
Lecture 4: Search 3 

Victor R. Lesser 
CMPSCI 683 

Fall 2010 

First Homework 

1st Programming Assignment – 2 separate parts 
(homeworks) 

•  First part due on (9/27) at 5pm 
•  Second part due on 10/13 at 5pm 

Send homework writeup as .pdf file and code 
to TA 
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Today’s lecture 

 Overview of Search Strategies 
 Blind Search (Most slides will be skipped) 
 Informed Search 

  How to use heuristics (domain knowledge) in 
order to accelerate search? 

  A* and IDA* 

  Reading: Sections 4.1-4.2. 

General Tree Search 

Set up state of node 
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Fringe is often called 
open list 



Repeated states 

   Failure to detect repeated states can 
turn a linear problem into an exponential 
one! 

V. Lesser; CS683, F10 V. Lesser; CS683, F10 

Avoiding Repeated States 
 Do not re-generate the state you just came from. 
 Do not create paths with cycles. 

 Do not generate any state that was generated 
before (using a hash table to store all generated 
nodes) 
  Markov Assumption 

 Add Close list to search algorithm or cleverly 
construct search space 
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Graph Search 

Don’t expand node if already on closed list 
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Search Strategies 
 A key issue in search is limiting the portion of 
the state space that must be explored to find a 
solution. 
 The portion of the search space explored can 
be affected by the order in which states (and 
thus solutions) are examined. 
 The search strategy determines this order by 
determining which node (partial solution) will 
be expanded next. 



V. Lesser; CS683, F10 

Search Strategies 
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the state space that must be explored to find a 
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 The search strategy determines this order by 
determining which node (partial solution) will 
be expanded next. 
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Search Strategies 
  A strategy: picking the order of node expansion 
  Evaluation criteria: 

  Completeness: is the strategy guaranteed to find a solution 
when there is one? 

  Time complexity: how long does it take to find a solution? 
(number of nodes generated) 

  Space complexity: how much memory does it need to perform 
the search? (maximum number of nodes in memory) 

  Optimality: does the strategy find the highest-quality solution 
when there are several solutions? 

  Time and space complexity are measured : 
  b – maximum branching factor of the search tree 
  d – depth of the least-cost solution 
  m – maximum depth of the state space (may be infinity) 
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Complexity of Search Strategies 

 The extent to which partial solutions are 
kept and used to guide the search 
process 

 The context used in making decisions 
 The degree to which the search process 

is guided by domain knowledge 
 The degree to which control decisions 

are made dynamically at run-time 
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Search Strategy Classification 

  Search strategies can be classified in the following 
general way: 
  Uninformed/blind search; 

  Informed/heuristic search; 
  Relationship of nodes to goal state, and intra-node relationships 

  Multi-level/multi-dimensional/multi-direction; 

  Systematic versus Stochastic 

  Game/Adversarial search 
  Game search deals with the presence of an opponent that takes actions 

that diminish an agent’s performance (see AIMA Chapter 6). 
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Uninformed/Blind Search Strategies 

 Uninformed strategies do not use any 
information about how close (distance,cost) a 
node might be to a goal (additional cost to 
reach goal). 

 They differ in the order that nodes are 
expanded (and operator cost assumptions). 
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Examples of Blind Search Strategies 

  Breadth-first search (open list is FIFO queue) 

  Uniform-cost search (shallowest node first) 

  Depth-first search (open list is a LIFO queue)  

  Depth-limited search (DFS with cutoff) 

  Iterative-deepening search (incrementing cutoff) 

  Bi-directional search (forward and backward) 

Will Skip Following Slides in Class 
Discussion 

 Breadth-first Search 

 Uniform-cost Search 

 Depth-first Search 

 Depth-limited Search 
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Breadth-First Search 

Expand shallowest unexpanded node 

Fringe: is a FIFO queue, new successors go to the end 
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Breadth-First Search 
(b - branching factor, d -depth) 

  Completeness:  
  Yes 
  Time complexity: 
   1+b+b2 + b3 +…+ bd =O(bd+1 ) 
  Space complexity: 
   O(bd+1), keep every node in 

memory. 
  Optimality:  
  Yes ( only if step costs are 

identical ) 

Figure Breadth-first search tress after  
0, 1, 2, and 3 node expansions (b=2, 
d=2) 
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Breadth-First Search (cont) 

  Time and Memory requirements for a breadth-
first search.  

