Lecture 25: Learning 4

Victor R. Lesser

CMPSCI 683
Fall 2010

Final Exam Information

¢ Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res
Ctr Rm A301

= 2 Hours but obviously you can leave early!

¢ Open Book but no access to Internet

¢ Material from Lectures 12 -25
n Lecture 14 will not be covered on exam

= More operational than conceptual in that I will require you to
carry out steps of an algorithm or inference process

V. Lesser; CS683, F10

Today’s Lecture

¢ Reinforcement Learning

|

Problem with Supervised Learning

¢ Supervised learning 1s sometimes unrealistic: where
will correct answers come from?

s New directions emerging in the use of redundant
information as a way of getting around the lack of extensive
training data

¢ [n many cases, the agent will only receive a single
reward, after a long sequence of actions/decisions.

¢ Environments change, and so the agent must adjust its
action choices.

m On-line issue

V. Lesser: ; CS683, F10

Reinforcement Learning

¢ Using feedback/rewards to learn a
successful agent function.

¢ Rewards may be provided following each
action, or only when the agent reaches a
terminal state.

¢ Rewards can be components of the actual
utility function or they can be hints (“nice
move”, “bad dog”, etc.).

Reinforcement Learning

Perception/reward

N

Agent —<

00 “sin

action
Utility(reward) depends on a sequence of decisions

How to learn best action (maximize expected
reward) to take at each state of Agent

V. Lesser; CS683, F10

V. Lesser: ; CS683, F10

Reinforcement Learning Problem

Agent

Agent observes state at step r:

produces action atstepr: a, € A(s)

gets resulting reward: .

 ER

and resulting next state: §,,

action a,

Agent and environment interact at discrete time steps: r=0,1,2.K
5.€95

RI. and Markov Decision Processes

¢ § - finite set of domain states

¢ A - finite set of actions

* P(s'ls,a) - state transition function
¢ r(s,a) - reward function

* S, - mitial state

¢ The Markov assumption:

P(s,|s, ;.S,5,...,8,,a) =P(s,|s,,,a)

RL Learning Task

Execute actions 1n the environment, observe results and

¢ Learn a policy mi(s) : S — A from states s, &S to actions
aEA that maximizes the expected reward : E[r+y 1+ ¥?
r.,+...] from any starting state s,

¢ (O<y<l 1s the discount factor for future rewards
¢ Target function1s (s) : S — A

¢ But there are no direct training examples of the form
<s,a>, 1.€., what action 1s the right one to take in state s

¢ Training examples are of the form <<s,a,s >,r>

V. Lesser; CS683, F10

Key Features of Reinforcement Learning

¢ Learner 1s not told which actions to take

s Learning about, from, and while interacting with an external
environment

¢ Trial-and-Error search

¢ Possibility of delayed reward

s Sacrifice short-term gains for greater long-term gains
¢ The need to explore and exploit

s On-line Integrating performance and learning

¢ Considers the whole problem of a goal-directed agent
interacting with an uncertain environment

V. Lesser; CS683, F10

Reinforcement Learning:
Two Approaches

¢ Lecarning Model of Markov Decision Process

s Learn model of operators transitions and their
rewards

s Compute optimal policy (value/policy iteration)
based on model

¢ Learning Optimal Policy Directly

= You don’t necessarily need to explicit learn
MDP model in order to compute optimal policy

V. Lesser;

Two basic designs

Utility-based agent learns a Utility function on states
(or histories) which can be used 1n order to select
actions

= Must have a model of the environment

= Know the result of the action (what state the action leads to)

Q-learning agent learns an Action-value function for
each state (also called Q-learning; does not require a
model of the environment)

= Does not need a model of the environment, only compare its
available choices

s Can not look ahead because do not know where their
actions lead.

CS683,F10

Utility function and action-value function

¢ Utility function denotes the reward for starting in
state s and following policy .

J'c _ . o
U (S)_ rt+Y I‘t+1+ Yz rt+2+° o Zi=0 Yl Liy

¢ Action value function denotes the reward for
starting 1n state s, taking action a and following
policy m afterwards.

