
Lecture 4: Search 3

Victor R. Lesser
CMPSCI 683

Fall 2010

First Homework

1st Programming Assignment – 2 separate parts
(homeworks)

•  First part due on (9/27) at 5pm
•  Second part due on 10/13 at 5pm

Send homework writeup as .pdf file and code
to TA

V. Lesser; CS683, F10

Today’s lecture

 Overview of Search Strategies
 Blind Search (Most slides will be skipped)
 Informed Search

  How to use heuristics (domain knowledge) in
order to accelerate search?

  A* and IDA*

  Reading: Sections 4.1-4.2.

General Tree Search

Set up state of node

V. Lesser; CS683, F10

Fringe is often called
open list

Repeated states

  Failure to detect repeated states can
turn a linear problem into an exponential
one!

V. Lesser; CS683, F10 V. Lesser; CS683, F10

Avoiding Repeated States
 Do not re-generate the state you just came from.
 Do not create paths with cycles.

 Do not generate any state that was generated
before (using a hash table to store all generated
nodes)
  Markov Assumption

 Add Close list to search algorithm or cleverly
construct search space

V. Lesser; CS683, F10

Graph Search

Don’t expand node if already on closed list

V. Lesser; CS683, F10

Search Strategies
 A key issue in search is limiting the portion of
the state space that must be explored to find a
solution.
 The portion of the search space explored can
be affected by the order in which states (and
thus solutions) are examined.
 The search strategy determines this order by
determining which node (partial solution) will
be expanded next.

V. Lesser; CS683, F10

Search Strategies
 A key issue in search is limiting the portion of
the state space that must be explored to find a
solution.
 The portion of the search space explored can
be affected by the order in which states (and
thus solutions) are examined.
 The search strategy determines this order by
determining which node (partial solution) will
be expanded next.

V. Lesser; CS683, F10

Search Strategies
  A strategy: picking the order of node expansion
  Evaluation criteria:

  Completeness: is the strategy guaranteed to find a solution
when there is one?

  Time complexity: how long does it take to find a solution?
(number of nodes generated)

  Space complexity: how much memory does it need to perform
the search? (maximum number of nodes in memory)

  Optimality: does the strategy find the highest-quality solution
when there are several solutions?

  Time and space complexity are measured :
  b – maximum branching factor of the search tree
  d – depth of the least-cost solution
  m – maximum depth of the state space (may be infinity)

V. Lesser; CS683, F10

Complexity of Search Strategies

 The extent to which partial solutions are
kept and used to guide the search
process

 The context used in making decisions
 The degree to which the search process

is guided by domain knowledge
 The degree to which control decisions

are made dynamically at run-time
V. Lesser; CS683, F10

Search Strategy Classification

  Search strategies can be classified in the following
general way:
  Uninformed/blind search;

  Informed/heuristic search;
  Relationship of nodes to goal state, and intra-node relationships

  Multi-level/multi-dimensional/multi-direction;

  Systematic versus Stochastic

  Game/Adversarial search
  Game search deals with the presence of an opponent that takes actions

that diminish an agent’s performance (see AIMA Chapter 6).

V. Lesser; CS683, F10

Uninformed/Blind Search Strategies

 Uninformed strategies do not use any
information about how close (distance,cost) a
node might be to a goal (additional cost to
reach goal).

 They differ in the order that nodes are
expanded (and operator cost assumptions).

V. Lesser; CS683, F10

Examples of Blind Search Strategies

  Breadth-first search (open list is FIFO queue)

  Uniform-cost search (shallowest node first)

  Depth-first search (open list is a LIFO queue)

  Depth-limited search (DFS with cutoff)

  Iterative-deepening search (incrementing cutoff)

  Bi-directional search (forward and backward)

Will Skip Following Slides in Class
Discussion

 Breadth-first Search

 Uniform-cost Search

 Depth-first Search

 Depth-limited Search

V. Lesser; CS683, F10 V. Lesser; CS683, F10

Breadth-First Search

Expand shallowest unexpanded node

Fringe: is a FIFO queue, new successors go to the end

V. Lesser; CS683, F10

Breadth-First Search
(b - branching factor, d -depth)

  Completeness:
  Yes
  Time complexity:
  1+b+b2 + b3 +…+ bd =O(bd+1)
  Space complexity:
  O(bd+1), keep every node in

memory.
  Optimality:
  Yes (only if step costs are

identical)

Figure Breadth-first search tress after
0, 1, 2, and 3 node expansions (b=2,
d=2)

V. Lesser; CS683, F10

Breadth-First Search (cont)

  Time and Memory requirements for a breadth-
first search.

