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Review of Lecture 1 

 Dealing directly with Uncertainty in 
Computation 
  one of the aspects of AI that differentiates it from 

other sub-disciplines of CS 

  Focus of Course – Mechanisms for Dealing with 
different types of uncertainty 
  Search 
  Uncertainty Reasoning 
  Learning 
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Today’s lecture 

  Why is search the key problem-solving technique in 
AI? 

  Formulating and solving search problems. 

  Understanding and comparing several “blind” search 
techniques. 

Overview of Material You Should Know!! 

You should have read material in Chapters 1-3.7 

V. Lesser; CS683, F10 

Why Search? 

Uncertainty in Agent Knowledge–Non-Determinism 

  “An agent with several immediate options of unknown 
value can decide what to do by first examining different 
possible sequences of actions that lead to states of known 
value and then choosing the best sequence of actions” 

  Search simulates actions in the world to some level of 
abstraction to understand how to proceed or to solve a 
problem  
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Real-world problems 

 Signal interpretation (e.g. speech understanding) 
 Theorem proving (e.g. resolution techniques) 
 Combinatorial optimization (e.g. VLSI layout) 
 Robot navigation (e.g. path planning) 
 Factory scheduling (e.g. flexible manufacturing) 
 Symbolic computation (e.g. symbolic integration) 

Can we find closed form solutions to these 
problems? 
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Searching for Solutions 
  The state space model provides a formal definition of a problem and what 

constitutes a solution to a problem. 
  States – All Possible Complete and maybe Partial (Intermediate) Solutions 

  Operators --  generate new states from existing states 

  A solution is  
  a state (called a goal state) whose attributes have certain properties and maybe 

  a sequence of operators that will change the initial state to a goal state  

  A solution is found by searching through the state space until a (goal) state with 
“specific” properties is found 
  Global and/or Local Properties (e.g., least costly operator path) 

  Search involves exploring (explicitly generating) parts of the state space until a 
solution is found (or the entire space is explored). 
  The effective search involves finding a solution without exploring the entire state 

space (without generating the complete state space). 
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Searching through Partial Solutions 

 States and state spaces 
 Operators - representing possible actions 
 Successor function 

  state to set of {action, successor state} pairs   
 Initial state and goal test 
 Path cost function 

Deterministic, fully observable ⇒ single-state 
problem --solution is a sequence 

Finding a Path from the Initial state to the Goal state 

What is a Solution in this type of Search? 

 A solution to a search problem is a sequence 
of operators that generate a path from the 
initial state to a goal state. 
 An optimal solution is a minimal cost 
solution. 
 Solution cost versus search cost -- which one 
to optimize? 
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Route Finding 

State space representation: 

 There is a state corresponding to each 
city; 

  Initial state is the start city state; 
 Goal state is the destination city state; 
 Operators correspond to roads: 

 there is an operator “citya→cityb” 
 Iff there is a road from citya to cityb. 
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Example: Route Finding (cont’d) 

 Initial state is Arad; Goal state is Bucharest. 
Partial search tree: 

The final search tree shows six 
partial solutions (open search nodes). 

Sibiu"

Arad"

Timisoara" Zerind"

Arad"

Sibiu"

Arad"

Timisoara" Zerind"

Fagaras" Oradea" Rimnicu Vilcea"Arad"

(a) The initial state"

(b) After expanding Arad"

(c) After expanding Sibiu"
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The 8-puzzle 

  States: integer locations of tiles  
  Actions: move blank left, right, up, down 
  Goal test: goal state (given) 
  Path cost: 1 per move, total path cost = number of steps 

Note: Solving n-puzzle problems optimally is NP-hard 1025  States 
for 5 x 5 board (24 puzzle) 
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8- Queens Problem 

  Initial State:  
  Any arrangement of 0 to 8 queens on board. 

  Operators:  
  Add or move a queen to any square. 

  Goal Test:  
  8 queens on board, none attacked. 

  Path cost:  
  not applicable or Zero (because only the 

final state counts, search cost might be of 
interest). 
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Explicit solution for n ≥ 4 
[Hoffman, Loessi, and Moore, 1969] 
If n is even but not of the form 6k+2: 

 For j = 1, 2, ..., n/2 place queens on elements 
 (j, 2j),  (n/2+j, 2j-1) 

If n is even but not of the form 6k: 
 For j = 1, 2, ..., n/2 place queens on elements 
 (j, 1+[(2(j-1) + n/2 - 1) mod n]),  (n+1-j, n-[(2(j-1) + n/2 - 1) mod n]) 

If n is odd: 
 Use case A or B on n-1 and extend with a queen at (n,n) 

Is this a good benchmark problem for testing search 
techniques? 
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Robot Assembly 

  States: real-valued coordinates of robot joint 
angles; parts of the object to be assembled  

  Actions: continuous motion of robot joints 

  Goal test: complete assembly 
  Path cost: time to execute 
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Cryptarithmetic 

  Initial State:  
  a cryptarithmetic puzzle with some letters replaced by digits. 

  Operators:  
  replace all occurrences of a letter with a non-repeating digit.  