Q™(s,a)=1(s,a) + y 1+ Y2 1ot = 1(s,a) + YU™(m(s,2))

Optimal Value Functions and Policies

There exist optimal value functions:
V'(s) = max V™(s) Q' (s,a) = max Q" (s,a)

And corresponding optimal policies:

7 (s)=argmaxQ (s,a)

a” is the greedy policy with respectto O~

V. Lesser: ; CS683, F10

V. Lesser; CS683, F10

IR S U .
T
0 0
N1

100

0

r(s,a) (immediate reward) values

0
|7::0E |8f&b (9 90 b 100 _"v (:;‘j)
8$ 90*] 100* H H *

Y Y
EI; %‘8: 81 . 90 o 100
Q(s,a) values V*(s) values

One optimal policy

Passive versus Active learning

* A passive learner simply watches the
world going by, and tries to learn the utility
of being 1n various states.

¢ An active learner must also act using the
learned information, and can use 1ts
problem generator to suggest explorations
of unknown portions of the environment.

What Many RL Algorithms Do

O——"C0O——0O—0O ...
Experience
Build
Predictions
Value
Function
V = V*
Q —=Q* Select
Wions

e Continual, online Policy

(4 [[*
e Simultaneous acting and learning T —>TC

RL Interaction of Policy and Value

Policy evaluation

value
learning

_ Value
Policy Function

JU
policy ‘/’ Q
improvement

“greedification”

(¢]

Yl — AN Ok

Passive Learning in Known Environment

Given:

¢ A Markov model of the environment.
n P (S,S ! CZ) — probability of transition from S to S’ given @
m R(s,5',a) - expected reward on transition S to S’ given d

¢ States, with probabilistic actions.
¢ Terminal states have rewards/utilities.

Problem:
¢ [earn expected utility of each state V(s) or U(s).

V. Lesser; CS683, F10

Example
3 +1 l
2 _1 8
1 S 0.1 1

1 2 3 4 ¢

*Non-deterministic actions (transition model unknown to agent)
*Every state besides terminal states has reward -0.04
*Percepts tell you: [State, Reward, Terminal?]

3 Sequences of (state,action,reward)

(L)_g = (L.2) 5, = (L,3),, = (1.2) 5, = (1,3) 5, = (2.3),, =~ (3.3),, =43,
(L) , — (.2, —=(13),,—~23),, —=33_,,—~032),, —~(33),, =43,
(L) = 2D, =31, —~(32),, =42),

V. Lesser: ; CS683, F10

Learning Utility Functions

¢ A training sequence 1s an instance of world
transitions from an initial state to a terminal
state.

¢ The additive utility assumption: utility of a
sequence 1s the sum of the rewards over the
states of the sequence.

¢ Under this assumption, the utility of a state
is the expected reward-to-go of that state.

Direct Utility Estimation™

+ Developed 1n the late 1950's 1n the area of adaptive
control theory.

¢ Just keep a running average of rewards for each state.

¢ For each training sequence, compute the reward-to-go
for each state in the sequence and update the utilities.

(L) gy = (L2 5 = (L3) = (L2) 5, = (13) 5 = (2.3) = (3.3),, —(4.3),,
0.72 076 080 084 088 092 096 1.0
UL =072, UR3)=092 U(33)=096 U4.3)=10;

U(12) = (0.76 + 0.84)/2 = 0.80

U(13) = (0.80 + 0.88)/2 = 0.34

V. Lesser; CS683, F10

Direct Utility Estimation, cont

\
. 4@ Ci’r+16f} Crt+2@ C”t+3@_...
tJ G NG \ a4 G 43

*1=3§,
* Reward-to-go (i) =sum of v, ;¥ F coei ¥pppri g

¢ U(i)yiy = (Ui),; + reward-to-go (i))/ (n;+1)
¢ n=n+l

Problems with Direct Utility Estimation

Converges very slowly because 1t 1ignores
the relationship between neighboring states:

(L. —=(2),, =3 ,,—02),, =13, —~23),, —~(33),, —(4.3).,,
0.72 0.76 080 084 (.88 092 0.96 1.0
Ul =0.72; U(2,3)=092; {/(3,3) = 0.96; U(4.3)=1.0;

L), —012),,—013),, 23, +33),,—~3.2),,—~(33),, 4,3,

In updating (3,2) not using any
knowledge about current value of (3,3)

V. Lesser; CS683, F10

=l

Adaptive Dynamic Programming

Utilities of neighboring states are mutually constrained,
Bellman equation:

U(s) =R(s) +vy 2.P(s,a,s”) U(s’)
Estimate P(s,a,s’) from the frequency with which s’
is reached when executing a in s.