  The figures shown assume (1) branching factor
b=10; (2) 1000 nodes/second; (3) 100 bytes/
node

•  Time and Space complex Cannot be use to
solve any but the smallest problem

V. Lesser; CS683, F10

Uniform Cost Search
  BFS finds the shallowest goal state.
  Uniform cost search modifies the BFS by expanding ONLY the

lowest cost node (as measured by the path cost g(n))
  The cost of a path must never decrease as we traverse the path,

ie. no negative cost should in the problem domain

V. Lesser; CS683, F10

Uniform Cost Search

  Completeness:
  Yes
  Time complexity:

 bC*/e

Space complexity: 	

bC*/e	

Optimality: 	

Yes	

 C*: optimal cost, e:minimum cost of each step

V. Lesser; CS683, F10

Depth-First Search (Cont’d)

Expand deepest unexpanded node

Fringe: is a LIFO queue, new successors go to the front

V. Lesser; CS683, F10

Depth-First Search

  DFS always expands one of the nodes at the deepest
level of the tree.

  The search only go back once it hits a dead end (a
non-goal node with no expansion)

  DFS have modest memory requirements, it only
needs to store a single path from root to a leaf node.

  For problems that have many solutions, DFS may
actually be faster than BFS, because it has a good
chance of finding a solution after exploring only a
small portion of the whole space.

V. Lesser; CS683, F10

Depth-First Search (cont)

 One problem with DFS is that it can get stuck going
down the wrong path.

 Many problems have very deep or even infinite
search trees.

 DFS should be avoided for search trees with large
or infinite maximum depths.

  It is common to implement a DFS with a recursive
function that calls itself on each of its children in
turn.

V. Lesser; CS683, F10

Properties of Depth-first Search

 Complete: ??
 Time: ??
 Space: ??
 Optimal: ??

V. Lesser; CS683, F10

Properties of Depth-first Search

  Complete: No, fails in infinite-depth spaces, spaces
with loops. Modify to avoid repeated states along
path: complete in finite spaces

  Time: bm: terrible if m is much larger than d (depth
of solution), but if solutions are dense, may be
much faster than breadth-first

  Space:b.m, i.e., linear space!
  Optimal: no

  b – maximum branching factor of the search tree
  m – maximum depth of the state space

V. Lesser; CS683, F10

Depth-Limited Search
  “Practical” DFS
  DLS avoids the pitfalls of DFS by imposing a cutoff on the

maximum depth of a path.
  However, if we choose a depth limit that is too small, then

DLS is not even complete.
  The time and space complexity of DLS is similar to DFS.

V. Lesser; CS683, F10

Depth-Limited Search (cont)

 Completeness:
 Yes, only if l >= d
 Time complexity:
  bl

 Space complexity:
 bl
 Optimality:
 No

 (b-branching factor, l-depth limit)

V. Lesser; CS683, F10

Iterative Deepening Search

 The hard part about DLS is picking a good
limit.

  IDS is a strategy that sidesteps the issue of
choosing the best depth limit by trying all
possible depth limits: first depth 0, then
depth 1, the depth 2, and so on.

V. Lesser; CS683, F10

Iterative Deepening Search (cont)

Repeated Depth-limited
search where depth-limit is
increased incrementally
until solution is found

V. Lesser; CS683, F10

Properties of iterative deepening
search

 Complete:??

 Time: ??

 Space: ??

 Optimal: ??