  The figures shown assume (1) branching factor 
b=10; (2) 1000 nodes/second; (3) 100 bytes/
node 

•  Time and Space complex Cannot be use to 
solve any but the smallest problem 
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Uniform Cost Search 
  BFS finds the shallowest goal state. 
  Uniform cost search modifies the BFS by expanding ONLY the 

lowest cost node (as measured by the path cost g(n)) 
  The cost of a path must never decrease as we traverse the path, 

ie. no negative cost should in the problem domain 
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Uniform Cost Search 

  Completeness:  
  Yes 
  Time complexity:  

 bC*/e 

Space complexity: 	

bC*/e	

Optimality: 	

Yes	


 C*: optimal cost, e:minimum cost of each step 
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Depth-First Search (Cont’d) 

Expand deepest unexpanded node 

Fringe: is a LIFO queue, new successors go to the front 
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Depth-First Search 

  DFS always expands one of  the nodes at the deepest 
level of the tree. 

  The search only go back once it hits a dead end (a 
non-goal node with no expansion) 

  DFS have modest memory requirements, it only 
needs to store a single path from root to a leaf node. 

  For problems that have many solutions, DFS may 
actually be faster than BFS, because it has a good 
chance of finding a solution after exploring only a 
small portion of the whole space. 
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Depth-First Search (cont) 

 One problem with DFS is that it can get stuck going 
down the wrong path. 

 Many problems have very deep or even infinite 
search trees. 

 DFS should be avoided for search trees with large 
or infinite maximum depths. 

  It is common to implement a DFS with a recursive 
function that calls itself on each of its children in 
turn. 
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Properties of Depth-first Search  

 Complete: ?? 
 Time: ?? 
 Space: ?? 
 Optimal: ?? 
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Properties of Depth-first Search  

  Complete: No, fails in infinite-depth spaces, spaces 
with loops. Modify to avoid repeated states along 
path: complete in finite spaces 

  Time: bm: terrible if  m is much larger than d (depth 
of solution),  but if solutions are dense, may be 
much faster than breadth-first 

  Space:b.m, i.e., linear space! 
  Optimal: no 

  b – maximum branching factor of the search tree 
  m – maximum depth of the state space 
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Depth-Limited Search  
  “Practical” DFS 
  DLS avoids the pitfalls of DFS by imposing a cutoff on the 

maximum depth of a path. 
  However, if we choose a depth limit that is too small, then 

DLS is not even complete. 
  The time and space complexity of DLS is similar to DFS. 
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Depth-Limited Search (cont) 

 Completeness:  
 Yes, only if l >= d 
 Time complexity: 
  bl 

 Space complexity:  
 bl 
 Optimality:  
 No 

 (b-branching factor, l-depth limit) 
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Iterative Deepening Search 

 The hard part about DLS is picking a good 
limit. 

  IDS is a strategy that sidesteps the issue of 
choosing the best depth limit by trying all 
possible depth limits: first depth 0, then 
depth 1, the depth 2, and so on. 
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Iterative Deepening Search (cont) 

Repeated Depth-limited 
search where depth-limit is 
increased incrementally 
until solution is found 
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Properties of iterative deepening 
search  

 Complete:??  

 Time: ?? 

 Space: ?? 

 Optimal: ?? 
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Properties of iterative deepening 
search  

 Complete: Yes 
 Time: 

 Space: O(bd) 
 Optimal: Yes, if step cost = 1 

Can be modified to explore uniform-cost tree 

)(123...)1()(1)1( 122 dddd bbbbbdbdd Ο=++++−+++ −−
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Iterative Deepening Search  (cont) 
  IDS may seem wasteful, because so many states are 

expanded multiple times. 
  For most problems, however, the overhead of this 

multiple expansion is actually rather small. 
  Major cost is at fringe where solution is; this last fringe 

only occurs once 
  In effect, it combines the benefits of DFS and BFS. It 

is optimal and complete, like BFS and has modest 
memory requirements of DFS. 

  IDS is the preferred search method when there is a 
large search space and the depth of the solution is 
not known. 
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Bi-directional Search 

A schematics view of a bi-directional BFS that is about to 
succeed, when a branch from the start node meets a branch 
from the goal node 
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Bi-directional Search 
  Search forward from the Initial state 
  And search backwards from the Goal state. 
  Stop when two meets in the middle. 
  Why is this good??; When can you do such a search?? 
  Each search checks each node before it is expanded to see if it is in the 

fringe of the other search. 
 Completeness:  
 Yes 
 Time complexity: 
  bd/2 
 Space complexity: 
  bd/2 
 Optimality:  
 Yes 
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Comparing Blind Search Strategies 

  b - branching factor; d is the depth of the solution; m is the 
maximum depth of the search tree; l is the depth limit 

  BFS, IDS, and BDS are optimal only if step costs are 
all identical. 