  Goal Test:  
  puzzle contains non-repeating digits for each different letter in 

the puzzle, and represents a correct sum. 
  Path cost:  

  not applicable or 0 (because all solutions equally valid). 

Mutilated Checkerboard Problem  
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Find a solution 
where the 
dominos 
exactly cover 
the board 
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Space of allocations of Items in Bids"

#allocations is O(#items#items)!
check each node whether it exists as bids and if so calculate 
its cost – preprocess so that have only one bid for each 
group of items; take highest bid ! "

{1}{2}{3}{4}	



 {1},{2},{3,4}	

  {3},{4},{1,2}	

  {1},{3},{2,4}	

  {2},{4},{1,3}	

  {1},{4},{2,3}	

  {2},{3},{1,4}	



    {1},{2,3,4}	

     {1,2},{3,4}	

     {2},{1,3,4}	

    {1,3},{2,4}	

     {3},{1,2,4}	

    {1,4},{2,3}	

    {4},{1,2,3}	



     {1,2,3,4}	



Level	


(4)	



(3)	



(2)	



(1)	



Bid with item 1 
and bid with 
items 2,3,4 
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Search algorithm for Optimal / Anytime winner 
determination"

  Capitalizes on sparsely populated space of bids!
  Main insight is that in practice actual bids sparsely populate the possible 

bids space.!
  Generates only populated parts of space of allocations!

  Depth first search through disjoint bid-sets space until reaching either a 
covering bid-set or a dead end. 

  Highly optimized!
  Keep track of best solution found to prune doomed search paths (anytime)!

  First generation algorithm scaled to hundreds of items 
& thousands of bids [Sandholm IJCAI-99] -"

  Second generation algorithm [Sandholm&Suri AAAI-00, Sandholm 
et al. IJCAI-01] "
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First generation search algorithm"

Bids:	


1	


2	


3	


4	


5	


1,2	


1,3,5	


1,4	


2,5	


3,5	



5	



1,2	

 1,3,5	

 1,4	

 1	



3,5	

 3	

 2	

 2,5	

 2	

 2	

2,5	



4	

 4	

 4	

 3	

 3,5	

 3	

 3	

 3,5	

 3	



5	

 5	

 4	

 4	

 4	



At each level of tree 
all the valid bids that 
contain the smallest 
numbered item not 
covered in bids 
higher in the tree 

9 terminal nodes –  
legal bid 
combinations that 
can not be further 
expanded 
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2nd generation search algorithm: Branching on bids!

E.g. bids	


A={1,2}	


B={2,3}	


C={3}	


D={1,3}	



B	

ee	



A	



C	

 B	



C	



D	



A	

 D	


C	



IN	

 OUT	



IN	



IN	



OUT	



OUT	



IN	

 OUT	



C	



IN	

 OUT	



B	



C	


D	



Bid graph G dependency	

Sear	

ch tr	



C	


D	



D	



{(A,B),(A,D)}	


{(B,C),(B,D),(C,D)}	

 {(A,B),(A,D)}	



{(B,C),(B,D)}	


{(C,D)}	

 {(B,C),(B,D)}	



{(C,D)}	

 {(C,D)}	



A is incompatible with 
B & D 

V. Lesser; CS683, F10 V. Lesser; CS683, F10 

Review of State Space 
Terminology 

  State space: a  graph of the set of states reachable from the initial 
states via some operator sequence. 

  (The state space is sometimes also called the problem space or 
the search space.) 

  Path:  a sequence of operators from one state to some other state. 
  Solution:  a  path from an initial state to a goal state. 
  Partial solution: a  path from an initial state to a (non-dead-end) 

intermediate state. 
  Encompasses family of possible solutions 

  Goal test:  predicate that tests if a state is a goal state (goal states 
may be explicitly listed or specified by a property). 

  Path cost:  function that assigns a cost to a path (often denoted g). 
  sum of costs of the operators/actions of the path. 
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Searching for Solutions (con’d.) 
  Search tree:  tree (or graph) of states (really nodes) explored by 

the search process. 
  search tree (or search graph) is a  subgraph of the state space. 

  Search involves maintaining and incrementally extending a set of  
partial solutions. 
  We refer to these partial solutions as search nodes (nodes in the search 

tree). 

  The process of extending a partial solution is called expanding a 
node. 
  Basically, expanding a node involves using all/? operators applicable to 

the latest state of the node to identify reachable states and so generate new 
partial solutions (nodes). 

  It is common to refer to nodes by their latest states, but a node really 
represents a partial solution (operator sequence). 
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Problem Formalization Issues 
  Key issues in defining states: 

  which objects/relations to represent; 

  which configurations of objects/relations need to be mapped into separate 
states. 

  Key issues in defining operators: 
  may have to make explicit, unstated assumptions in the problem description; 

  how state-specific/general should operators be; 
  how much domain-specific knowledge should be “compiled” into the 

operators. 

  Developing an effective state space representation of a problem is 
choosing an appropriate abstraction. 
  Without abstraction, agents would be swamped by the details of the real-

world. 
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Next Lecture 

 Finish off Introductory Material on Search? 
 Brief Review of Blind Search 
 How to use heuristics (domain 

knowledge) in order to accelerate 
search? 

 Reading: Sections 4.1-4.2. 


