
Lecture 2: Search 1

Victor R. Lesser
CMPSCI 683

Fall 2010

Review of Lecture 1

 Dealing directly with Uncertainty in
Computation
  one of the aspects of AI that differentiates it from

other sub-disciplines of CS

  Focus of Course – Mechanisms for Dealing with
different types of uncertainty
  Search
  Uncertainty Reasoning
  Learning

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Today’s lecture

  Why is search the key problem-solving technique in
AI?

  Formulating and solving search problems.

  Understanding and comparing several “blind” search
techniques.

Overview of Material You Should Know!!

You should have read material in Chapters 1-3.7

V. Lesser; CS683, F10

Why Search?

Uncertainty in Agent Knowledge–Non-Determinism

  “An agent with several immediate options of unknown
value can decide what to do by first examining different
possible sequences of actions that lead to states of known
value and then choosing the best sequence of actions”

  Search simulates actions in the world to some level of
abstraction to understand how to proceed or to solve a
problem

V. Lesser; CS683, F10

Real-world problems

 Signal interpretation (e.g. speech understanding)
 Theorem proving (e.g. resolution techniques)
 Combinatorial optimization (e.g. VLSI layout)
 Robot navigation (e.g. path planning)
 Factory scheduling (e.g. flexible manufacturing)
 Symbolic computation (e.g. symbolic integration)

Can we find closed form solutions to these
problems?

V. Lesser; CS683, F10

Searching for Solutions
  The state space model provides a formal definition of a problem and what

constitutes a solution to a problem.
  States – All Possible Complete and maybe Partial (Intermediate) Solutions

  Operators -- generate new states from existing states

  A solution is
  a state (called a goal state) whose attributes have certain properties and maybe

  a sequence of operators that will change the initial state to a goal state

  A solution is found by searching through the state space until a (goal) state with
“specific” properties is found
  Global and/or Local Properties (e.g., least costly operator path)

  Search involves exploring (explicitly generating) parts of the state space until a
solution is found (or the entire space is explored).
  The effective search involves finding a solution without exploring the entire state

space (without generating the complete state space).

V. Lesser; CS683, F10

Searching through Partial Solutions

 States and state spaces
 Operators - representing possible actions
 Successor function

  state to set of {action, successor state} pairs
 Initial state and goal test
 Path cost function

Deterministic, fully observable ⇒ single-state
problem --solution is a sequence

Finding a Path from the Initial state to the Goal state

What is a Solution in this type of Search?

 A solution to a search problem is a sequence
of operators that generate a path from the
initial state to a goal state.
 An optimal solution is a minimal cost
solution.
 Solution cost versus search cost -- which one
to optimize?

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Route Finding

State space representation:

 There is a state corresponding to each
city;

  Initial state is the start city state;
 Goal state is the destination city state;
 Operators correspond to roads:

 there is an operator “citya→cityb”
 Iff there is a road from citya to cityb.

V. Lesser; CS683, F10

Example: Route Finding (cont’d)

 Initial state is Arad; Goal state is Bucharest.
Partial search tree:

The final search tree shows six
partial solutions (open search nodes).

Sibiu"

Arad"

Timisoara" Zerind"

Arad"

Sibiu"

Arad"

Timisoara" Zerind"

Fagaras" Oradea" Rimnicu Vilcea"Arad"

(a) The initial state"

(b) After expanding Arad"

(c) After expanding Sibiu"

V. Lesser; CS683, F10

The 8-puzzle

  States: integer locations of tiles
  Actions: move blank left, right, up, down
  Goal test: goal state (given)
  Path cost: 1 per move, total path cost = number of steps

Note: Solving n-puzzle problems optimally is NP-hard 1025 States
for 5 x 5 board (24 puzzle)

V. Lesser; CS683, F10

8- Queens Problem

  Initial State:
  Any arrangement of 0 to 8 queens on board.

  Operators:
  Add or move a queen to any square.

  Goal Test:
  8 queens on board, none attacked.

  Path cost:
  not applicable or Zero (because only the

final state counts, search cost might be of
interest).

V. Lesser; CS683, F10

Explicit solution for n ≥ 4
[Hoffman, Loessi, and Moore, 1969]
If n is even but not of the form 6k+2:

 For j = 1, 2, ..., n/2 place queens on elements
 (j, 2j), (n/2+j, 2j-1)

If n is even but not of the form 6k:
 For j = 1, 2, ..., n/2 place queens on elements
 (j, 1+[(2(j-1) + n/2 - 1) mod n]), (n+1-j, n-[(2(j-1) + n/2 - 1) mod n])

If n is odd:
 Use case A or B on n-1 and extend with a queen at (n,n)

Is this a good benchmark problem for testing search
techniques?

V. Lesser; CS683, F10

Robot Assembly

  States: real-valued coordinates of robot joint
angles; parts of the object to be assembled

  Actions: continuous motion of robot joints

  Goal test: complete assembly
  Path cost: time to execute

V. Lesser; CS683, F10

Cryptarithmetic

  Initial State:
  a cryptarithmetic puzzle with some letters replaced by digits.

  Operators:
  replace all occurrences of a letter with a non-repeating digit.