V. Lesser; CS683, F10

Properties of iterative deepening
search

 Complete: Yes
 Time:

 Space: O(bd)
 Optimal: Yes, if step cost = 1

Can be modified to explore uniform-cost tree

)(123...)1()(1)1(122 dddd bbbbbdbdd Ο=++++−+++ −−

V. Lesser; CS683, F10

Iterative Deepening Search (cont)
  IDS may seem wasteful, because so many states are

expanded multiple times.
  For most problems, however, the overhead of this

multiple expansion is actually rather small.
  Major cost is at fringe where solution is; this last fringe

only occurs once
  In effect, it combines the benefits of DFS and BFS. It

is optimal and complete, like BFS and has modest
memory requirements of DFS.

  IDS is the preferred search method when there is a
large search space and the depth of the solution is
not known.

V. Lesser; CS683, F10

Bi-directional Search

A schematics view of a bi-directional BFS that is about to
succeed, when a branch from the start node meets a branch
from the goal node

V. Lesser; CS683, F10

Bi-directional Search
  Search forward from the Initial state
  And search backwards from the Goal state.
  Stop when two meets in the middle.
  Why is this good??; When can you do such a search??
  Each search checks each node before it is expanded to see if it is in the

fringe of the other search.
 Completeness:
 Yes
 Time complexity:
  bd/2
 Space complexity:
  bd/2
 Optimality:
 Yes

V. Lesser; CS683, F10

Comparing Blind Search Strategies

  b - branching factor; d is the depth of the solution; m is the
maximum depth of the search tree; l is the depth limit

  BFS, IDS, and BDS are optimal only if step costs are
all identical.

  Iterative deepening search uses only linear space
and not much more time

V. Lesser; CS683, F10

Informed/Heuristic Search

 While uninformed search methods can in
principle find solutions to any state space
problem, they are typically too inefficient to do
so in practice.

 Informed search methods use problem-specific
knowledge to improve average search
performance.

V. Lesser; CS683, F10

What are heuristics?

  Heuristic: problem-specific knowledge that reduces
expected search effort.

  Informed search uses a heuristic evaluation function that
denotes the relative desirability of expanding a node/
state.

 often include some estimate of the cost to reach the
nearest goal state from the current state.

 How much of the state of the search does it take
into account in making this decision?

  In blind search techniques, such knowledge can be
encoded only via state space and operator representation.

V. Lesser; CS683, F10

Examples of heuristics

  Travel planning
  Euclidean distance

  8-puzzle

  Traveling salesman problem
  Minimum spanning tree

 Where do heuristics come from?

1

V. Lesser; CS683, F10

Heuristics from relaxed models

 Heuristics can be generated via simplified models
of the problem

 Simplification can be modeled as deleting
constraints on operators

 Key property: Heuristic can be calculated
efficiently (low overhead -- why important?)

V. Lesser; CS683, F10

Informed Search Strategies
  Best-first search (a.k.a. ordered search):

  greedy (a.k.a. best-first)
  A*
  ordered depth-first (a.k.a. hill-climbing)

  Memory-bounded search:
  Iterative deepening A* (IDA*)
  Simplified memory-bounded A* (SMA*)
  Recursive Best First Search (RBFS) Time-bounded search:
  Anytime A*
  RTA* (searching and acting)

  Iterative improvement algorithms (generate-and-test approaches):
  Steepest ascent hill-climbing
  Random-restart hill-climbing
  Simulated annealing

  Multi-Level/Multi-Dimensional Search
  Hierarchical A*
  Blackboard

V. Lesser; CS683, F10

Informed/Heuristic Search

 While uninformed search methods can in
principle find solutions to any state space
problem, they are typically too inefficient to do
so in practice.

 Informed search methods use problem-specific
knowledge to improve average search
performance.

V. Lesser; CS683, F10

What are heuristics?

 Heuristic: problem-specific knowledge that
reduces expected search effort.
  In blind search techniques, such knowledge can be

encoded only via state space and operator
representation.

  Informed search uses a heuristic evaluation
function that denotes the relative desirability of
expanding a node/state.
  often include some estimate of the cost to reach the

nearest goal state from the current state.

