arrive at solution

Decision
Quality

Time

Ideal
Traditional

Time cost

Anytime
Value

Anytime A*
A* is best first search with f(n) = g(n) + h(n)

Three changes make it an anytime algorithm:

(1) Use a non-admissible heuristic so that sub-optimal solutions are
found quickly.

(2) Continue the search after the first solution is found using it to
prune the open list ?????

(3) When the open list is empty, the best solution generated is
optimal.

How to choose a non-admissible heuristic?

V. Lesser; CS683, F08

Weighted evaluation functions

Use f’(n) = (1 − w)∗g(n) + w∗h(n)

Higher weight on h(n) tends to search deeper.

Admissible if h(n) is admissible and w ≤ 0.5
Same relative node ordering as admissible heuristic

h(n) >= w∗h(n)/ (1 − w) and f(n) = f’(n)/ (1 − w)

Otherwise, the search is non-admissible, but it
normally finds solutions much faster.
An appropriate w makes possible a tradeoff between
the solution quality and the computation time.

V. Lesser; CS683, F08

Pseudocode of A
nytim

e W
A

*

; if have found shorter path to node update
node and put it back in play

; can prune node if it cannot be
better than existing solution

; keep track of real and
non-admissible f

Incumbent represent best
complete solution so far found

; bound error

Could you prune
open list after
each new
incumbent ??

V. Lesser; CS683, F08

Pruning States in Anytime A*

For each node, store real f(n) = g(n)+h(n)
f(n) is the lower bound on the cost of the best solution
path through n

When find solution/goal node n1
f(n1) is an upper bound of the cost of the optimal
solution
Prune all nodes n on the open list that have

real f(n) >= f(n1) ??

V. Lesser; CS683, F08

Adjusting W Dynamically*

Suppose you had the following situations, how would you adjust
w.

the open list has gotten so large that you are running out of
memory?

you are running out of time and you have not yet reached an
answer?

there are a number of nodes on the open list whose h value is
very small?

V. Lesser; CS683, F08