  Iterative deepening search uses only linear space 
and not much more time 
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Informed/Heuristic Search 

 While uninformed search methods can in 
principle find solutions to any state space 
problem, they are typically too inefficient to do 
so in practice. 

 Informed search methods use problem-specific 
knowledge to improve average search 
performance. 
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What are heuristics? 

  Heuristic: problem-specific knowledge that reduces 
expected search effort. 

  Informed search uses a heuristic evaluation function that 
denotes the relative desirability of expanding a node/
state. 

 often include some estimate of the cost to reach the 
nearest goal state from the current state. 

 How much of the state of the search does it take 
into account in making this decision? 

  In blind search techniques, such knowledge can be 
encoded only via state space and operator representation. 

V. Lesser; CS683, F10 

Examples of heuristics 

  Travel planning 
   Euclidean distance  

  8-puzzle 

  Traveling salesman problem 
  Minimum spanning tree 

 Where do heuristics come from? 

1
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Heuristics from relaxed models 

 Heuristics can be generated via simplified models 
of the problem 

 Simplification can be modeled as deleting 
constraints on operators 

 Key property: Heuristic can be calculated 
efficiently (low overhead -- why important?) 
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Informed Search Strategies 
  Best-first search (a.k.a. ordered search): 

  greedy (a.k.a. best-first) 
  A* 
  ordered depth-first (a.k.a. hill-climbing) 

  Memory-bounded search: 
  Iterative deepening A* (IDA*) 
  Simplified memory-bounded A* (SMA*) 
  Recursive Best First Search (RBFS) Time-bounded search: 
  Anytime A* 
  RTA* (searching and acting) 

  Iterative improvement algorithms (generate-and-test approaches): 
  Steepest ascent hill-climbing 
  Random-restart hill-climbing 
  Simulated annealing 

  Multi-Level/Multi-Dimensional Search 
  Hierarchical A* 
  Blackboard 
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Informed/Heuristic Search 

 While uninformed search methods can in 
principle find solutions to any state space 
problem, they are typically too inefficient to do 
so in practice. 

 Informed search methods use problem-specific 
knowledge to improve average search 
performance. 
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What are heuristics? 

 Heuristic: problem-specific knowledge that 
reduces expected search effort. 
  In blind search techniques, such knowledge can be 

encoded only via state space and operator 
representation. 

  Informed search uses a heuristic evaluation 
function that denotes the relative desirability of 
expanding a node/state. 
  often include some estimate of the cost to reach the 

nearest goal state from the current state. 
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One Way of Introducing Heuristic Knowledge 
into Search – Heuristic Evaluation Function 

  heuristic evaluation function h : Ψ --> R, where Ψ  is 
a set of all states and R is a set of real numbers, maps 
each state s in the state space Ψ into a measurement h
(s) which is an estimate of the cost extending of the 
cheapest path from s to a goal node. 

Node A has 3 children.	


h(s1)=0.8, h(s2)=2.0, h(s3)=1.6	


The value refers to the cost involved 
for an action. A continued search  at s1 
based  on  h(s1)  being  the  smallest  is 
‘heuristically’ the best.	


a1 a2 a3 
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Best-first search 
  Idea: use an evaluation function for each node, which 

estimates its “desirability” 

  Expand most desirable unexpanded node 

  Implementation: open list is sorted in decreasing order 
of desirability 

  A combination of depth first (DFS) and breadth first 
search (BFS). 
  Go depth-first until node path is no longer the most promising one (lowest 

expected cost) then backup and look at other paths that were previously 
promising ( and now are the most promising) but not pursued. At each 
search step pursuing in a breath-first manner the paths that has lowest 
expected cost.  
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 Best-First Search* 
1)  Start with OPEN containing just the initial state. 
2)  Until a goal is found or there are no nodes left on OPEN do: 

 (a)  Pick the best node (based on the heuristic function) on OPEN. 
 (b) If it is a goal node, return the solution otherwise place node on the CLOSED list 
 (b)  Generate its successors. 
 (c)  For each successor node do: 

i.   If it has not been generated before (i.e., not on CLOSED list), 
evaluate it, add it to OPEN, and record its parent. 

ii.  If it has been generated before, change the parent if this new path 
is better than the previous one. In that case, update the cost of 
getting to this node and to any successors that this node may 
already have? 