V. Lesser; CS683, F10

One Way of Introducing Heuristic Knowledge
into Search – Heuristic Evaluation Function

  heuristic evaluation function h : Ψ --> R, where Ψ is
a set of all states and R is a set of real numbers, maps
each state s in the state space Ψ into a measurement h
(s) which is an estimate of the cost extending of the
cheapest path from s to a goal node.

Node A has 3 children.	

h(s1)=0.8, h(s2)=2.0, h(s3)=1.6	

The value refers to the cost involved
for an action. A continued search at s1
based on h(s1) being the smallest is
‘heuristically’ the best.	

a1 a2 a3

V. Lesser; CS683, F10

Best-first search
  Idea: use an evaluation function for each node, which

estimates its “desirability”

  Expand most desirable unexpanded node

  Implementation: open list is sorted in decreasing order
of desirability

  A combination of depth first (DFS) and breadth first
search (BFS).
  Go depth-first until node path is no longer the most promising one (lowest

expected cost) then backup and look at other paths that were previously
promising (and now are the most promising) but not pursued. At each
search step pursuing in a breath-first manner the paths that has lowest
expected cost.

V. Lesser; CS683, F10

 Best-First Search*
1)  Start with OPEN containing just the initial state.
2) Until a goal is found or there are no nodes left on OPEN do:

 (a) Pick the best node (based on the heuristic function) on OPEN.
 (b) If it is a goal node, return the solution otherwise place node on the CLOSED list
 (b) Generate its successors.
 (c) For each successor node do:

i. If it has not been generated before (i.e., not on CLOSED list),
evaluate it, add it to OPEN, and record its parent.

ii.  If it has been generated before, change the parent if this new path
is better than the previous one. In that case, update the cost of
getting to this node and to any successors that this node may
already have?

Is this a complete and optimal search?
V. Lesser; CS683, F10

Greedy search

 Simple form of best-first search
 Heuristic evaluation function h(n) estimates the

cost from n to the closest goal
 Example: straight-line distance from city n to

goal city (Bucharest)
 Greedy search expands the node (on OPEN list)

that appears to be closest to the goal
 Properties of greedy search?

Roadmap of Romania

V. Lesser; CS683, F10 V. Lesser; CS683, F10

Greedy Search

Path cost is
140+99+211 = 450

V. Lesser; CS683, F10

Problems with Greedy Search (cont)

  Complete?
  No, can get stuck in loops if not maintaining Closed list.

  e.g. (Lasi to Fagaras) Lasi to Neamt to Lasi to Neamt
  Neamt dead-end need to turn back

  Time??
  O(b^m), but a good heuristic can give dramatic improvement

where m is the maximum depth of the search space
  Space??

  O(b^m), keeps all nodes in memory
 Optimal??

  No (minimum cost path in example is 418 rather than 450)
V. Lesser; CS683, F10

Problems with Greedy Search (cont)

  Complete?
  No, can get stuck in loops if not maintaining Closed list.

  e.g. (Lasi-> Fagaras) Lasi->Neamt->Lasi->Neamt
  Neamt dead-end need to turn back

  When h is admissible, monotonicity can be maintained when
combined with pathmax:

 f(nʹ′) = max(f(n), g(nʹ′)+h(nʹ′))	

Equivalent to defining a new heuristic function hʹ′ and save f of
parent as part of state of node	

	
 	
f(nʹ′) = g(nʹ′) + hʹ′ (nʹ′), hʹ′ (nʹ′)= max(f(n)- g(nʹ′), h(nʹ′))

V. Lesser; CS683, F10

Minimizing total path cost: A*

  G(greedy)S minimizes the estimate cost to the goal, h(n), - not
optimal and incomplete.

  U(uniform)C(cost)S minimizes the cost of the path so far, g(n)
and is optimal and complete but can be very inefficient.

  A* Search combines both GS h(n) and UCS g(n) to give f(n)
which estimates the cost of the cheapest solution through n.

