
Lecture 3: Search 2

Victor R. Lesser
CMPSCI 683

Fall 2010

V. Lesser; CS683, F10

Today’s Lecture

 Finish off Introductory Material on
Search

 Brief Review of Blind Search
 How to use heuristics (domain

knowledge) in order to accelerate
search?

 Reading: Sections 4.1-4.2.

V. Lesser; CS683, F10

Problem Formalization Issues
  Key issues in defining states:

  which objects/relations to represent;

  which configurations of objects/relations need to be mapped into separate
states.

  Key issues in defining operators:
  may have to make explicit, unstated assumptions in the problem description;

  how state-specific/general should operators be;
  how much domain-specific knowledge should be “compiled” into the

operators.

  Developing an effective state space representation of a problem is
choosing an appropriate abstraction.
  Without abstraction, agents would be swamped by the details of the real-

world.

Abstraction

 There are two main aspects of abstraction:
  removing unnecessary detail from the state descriptions;
  removing legal operators that are useless or inefficient for

achieving goals.
 A good abstraction:

  removes as much detail as possible to make it easy enough to find
a solution;

  maintains the validity of the solutions (for the conceptual goals).
 An abstract solution represents a large number of detailed

paths.
  Assumption that there is a valid detailed path that solves the

desired problem
 Often there is a trade-off between simplicity and generality (the

representation becomes so specific to the given problem that it cannot
be used for even very similar problems).

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Abstraction Examples
Two standard AI search problems can be used to explore the
concept of abstraction.
Missionaries and Cannibals:
Three missionaries and three cannibals are on one side of a river.
There is a boat available that can hold up to two people and can
be used to cross the river. If the cannibals ever outnumber the
missionaries in any location then a missionary will get eaten.
Determine how the boat can be used to safely carry all the
missionaries and cannibals across the river.
Trip/route Planning:
Determine how to get from one location to another. Assume that
you know what city you are in, and have a map and a car.

V. Lesser; CS683, F10

Missionaries and Cannibals

Straightforward representation of states:
 (boat-loc,m1-loc,m2-loc,...,c3-loc)
 [loc i {side1,side2,river/boat}].

Results in 37 = 2187 states.

Can you simplify by abstraction?

V. Lesser; CS683, F10

Missionaries and Cannibals (cont’d.)
Abstraction Simplification

  the particular missionaries and cannibals on each side do
not matter—only numbers;

  do not have to have explicit states with people in the boat
(once in boat will only want to cross to other side);

  once it is known the number of a type on one side know
the number on the other side.

Abstract states:
(boat-side1?,#m's-side1,#c's-side1)
Results in 2 × 4 × 4 = 32 states.

V. Lesser; CS683, F08

Missionaries and Cannibals (cont’d.)
  Useless operators can also be removed:

 (1,m,c) → (2,m- 1,c)
[single missionary goes to goal side in boat].

  The abstract solution using “move number of people”
operators is still a valid solution to the conceptual goal
  simply have to randomly select particular people when executing).

  Solution (1,3,3) →(2c) (2,3,1) →(1c) (1,3,2) →(2c) (2,3,0) →(1c)

(1,3,1) →(2m) (2,1,1) →(mc) (1,2,2) →(2m) (2,0,2) →(1c) (1,0,3) →
(2c) (2,0,1) →(1c) (1,0,2) →(2c) (2,0,0)

V. Lesser; CS683, F08

Simplifying Trip/Route Planning
  In its full generality, states for this problem would be very

complex since they would describe “complete” configurations of
the world:
 “at latitude and longitude x-y, time is t, radio on, raining, car z
meters ahead, etc.”

  To simplify, we focus on the problem of finding a sequence of city
to city traversals that accomplish the goal.
 In this case, our abstract states simply become: “in city x.”

  We can further simplify by identifying important cities (i.e., major
cities and cities with road junctions) and identifying the subset of
relevant cities (we don't need to include Amherst in the state space
if we are trying to get to Boston from Worcester).

Trip/Route Planning (cont’d.)

 Likewise, in its full generality, there would be a very large
number of operators to be considered and it would take a
very large number of operators to achieve a solution:
  e.g., “go heading h at speed s,” “turn radio on,” etc.

 With the abstract states, operators are of the form: “go
from city a to city b” [where there is a road from city a to
city b].

 A solution to the abstract problem solves the basic goal,
but does not give us the detail required for, say, a robot
vehicle to actually navigate the trip.

  Still, the abstract problem solution allows us to see if a solution
is even possible and to judge its approximate cost.