  Goal Test:
  puzzle contains non-repeating digits for each different letter in

the puzzle, and represents a correct sum.
  Path cost:

  not applicable or 0 (because all solutions equally valid).

Mutilated Checkerboard Problem

V. Lesser; CS683, F10

Find a solution
where the
dominos
exactly cover
the board

V. Lesser; CS683, F10

Space of allocations of Items in Bids"

#allocations is O(#items#items)!
check each node whether it exists as bids and if so calculate
its cost – preprocess so that have only one bid for each
group of items; take highest bid ! "

{1}{2}{3}{4}	

 {1},{2},{3,4}	

 {3},{4},{1,2}	

 {1},{3},{2,4}	

 {2},{4},{1,3}	

 {1},{4},{2,3}	

 {2},{3},{1,4}	

 {1},{2,3,4}	

 {1,2},{3,4}	

 {2},{1,3,4}	

 {1,3},{2,4}	

 {3},{1,2,4}	

 {1,4},{2,3}	

 {4},{1,2,3}	

 {1,2,3,4}	

Level	

(4)	

(3)	

(2)	

(1)	

Bid with item 1
and bid with
items 2,3,4

V. Lesser; CS683, F10

Search algorithm for Optimal / Anytime winner
determination"

  Capitalizes on sparsely populated space of bids!
  Main insight is that in practice actual bids sparsely populate the possible

bids space.!
  Generates only populated parts of space of allocations!

  Depth first search through disjoint bid-sets space until reaching either a
covering bid-set or a dead end.

  Highly optimized!
  Keep track of best solution found to prune doomed search paths (anytime)!

  First generation algorithm scaled to hundreds of items
& thousands of bids [Sandholm IJCAI-99] -"

  Second generation algorithm [Sandholm&Suri AAAI-00, Sandholm
et al. IJCAI-01] "

V. Lesser; CS683, F10

First generation search algorithm"

Bids:	

1	

2	

3	

4	

5	

1,2	

1,3,5	

1,4	

2,5	

3,5	

5	

1,2	

 1,3,5	

 1,4	

 1	

3,5	

 3	

 2	

 2,5	

 2	

 2	

2,5	

4	

 4	

 4	

 3	

 3,5	

 3	

 3	

 3,5	

 3	

5	

 5	

 4	

 4	

 4	

At each level of tree
all the valid bids that
contain the smallest
numbered item not
covered in bids
higher in the tree

9 terminal nodes –
legal bid
combinations that
can not be further
expanded

V. Lesser; CS683, F10

2nd generation search algorithm: Branching on bids!

E.g. bids	

A={1,2}	

B={2,3}	

C={3}	

D={1,3}	

B	

ee	

A	

C	

 B	

C	

D	

A	

 D	

C	

IN	

 OUT	

IN	

IN	

OUT	

OUT	

IN	

 OUT	

C	

IN	

 OUT	

B	

C	

D	

Bid graph G dependency	

Sear	

ch tr	

C	

D	

D	

{(A,B),(A,D)}	

{(B,C),(B,D),(C,D)}	

 {(A,B),(A,D)}	

{(B,C),(B,D)}	

{(C,D)}	

 {(B,C),(B,D)}	

{(C,D)}	

 {(C,D)}	

A is incompatible with
B & D

V. Lesser; CS683, F10 V. Lesser; CS683, F10

Review of State Space
Terminology

  State space: a graph of the set of states reachable from the initial
states via some operator sequence.

 (The state space is sometimes also called the problem space or
the search space.)

  Path: a sequence of operators from one state to some other state.
  Solution: a path from an initial state to a goal state.
  Partial solution: a path from an initial state to a (non-dead-end)

intermediate state.
  Encompasses family of possible solutions

  Goal test: predicate that tests if a state is a goal state (goal states
may be explicitly listed or specified by a property).

  Path cost: function that assigns a cost to a path (often denoted g).
  sum of costs of the operators/actions of the path.

V. Lesser; CS683, F10

Searching for Solutions (con’d.)
  Search tree: tree (or graph) of states (really nodes) explored by

the search process.
  search tree (or search graph) is a subgraph of the state space.

  Search involves maintaining and incrementally extending a set of
partial solutions.
  We refer to these partial solutions as search nodes (nodes in the search

tree).

  The process of extending a partial solution is called expanding a
node.
  Basically, expanding a node involves using all/? operators applicable to

the latest state of the node to identify reachable states and so generate new
partial solutions (nodes).

  It is common to refer to nodes by their latest states, but a node really
represents a partial solution (operator sequence).

V. Lesser; CS683, F10

Problem Formalization Issues
  Key issues in defining states:

  which objects/relations to represent;

  which configurations of objects/relations need to be mapped into separate
states.

  Key issues in defining operators:
  may have to make explicit, unstated assumptions in the problem description;

  how state-specific/general should operators be;
  how much domain-specific knowledge should be “compiled” into the

operators.

  Developing an effective state space representation of a problem is
choosing an appropriate abstraction.
  Without abstraction, agents would be swamped by the details of the real-

world.

V. Lesser; CS683, F10

Next Lecture

 Finish off Introductory Material on Search?
 Brief Review of Blind Search
 How to use heuristics (domain

knowledge) in order to accelerate
search?

 Reading: Sections 4.1-4.2.