  A* is similar to best-first search except that the evaluation
is based on total path (solution) cost:

 f(n) = g(n) + h(n) where:
 g(n) = cost of path from the initial state to n
 h(n) = estimate of the remaining distance

Greedy -- Complete, but not
optimal…

52nd St

51st St

50th St

10
th Ave

9
th Ave

8
th Ave

7
th Ave

6
th Ave

5
th Ave

4
th Ave

3
rd Ave

2
nd Ave

S G

53nd St Path found by
Best-first = 10

Shortest Path
= 8

4 3 2

7 5

1 5

1

2 3

2

4 6 1 2 3

Manhattan Distance
Heuristic

V. Lesser; CS683, F10

h values

52nd St

51st St

50th St

10
th Ave

9
th Ave

8
th Ave

7
th Ave

6
th Ave

5
th Ave

4
th Ave

3
rd Ave

2
nd Ave

S G

53nd St

4 3 2

7 5

1 5

1

2 3

2

4 6 1 2 3

V. Lesser; CS683, F10

g values

52nd St

51st St

50th St

10
th Ave

9
th Ave

8
th Ave

7
th Ave

6
th Ave

5
th Ave

4
th Ave

3
rd Ave

2
nd Ave

S G

53nd St

2 3 4

1 3

5 1

9

8 7

6

4 2 7 6 5

V. Lesser; CS683, F10

f = g + h

52nd St

51st St

50th St

10
th Ave

9
th Ave

8
th Ave

7
th Ave

6
th Ave

5
th Ave

4
th Ave

3
rd Ave

2
nd Ave

S G

53nd St

6 6 6

8 8

6 6

10

10 10

8

8 8 8 8 8

V. Lesser; CS683, F10 V. Lesser; CS683, F10

V. Lesser; CS683, F10

Why not stop?

V. Lesser; CS683, F10

Example: tracing A* with two different heuristics	

h2 = 2 8 3

sum of manhatten distance 1 6 4

7 5

5

2 8 3 2 8 3 2 8 3

1 6 4 1 4 1 6 4

7 5 7 6 5 7 5

7 5 7

2 8 3 2 3 2 8 3

1 4 1 8 4 1 4

7 6 5 7 6 5 7 6 5

7 5 7

2 3 2 3

1 8 4 1 8 4

7 6 5 7 6 5

5 7

1 2 3

8 4

7 6 5

5

1 2 3 1 2 3

8 4 7 8 4

7 6 5 6 5

h1= 2 8 3

number of misplaced tiles 1 6 4

7 5

4

2 8 3 2 8 3 2 8 3

1 6 4 1 4 1 6 4

7 5 7 6 5 7 5

6 4 6

2 8 3 2 3 2 8 3

1 4 1 8 4 1 4

7 6 5 7 6 5 7 6 5

5 5 6

8 3 2 8 3 2 3 2 3

2 1 4 7 1 4 1 8 4 1 8 4

7 6 5 6 5 7 6 5 7 6 5

6 7 5 7

1 2 3

8 4

7 6 5

5

1 2 3 1 2 3

8 4 7 8 4

7 6 5 6 5

Which
Expands

Fewer
Nodes?

V. Lesser; CS683, F10

Admissibility and Monotonicity*
  Admissible heuristic h(n) = never overestimates the actual cost h*

(n) to reach a goal & h(n)>=0 & h(goal)=0

  Monotone (Consistency) heuristic
  For every node n and every successor n’ reached from n by action a
  h(n) < = cost of (n, a, nʹ′) + h(nʹ′) & h(goal)=0 	

  The deeper you go along a path the better (or as good) the estimate of the
distance to the goal state

  the f value (which is g+h) never decreases along any path.
  Implies ===> Each state reached has the minimal g(n)

  When h is admissible, monotonicity can be maintained when
combined with pathmax: f(nʹ′) = max(f(n), g(nʹ′)+h(nʹ′))	

  Create new h -- hʹ′ (nʹ′)= max(f(n)- g(nʹ′), h(nʹ′)) 	

	
 	
 	
 	
 f(nʹ′) = g(nʹ′) + hʹ′ (nʹ′),
•  Force f to never decrease along path since f(nʹ′) >= f(n)

 Does monotonicity in f imply admissibility?
V. Lesser; CS683, F10

Next lecture

 Finish off Discussion of A*

 IDA*

 Other Time and Space Variations of A*
 RBFS

 SMA*

 RTA*