Can use value iteration: initialize utilities based on the

rewards and update all values based on the above
equation.

Sometime intractable given a big state space.

Adaptive/Stochastic Dynamic

Programming
O
(U ()

|
\

AN
AN

A4

/
/

/ \
/ \
V. Lesser; CS683, F10

TD: Temporal Difference Learning

¢ One of the first RL algorithms

¢ [earn the value of a fixed policy (no optimization; just
prediction)

¢ Approximate the constraint equations without solving
them for all states.

U7 (5)= R(5)+ }-E P(s,.7x(5). 5 W7 (5)

Problem: We don’t know this.

¢+ Modify U(s) whenever we see a transition from s to s’
using the following rule:

Uls) = U(s) + a(R(s) +y U(s) = U(s))

Temporal Difference Learning cont.

* U(s)=U(s) + a (R(s) + y U(s’) = U(s))

TD Error

s The modification moves U(s) closer to satisfying
the original equation.

= o learning rate, can be a function a (N(s)) that
decreases as N(s) increases [number of times
visting state s].

¢ Rewrite to get

U(s)= (1-a) U(s) + a (R(s) +y U(s"))

After
each
action

update
the

state

Temporal Difference (TD)
- Learning

\ﬂ.s1~—-|l-<ci\’va+-<c[r-+}4f|s'l]

o
I, \\ I\

/
/

\
\

A)

!

/

/

\

\

O
O O

|

|

/
/

@

-

\
\

Sutton,

1988

{

®
()
/ \\ /I N

=l

An Extended Example: Tic-Tac-Toe

X X X X X0 X X|0|X
0| X O 0| X 0| X
O (0] 0] X

/ /(/\ /\h

Assume an imperfect opponent:
—he/she sometimes makes mistakes

|
M

} x’s move

} o’s move

/K . " \ \}X’S move

ARANS

} 0’s move

} X’s move

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

State V(s) — estimated probability of winning
S ?
S ?

2. Now play lots of games.
To pick our moves,
look ahead one step:

0 loss current state
: @m various possible

0 draw * next states

1 win

<' Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.

V. Lesser; CS683, F10

RL Learning Rule for Tic-Tac-Toe

starting position X

Take action O

opponent's move

X| |0 Non-deterministic
our move outcome based on
X1 10 opponent’s move
opponent's move X

“Exploratory” move
our move

opponent's move

s ~ the state before our greedy move
our move

s' ~ the state after our greedy move

\
\
\
\
\ .
\ \
N \ .
N \ N
N \
N \
N \ AY
A A
N N \

We increment each V(s) toward V(s') - a backup:
V(s) < V(s)+ e V(s") - V(s)]

a small positive fraction, e.g., a=_l

the step - size parameter

V. Lesser; CS683, F10

More Complex TD Backups

trial rimitive TD backups

e.g. TD(A) o
Incrementally I I I I

computes a weighted
mixture of these

backups as states are i\ A\
visited MA=A)

A=0 — Simple TD

L T O Q
A=1 Simple Monte Carl A2 (1-0)
>=1 !
O
)\'3
Blending the

backups

V. Lesser: ; CS683, F10

V.

Simple Monte Carlo

VIs)«— (]l - a)V(s)+ a REWARD(path)

A}
O

Lesser: ; CS683, F10

Space of Backups

Dynamic
programming

Exhaustive
search

full)
backups
sample V T
emporal-
backups difference
learning
<
shallow
backups

V. Lesser; CS683, F10

Monte Carlo
>]
deep ¢

backups ;

Backup
from all
terminal
states

Limitation of Learning V~

Deterministic Case

Choose best action from any state s using learned V*
v (s)=arg,max [r(s, a) + YV (8(s, a))]; deterministic case

A problem:

* This works well if agent knows 6: Sx A—=S and r: S x
A—=NR

* But when it doesn't, it can’t choose actions this way

How Much To do we Need to Know To
Learn

(O Learning for Deterministic Case

Define new function very similar to V*

O (s,a)=r(s,a) +yV"(d(s,a))

If agent learns Q, it can choose optimal action
even without knowing » or 0!