  Reactively elaborate high-level plan basic on local conditions
encountered

V. Lesser; CS683, F08

V. Lesser; CS683, F08

Problem Solving by Search
There are four phases to problem solving :
1. Goal formulation

  based on current world state, determine an appropriate goal;
  describes desirable states of the world;
  goal formulation may involve general goals or specific goals;

2. Problem formulation
  formalize the problem in terms of states and actions;
  state space representation;

3. Problem solution via search
  find sequence(s) of actions that lead to goal state(s);
  possibly select “best” of the sequences;

4. Execution phase
  carry out actions in selected sequence.

V. Lesser; CS683, F08

Problem-Solving Performance
 Complete search-based problem solving involves both

the search process and the execution of the selected
action sequence.

  Total cost of search-based problem solving is the sum of the
search costs and the path costs (operator sequence cost).

 Dealing with total cost may require:
  Combining “apples and oranges” (e.g., travel miles and CPU

time)

  Having to make a trade-off between search time and solution
cost optimality (resource allocation).

  These issues must be handled in the performance measure.

Agent vs. Conventional AI View

 A completely autonomous agent would have to carry out
all four phases.

 Often, goal and problem formulation are carried out prior
to agent design, and the “agent” is given specific goal
instances (agents perform only search and execution).

  general goal formulation, problem formulation, specific
goal formulation, etc.

 For “non-agent” problem solving:
  a solution may be simply a specific goal that is

achievable (reachable);
  there may be no execution phase.

 The execution phase for a real-world agent can be complex
since the agent must deal with uncertainty and errors.

V. Lesser; CS683, F08

V. Lesser; CS683, F08

Problem Types
Vacuum World Domain as an illustration

  Let the world consist of only
2 locations - Left and Right Box

  Each location may contain dirt

  The agent may be in either box

  There are 8 possible states

  The agent can have 3 possible
actions - Left, Right and Suck

Fig 3.20 The 8 possible states of a Vacuum World

V. Lesser; CS683, F08

Single-state problems

Fully observable,
Deterministic=>

Single-state problems

  exact state known
  effects of actions

known

  In vacuum world, if
initial state is 5, to
achieve the goal,
do action sequence
[Right, Suck]

5

V. Lesser; CS683, F08

Partially observable,
deterministic

one of a set of states
effects of actions known

eg. In vacuum world, where there are no
sensors, the agent knows that there are 8
initial states, it can be calculated that an

action of Right will achieve state {2, 4, 6,
8} and the agent can discover that the

action sequence [Right, Suck, Left, Suck]
is guaranteed to reach the goal

Sensorless (Multiple-state) Problems

V. Lesser; CS683, F08

More Problem Types

  Partially observable , stochastic (action
is uncertain), => Contingency problems
  agent can obtain new information

after acting
  limited sensing

  conditional effects of actions
  More complex algorithms involving

planning
  Must use sensor during execution
  Solution is a tree or policy
  Often interleaving of search and

execution
 eg 1. In vacuum world with Murphy’s law, adding a simple

Sense_Dirt, to use before the action Suck.
eg 2. Most of us keep our eyes open while walking,

Unknown state space =>
Exploration problems

execution ‘reveals’
states needs to
experiment in order to
survive
Hardest task faced by an
intelligent agent, an
extreme case of
contingency problem
need learning,
interleaving of search
and execution
eg 1. Mars Pathfinder

V. Lesser; CS683, F10

Observable Initial State with
Deterministic Operator Outcome

Search

V. Lesser; CS683, F10

Search Tree Implementation

  State: a representation of a physical configuration
  Node: a data structure constituting part of a search tree

includes parent, children, depth, path cost
  Expand function: creates new nodes, filling in the

various fields and using the Operators (Successor
Function) of the problem to create the corresponding
states.

  Fringe: A queue used to keep the nodes that are waiting
to be visited. How to maintain the order of the nodes in
this queue depending on the search strategy.

V. Lesser; CS683, F10

Representing a node

 (defstructure node
 state parent-node

 operator depth
 path-cost)

Is this all the information
you need to make a
decision about how to
expand this node?

Is there a one-to-one
correspondence between a
node and a partial solution

V. Lesser; CS683, F10

Non-Markov Assumptions

  What would the node Sibiu contain in this situation if
you were trying to minimize travel distance

How would
you handle
the search
where you
want to
minimize
travel distance
while keeping
tolls below a
certain level

1

1

4

5

V. Lesser; CS683, F10

Next lecture

 Overview of Search Strategies
 Blind Search
 Informed Search

  How to use heuristics (domain knowledge) in
order to accelerate search?

  A* and IDA*

  Reading: Sections 4.1-4.2.