Is this a complete and optimal search? 
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Greedy search 

 Simple form of best-first search 
 Heuristic evaluation function h(n) estimates the 

cost from n to the closest goal 
 Example: straight-line distance from city n to 

goal city (Bucharest) 
 Greedy search expands the node (on OPEN list) 

that appears to be closest to the goal 
 Properties of greedy search? 

Roadmap of Romania 
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Greedy Search  

Path cost is 
140+99+211 = 450  
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Problems with Greedy Search (cont) 

  Complete? 
  No, can get stuck in loops if not maintaining Closed list. 

  e.g. (Lasi to Fagaras) Lasi to Neamt to Lasi to Neamt 
  Neamt dead-end need to turn back 

  Time?? 
  O(b^m), but a good heuristic can give dramatic improvement 

where m is the maximum depth of the search space 
  Space?? 

  O(b^m), keeps all nodes in memory 
 Optimal?? 

  No (minimum cost path in example is 418 rather than 450) 
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Problems with Greedy Search (cont) 

  Complete? 
  No, can get stuck in loops if not maintaining Closed list. 

  e.g. (Lasi-> Fagaras) Lasi->Neamt->Lasi->Neamt 
  Neamt dead-end need to turn back 

  When h is admissible, monotonicity can be maintained when 
combined with pathmax:  

 f(nʹ′) = max(f(n), g(nʹ′)+h(nʹ′))	


Equivalent to defining a new heuristic function hʹ′ and save f of 
parent as part of state of node	


	
 	
f(nʹ′) = g(nʹ′) + hʹ′ (nʹ′), hʹ′ (nʹ′)= max(f(n)- g(nʹ′), h(nʹ′)) 
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Minimizing total path cost: A* 

  G(greedy)S minimizes the estimate cost to the goal, h(n), - not 
optimal and incomplete. 

  U(uniform)C(cost)S minimizes the cost of the path so far, g(n) 
and is optimal and complete but can be very inefficient.  

  A* Search combines both GS h(n) and UCS g(n) to give f(n) 
which estimates the cost of the cheapest solution through n. 

  A* is similar to best-first search except that the evaluation 
is based on total path (solution) cost: 

 f(n) = g(n) + h(n)  where: 
 g(n) = cost of path from the initial state to n 
 h(n) = estimate of the remaining distance 

Greedy -- Complete, but not 
optimal…  
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h values 
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g values 
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f = g + h 

52nd St 

51st St 

50th St 

10
th Ave 

9
th Ave 

8
th Ave 

7
th Ave 

6
th Ave 

5
th Ave 

4
th Ave 

3
rd Ave 

2
nd Ave 

S G 

53nd St 

6 6 6 

8 8 

6 6 

10 

10 10 

8 

8 8 8 8 8 

V. Lesser; CS683, F10 V. Lesser; CS683, F10 



V. Lesser; CS683, F10 

Why not stop? 
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Example: tracing A* with two different heuristics	

h2 = 2 8 3

sum of manhatten distance 1 6 4

7 5

5
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7 5 7 6 5 7 5
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Admissibility and Monotonicity* 
  Admissible heuristic h(n)  = never overestimates the actual cost h*

(n) to reach a goal & h(n)>=0 & h(goal)=0  

  Monotone (Consistency) heuristic 
  For every node n and every successor n’ reached from n by action a  
  h(n) < = cost of (n, a, nʹ′) + h(nʹ′) & h(goal)=0 	


  The deeper you go along a path the better (or as good) the estimate of the 
distance to the goal state 

  the f value (which is g+h) never decreases along any path. 
  Implies ===> Each state reached has the minimal g(n) 

  When h is admissible, monotonicity can be maintained when 
combined with pathmax:  f(nʹ′) = max(f(n), g(nʹ′)+h(nʹ′))	

  Create new h -- hʹ′ (nʹ′)= max(f(n)- g(nʹ′), h(nʹ′))   	


	
 	
 	
 	
    f(nʹ′) = g(nʹ′) + hʹ′ (nʹ′),  
•  Force f to never decrease along path since f(nʹ′) >= f(n) 

 Does monotonicity in f imply admissibility?  
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Next lecture 

 Finish off Discussion of A* 

 IDA* 

 Other Time and Space Variations of A* 
 RBFS 

 SMA* 

 RTA* 