7 (s)=arg max[r(s,a)+ YV (d(s,a))]

7'(s)=arg maxQ (s,a)

O Is the evaluation function agent will learn

Training Rule to Learn Q for
Deterministic Operators

Note Q and V" closely related:
V(s)=max Q (s,a’)

Which allows us to write QO recursively as
Ofs,a)=r (s,a)+ yV'(&(s,a))
=r(s,a)*t ymax O (s pa)

Let Q denote learner’s current approximation to Q. Consider
training rule

Q(s,a)< r+y maxQ(s',a)

Where s’is the state resulting from applying action a in state
s, and a’is the set of actions from s’

QO Learning for Deterministic Worlds

¢ For each s,a mitialize table entry Q(s, a)«Q
¢ Observe current state s

¢ Do forever:
s Select an action a and execute 1t
s Recelve immediate reward r
= Observe the new state s’
» Update the table entry for Q(s,a) as follows:
Q(s,a)« r+y maxQ(s,a')

, a
mS<S

V. Lesser; CS683, F10

.~

Q Updating

72 ZDOI S0 IDCl
R R
53 53
*31 *81
—_—
ariglu
initial state: SI next state: S,

~

Q(Sla a'ri_qht) — r+7 nlufli»x Q(SQ, a')
« 0+ 0.9 max{63,81,100}
<~ 90

notice if rewards non-negative, then

(st a, n) Qn+1(3v a) 2 Qn(sa a)

and
(Vs,a,n) 0<Q.(s,a) < Q(s,a)

Nondeterministic QO learning Case

What if reward and next state are non-
deterministic?

We redefine V,Q by taking expected values
VA(s)=E[ryr tyrgt.]

EE[.OZO Vithi]
=0

O(s,a)=E[r(s, a) + YV (8(s,a))/

Nondeterministic Case, cont’d

Q learning generalizes to non-deterministic worlds
Alter training rule to

Qn(sy a)<_ (‘ = «a n)ém1 (57 a)"‘ “n[r"' rg&/])@n_‘l (S', a‘)]

Where cen = :

|+ visits. (s.a)

~

Can still prove convergence of € to O
[Watkins and Dayan, 1992]

Q-learning cont.

¢ [s 1t better to learn a model and a utility function,
or to learn an action-value function with no
model?

¢ This 1s a fundamental question in AI where much
of the research 1s based on a knowledge-based
approach.

¢ Some researchers claim that the availability of
model free methods such as Q-learning means
that the KB approach 1s unnecessary (or too
complex).

What actions to choose?

¢ Problem: choosing actions with the highest expected
utility 1gnores their contribution to learning.

¢ Tradeoff between immediate good and long-term
good (exploration vs. exploitation).

= A random-walk agent learns faster but never uses that
knowledge.

= A greedy agent learns very slowly and acts based on
current, inaccurate knowledge.

V. Lesser; CS683, F10

What’s the best exploration policy?

+ (G1ve some weight to actions that were not
tried very often 1n a given state, but counter
that by knowledge that utility may be low.

s Key 1dea 1s that in early stages of learning,
estimations can be unrealistic low

¢ Similar to simulated annealing 1n that in the
early phase of search more willing to
explore

Practical 1ssues - large State Set

¢ Too many states: Can define Q as a weighted sum
of state features (factored state), or a neural net.
Adjust the previous equations to update weights
rather than updating Q.
= Can have different neural networks for each action

s This approach used very successfully in TD-Gammon
(neural network).

¢ Continuous state-space: Can discretize it.
Pole-balancing example (1968).

V. Lesser; CS683, F10

Reinforcement Learning Differs From

Supervised Learning

¢ no presentation of mnput/output pairs

¢ agent chooses actions, receives
reinforcement

+ worlds are usually non-deterministic
¢ on-line performance 1s important
+ system must explore the space of actions

V. Lesser; CS683, F10

End of Course

GOOD LUCK!!

