
Lecture 5: Search 4

Victor R. Lesser
CMPSCI 683

Fall 2010

V. Lesser; CS683, F10

This Lecture

 Finish off Discussion of A*

 IDA*

V. Lesser; CS683, F10

Admissibility and Monotonicity*
  Admissible heuristic h(n) = never overestimates the actual cost h*

(n) to reach a goal & h(n)>=0 & h(goal)=0

  Monotone (Consistency) heuristic
  For every node n and every successor n’ reached from n by action a
  h(n) < = cost of (n, a, nʹ′) + h(nʹ′) & h(goal)=0 	

  The deeper you go along a path the better (or as good) the estimate of the
distance to the goal state

  the f value (which is g+h) never decreases along any path.
  Implies ===> Each state reached has the minimal g(n)

  When h is admissible, monotonicity can be maintained when
combined with pathmax: f(nʹ′) = max(f(n), g(nʹ′)+h(nʹ′))	

  Create new h -- hʹ′ (nʹ′)= max(f(n)- g(nʹ′), h(nʹ′)) 	

	
 	
 	
 	
 f(nʹ′) = g(nʹ′) + hʹ′ (nʹ′),
•  Force f to never decrease along path since f(nʹ′) >= f(n)

 Does monotonicity in f imply admissibility?

Consistent h ⇒ Monotone f

V. Lesser; CS683, F10

[= f (n)]

V. Lesser; CS683, F10

Proof of Optimality of A*

Let O be an optimal solution with path cost f*.
Let SO be a suboptimal goal state, that is g(SO) > f*

Suppose that A* terminates the search with SO.

Let n be a leaf node on the optimal path to O

f* ≥ f(n) admissibility of h

f(n) ≥ f(SO) n was not chosen for expansion

f* ≥ f(n) ≥ f(SO)
f(SO) = g(SO) SO is a goal, h(SO) = 0
f* ≥ g(SO) contradiction!

V. Lesser; CS683, F10

Completeness of A*

 A* is complete unless there are infinitely
many nodes with f(n) < f*

 A* is complete when:
  there is a positive lower bound on the cost of

operators.
  the branching factor is finite.

V. Lesser; CS683, F10

A* is maximally efficient

 For a given heuristic function, no optimal
algorithm is guaranteed to do less work in terms
of nodes expanded.

 Aside from ties in f, A* expands every node
necessary for the proof that we’ve found the
shortest path, and no other nodes.

V. Lesser; CS683, F10

Questions*
  What is the implications of local monotonicity

  Amount of storage

  What happens if h1<=h2<=h for all states
  h2 dominates h1

  If h1 and h2 are admissible, is max{h1,h2} admissible?
Is it better than h1 and h2?

  What are the implications of overestimating h

  Suppose you can bound overestimation

  What if you are doing a maximizing search

V. Lesser; CS683, F10

Heuristic Function Performance

  While informed search can produce dramatic real (average-case) improvements in
complexity, it typically does not eliminate the potential for exponential (worst-case)
performance.

  The performance of heuristic functions can be compared using several metrics:
  Average number of nodes expanded (N)
  Penetrance (P = d/N)

  Effective branching factor (b*)
  If solution depth is d then b* is the branching factor that a uniform search tree would

have to have to generate N nodes
 (N = 1 + b* + (b*)2 + … + (b*)d;

  EBF tends to be relatively independent of the solution depth.

  Note that these definitions completely ignore the cost of applying the heuristic
function.

Given a d and N what is the b

V. Lesser; CS683, F10

Measuring the heuristic payoff
Iterative Deepening vs A*

V. Lesser; CS683, F10

Meta-Level Reasoning

 Search cost involves both the cost to expand
nodes and the cost to apply heuristic
function.

 Typically, there is a trade-off between the
cost and performance of a heuristic function.
  E.g., we can always get a “perfect” heuristic

function by having the function do a search to
find the solution and then use that solution to
compute h(node).

