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This Lecture 

 Finish off Discussion of A* 

 IDA* 
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Admissibility and Monotonicity* 
  Admissible heuristic h(n)  = never overestimates the actual cost h*

(n) to reach a goal & h(n)>=0 & h(goal)=0  

  Monotone (Consistency) heuristic 
  For every node n and every successor n’ reached from n by action a  
  h(n) < = cost of (n, a, nʹ′) + h(nʹ′) & h(goal)=0 	


  The deeper you go along a path the better (or as good) the estimate of the 
distance to the goal state 

  the f value (which is g+h) never decreases along any path. 
  Implies ===> Each state reached has the minimal g(n) 

  When h is admissible, monotonicity can be maintained when 
combined with pathmax:  f(nʹ′) = max(f(n), g(nʹ′)+h(nʹ′))	

  Create new h -- hʹ′ (nʹ′)= max(f(n)- g(nʹ′), h(nʹ′))   	


	
 	
 	
 	
    f(nʹ′) = g(nʹ′) + hʹ′ (nʹ′),  
•  Force f to never decrease along path since f(nʹ′) >= f(n) 

 Does monotonicity in f imply admissibility?  

Consistent h ⇒ Monotone f 
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[= f (n) ] 
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Proof of Optimality of A* 

Let O be an optimal solution with path cost f*. 
Let SO be a suboptimal goal state, that is g(SO) > f* 

Suppose that A* terminates the search with SO. 

Let n be a leaf node on the optimal path to O 

f* ≥ f(n)   admissibility of h 

f(n) ≥ f(SO)  n was not chosen for expansion 

f* ≥ f(n) ≥ f(SO)     
f(SO) = g(SO)  SO is a goal, h(SO) = 0 
f* ≥ g(SO)    contradiction! 
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Completeness of A*  

 A* is complete unless there are infinitely 
many nodes with f(n) < f* 

 A* is complete when: 
  there is a positive lower bound on the cost of 

operators. 
  the branching factor is finite. 
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A* is maximally efficient 

 For a given heuristic function, no optimal 
algorithm is guaranteed to do less work in terms 
of nodes expanded. 

 Aside from ties in f, A* expands every node 
necessary for the proof that we’ve found the 
shortest path, and no other nodes. 
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Questions* 
  What is the implications of local monotonicity 

  Amount of storage 

  What happens if h1<=h2<=h for all states 
   h2 dominates h1 

  If h1 and h2 are admissible, is max{h1,h2} admissible? 
Is it better than h1 and h2? 

  What are  the implications of overestimating h 

  Suppose you can bound overestimation 

  What if you are doing a maximizing search 
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Heuristic Function Performance 

  While informed search can produce dramatic real (average-case) improvements in 
complexity, it typically does not eliminate the potential for exponential (worst-case) 
performance. 

  The performance of heuristic functions can be compared using several metrics: 
  Average number of nodes expanded (N) 
  Penetrance (P = d/N) 

  Effective branching factor (b*) 
  If solution depth is d then b* is the branching factor that a uniform search tree would 

have to have to generate N nodes  
 (N = 1 + b* + (b*)2 + … + (b*)d; 

  EBF tends to be relatively independent of the solution depth. 

  Note that these definitions completely ignore the cost of applying the heuristic 
function. 

Given a d and N what is the b 
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Measuring the heuristic payoff 
Iterative Deepening vs A* 
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Meta-Level Reasoning 

 Search cost involves both the cost to expand 
nodes and the cost to apply heuristic 
function. 

 Typically, there is a trade-off between the 
cost and performance of a heuristic function. 
  E.g., we can always get a “perfect” heuristic 

function by having the function do a search to 
find the solution and then use that solution to 
compute h(node). 
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Meta-Level Reasoning (cont’d) 

 This trade-off is often referred to as the meta-level 
vs. base-level trade-off: 

  Base-level refers to the operator level, at which the problem 
will actually be solved; 

  Meta-level refers to the control level, at which we decide 
how  to solve the problem. 

We must evaluate the cost to execute the heuristic 
function relative to the cost of expanding nodes 

and the reduction in nodes expanded. 
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IDA* - Iterative deepening A*  
(Space/time trade-off) 

  A* requires open (& close?) list for remembering 
nodes 
  Can lead to very large storage requirements 

  Exploit the idea the use of monotone f: 
f = g + h ≤ f* (actual cost) and f(n) <= f(next node after n) 
  create incremental subspaces searched depth-first 
  much less storage 

  Key issue is how much extra computation 
  How bad an underestimate f, how many steps does it take to 

get f = f* 
  Worse case N computation for A*, versus N2 for IDA* 

^	


^	
 ^	
 	̂
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IDA* - Iterative deepening A* 

  Beginning with an f-bound equal to the f-value of the 
initial state, perform a depth-first search bounded by 
the f-bound instead of a depth bound. 

  Unless the goal is found, increase the f-bound to the 
lowest f-value found in the previous search that 
exceeds the previous f-bound, and restart the depth 
first search. 
  Why if you reach a goal as a result of depth-first search is 

it optimal? 
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Iterative-Deepening-A* 
  Algorithm: Iterative-Deepening-A* 

 1)  Set THRESHOLD = the heuristic evaluation of the start state. 
 2)  Conduct a depth-first search based on minimal cost from 
current node, pruning any branch when its total cost function (g 
+ h´) exceeds THRESHOLD. If a solution path is found during 
the search, return it as the optimal solution. 
 3)  Otherwise, increment THRESHOLD by the minimum 
amount it was exceeded during the previous step, and then go to 
Step 2. 

  Start state always on path, so initial estimate is always 
underestimate and never decreasing.    
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f-Cost Contours 

  Monotonic heuristics allow us to view A* in terms of exploring 
increasing f-cost contours: 

  The more informed a heuristic, the more the contours will be 
“stretched” toward the goal (they will be more focused around 
the optimal path).??? 

depth-first search 
within contour 
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Stages in an IDA* Search for 
Bucharest 

Nodes are labeled with f = g +h. The h values are the straight-line distances to 
Bucharest... 

What is the next Contour?? 
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Experimental Results on IDA* 

  IDA* is asymptotically same time as A* but only O(d) in 
space - versus O(bd) for A* 
  Also avoids overhead of sorted queue of nodes 

  IDA* is simpler to implement - no closed lists (limited 
open list).  

  In Korf’s 15-puzzle experiments IDA*: solved all 
problems, ran faster even though it generated more nodes 
than A*??. 
  A*: solved no problems due to insufficient space; ran slower 

than IDA* 
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RBFS - Recursive Best-First Search 

 Mimics best-first search with linear space 
 Similar to recursive depth-first 

  Limits recursion by keeping track of the f-value of the best 
alternative path from any ancestor node – one step look-ahead 

  If current node exceeds this value, recursion unwinds back to 
the alternative path – same idea as contour 

  As recursion unwinds, replaces f-value of node with best f-
value of children 
  Allows to remember whether to re-expand path at later time 

 Exploits information gathered from previous 
searches about minimum f so as to focus further 
searches 
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RBFS - Recursive Best-First Search Algorithm 

; Pathmax heuristic; 
guarantee monotonic f 

Defines next highest f-contour 
Recursive search on best successor, 
remember when to backup  

f(10)  INF 

f(12) 14 f(14) f(16) 

Define contour 
limit 
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Next lecture 

 Other Time and Space Variations 
of A* 
 Finish off RBFS 

 SMA* 

 Anytime A* 

 RTA* (maybe if have time) 