V. Lesser; CS683, F10

Meta-Level Reasoning (cont’d)

 This trade-off is often referred to as the meta-level
vs. base-level trade-off:

  Base-level refers to the operator level, at which the problem
will actually be solved;

  Meta-level refers to the control level, at which we decide
how to solve the problem.

We must evaluate the cost to execute the heuristic
function relative to the cost of expanding nodes

and the reduction in nodes expanded.

V. Lesser; CS683, F08

IDA* - Iterative deepening A*
(Space/time trade-off)

  A* requires open (& close?) list for remembering
nodes
  Can lead to very large storage requirements

  Exploit the idea the use of monotone f:
f = g + h ≤ f* (actual cost) and f(n) <= f(next node after n)
  create incremental subspaces searched depth-first
  much less storage

  Key issue is how much extra computation
  How bad an underestimate f, how many steps does it take to

get f = f*
  Worse case N computation for A*, versus N2 for IDA*

^	

^	
 ^	
 	̂

V. Lesser; CS683, F08

IDA* - Iterative deepening A*

  Beginning with an f-bound equal to the f-value of the
initial state, perform a depth-first search bounded by
the f-bound instead of a depth bound.

  Unless the goal is found, increase the f-bound to the
lowest f-value found in the previous search that
exceeds the previous f-bound, and restart the depth
first search.
  Why if you reach a goal as a result of depth-first search is

it optimal?

V. Lesser; CS683, F08

Iterative-Deepening-A*
  Algorithm: Iterative-Deepening-A*

 1) Set THRESHOLD = the heuristic evaluation of the start state.
 2) Conduct a depth-first search based on minimal cost from
current node, pruning any branch when its total cost function (g
+ h´) exceeds THRESHOLD. If a solution path is found during
the search, return it as the optimal solution.
 3) Otherwise, increment THRESHOLD by the minimum
amount it was exceeded during the previous step, and then go to
Step 2.

  Start state always on path, so initial estimate is always
underestimate and never decreasing.

V. Lesser; CS683, F08

f-Cost Contours

  Monotonic heuristics allow us to view A* in terms of exploring
increasing f-cost contours:

  The more informed a heuristic, the more the contours will be
“stretched” toward the goal (they will be more focused around
the optimal path).???

depth-first search
within contour

V. Lesser; CS683, F08

Stages in an IDA* Search for
Bucharest

Nodes are labeled with f = g +h. The h values are the straight-line distances to
Bucharest...

What is the next Contour??

V. Lesser; CS683, F08

Experimental Results on IDA*

  IDA* is asymptotically same time as A* but only O(d) in
space - versus O(bd) for A*
  Also avoids overhead of sorted queue of nodes

  IDA* is simpler to implement - no closed lists (limited
open list).

  In Korf’s 15-puzzle experiments IDA*: solved all
problems, ran faster even though it generated more nodes
than A*??.
  A*: solved no problems due to insufficient space; ran slower

than IDA*

V. Lesser; CS683, F08

RBFS - Recursive Best-First Search

 Mimics best-first search with linear space
 Similar to recursive depth-first

  Limits recursion by keeping track of the f-value of the best
alternative path from any ancestor node – one step look-ahead

  If current node exceeds this value, recursion unwinds back to
the alternative path – same idea as contour

  As recursion unwinds, replaces f-value of node with best f-
value of children
  Allows to remember whether to re-expand path at later time

 Exploits information gathered from previous
searches about minimum f so as to focus further
searches

V. Lesser; CS683, F08

RBFS - Recursive Best-First Search Algorithm

; Pathmax heuristic;
guarantee monotonic f

Defines next highest f-contour
Recursive search on best successor,
remember when to backup

f(10) INF

f(12) 14 f(14) f(16)

Define contour
limit

V. Lesser; CS683, F08

Next lecture

 Other Time and Space Variations
of A*
 Finish off RBFS

 SMA*

 Anytime A*

 RTA* (maybe if have time)

