Lecture 25: Learning 4

Victor R. Lesser

U Final Exam Information

¢ Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res
Ctr Rm A301

= 2 Hours but obviously you can leave early!

* Open Book but no access to Internet

CMPSCI 683
Fall 2010 ¢ Material from Lectures 12 -25
= Lecture 14 will not be covered on exam
= More operational than conceptual in that I will require you to
carry out steps of an algorithm or inference process
1 : 1 ‘
U Today’s Lecture UProblem with Supervised Learning

+ Reinforcement Learning

¢ Supervised learning is sometimes unrealistic: where
will correct answers come from?

= New directions emerging in the use of redundant
information as a way of getting around the lack of extensive
training data

¢ [n many cases, the agent will only receive a single
reward, after a long sequence of actions/decisions.

¢ Environments change, and so the agent must adjust its
action choices.
= On-line issue

U Reinforcement Learning

—

———————

+ Using feedback/rewards to learn a
successful agent function.

+ Rewards may be provided following each
action, or only when the agent reaches a
terminal state.

+ Rewards can be components of the actual

utility function or they can be hints (“nice
move”, “bad dog”, etc.).

U Reinforcement Learning

()j Perception/rewar
/‘\

Agent [—<

—
|

Environment

QQ ~— A

action
Utility(reward) depends on a sequence of decisions

How to learn best action (maximize expected
reward) to take at each state of Agent

U Reinforcement Learning Problem

—

Agent

action a,

N

Environment

2 > o
rs 3

Agent and environment interact at discrete time steps: 1=0,1,2,K

:SZ

Agent observes state atstepr: 5, €S
produces action at step7: a, € A(s,)
gets resulting reward: 7, €ER

and resulting next state: s,

1 ‘
U RL and Markov Decision Processes

—

+ S - finite set of domain states
+ A - finite set of actions
*P(s'ls,a) - state transition function
¢ r(s,a) - reward function
*+ S, - initial state
¢ The Markov assumption:
P(s,l's, ;.8,2,....8,,0) = P(s, s, ,,a)

RL Learning Task

—

———————

Execute actions in the environment, observe results and

+ Learn a policy n(s) : S — A from states s ES to actions
a,EA that maximizes the expected reward : E[r+y r,,,+ y?
Iot...] from any starting state s,

* 0<y<lI is the discount factor for future rewards

+ Target function is 7(s) : S — A

+ But there are no direct training examples of the form
<s,a>, i.e., what action is the right one to take in state s

* Training examples are of the form <<s,a,s >,r>

*

*

*

Key Features of Reinforcement Learning

—

Learner is not told which actions to take

= Learning about, from, and while interacting with an external
environment

Trial-and-Error search
Possibility of delayed reward

= Sacrifice short-term gains for greater long-term gains
The need to explore and exploit

= On-line Integrating performance and learning

Considers the whole problem of a goal-directed agent
interacting with an uncertain environment

Reinforcement Leaming:
Two Approaches

¢ Learning Model of Markov Decision Process

= Learn model of operators transitions and their
rewards

= Compute optimal policy (value/policy iteration)
based on model

¢ Learning Optimal Policy Directly

= You don’t necessarily need to explicit learn
MDP model in order to compute optimal policy

Two basic designs

—
|

Utility-based agent learns a Utility function on states
(or histories) which can be used in order to select
actions

= Must have a model of the environment

= Know the result of the action (what state the action leads to)
Q-learning agent learns an Action-value function for
each state (also called Q-learning; does not require a
model of the environment)

= Does not need a model of the environment, only compare its
available choices

= Can not look ahead because do not know where their
actions lead.

U Utility function and action-value function

+ Utility function denotes the reward for starting in
state s and following policy .

U(8)= 1ty 1yt ¥2 ot = Zig ¥t
+ Action value function denotes the reward for

starting in state s, taking action a and following
policy m afterwards.

Qn(ssa)z r(s,a) + Y rt+l+ Y2 rt+2+' = r(s,a) + YUn(n(Saa))

]

Optimal Value Functions and Policies

—

There exist optimal value functions:
V'(s) = max V" (s) O (s,a) =max Q" (s,a)
And corresponding optimal policies:

7' (s) = argmax Q’ (s, a)

* is the greedy policy with respect to 0*

;Y

- >
Al Al I}
Y A I

2 I

-

Q(s,a) values V*(s) values

— —

One optimal policy

]

Passive versus Active learning

* A passive learner simply watches the
world going by, and tries to learn the utility
of being in various states.

* An active learner must also act using the
learned information, and can use its
problem generator to suggest explorations
of unknown portions of the environment.

:

Experience
Build
Predictions
Value
Function
V—=V*
0 —Q* Select
Actions
¢ Continual, online Policy
T —m*

What Many RL Algorithms Do

Simultaneous acting and learning

[1 ,
U RL Interaction of Policy and Value

Policy evaluation

value
learning
. Value
Policy Function
JT
olic V" Q
improvement

“greedification”
°
°

°

. %%

V Lesier, CS683,F10

3683, P10

Passive Learning in Known Environment

—

Given:

+ A Markov model of the environment.
L] P(S,S " a) — probability of transition from § to s’ given &
[] R(S,S',a) — expected reward on transition S to S’ given @

+ States, with probabilistic actions.
+ Terminal states have rewards/utilities.

Problem:
+ Learn expected utility of each state V(s) or U(s).

Example
3 +1
2 -1

1 2 3 4
*Non-deterministic actions (transition model unknown to agent)
*Every state besides terminal states has reward -0.04
*Percepts tell you: [State, Reward, Terminal?]

3 Sequences of (state,action,reward)
RV = 7 T = R S e = R o) T = R e T = E T
(1), = (1.2),, = (L3),, =~ (2.3),, = (3.3),, = (32),, = (3.3),, = (4.3).,

(L) gy = 2D = (B, = (3.2),, *(4.2),

¥ Lesier, CS683,F10

U Learning Utility Functions

—

+ A training sequence is an instance of world
transitions from an initial state to a terminal
state.

¢ The additive utility assumption: utility of a
sequence is the sum of the rewards over the
states of the sequence.

* Under this assumption, the utility of a state
is the expected reward-to-go of that state.

U Direct Utility Estimation™

+ Developed in the late 1950's in the area of adaptive
control theory.

* Just keep a running average of rewards for each state.

* For each training sequence, compute the reward-to-go
for each state in the sequence and update the utilities.

(L1)_p = (1,2) 5, = (1,3),, = (1,2) 5, = (1,34, 2 (23),, = (33),, > @,3),,
0.72 076 080 084 088 092 096 10
U(L)=072; U(23)=092; U(33)=096
U/(1.2) = (0.76+0.84)/2 = 0.80

U(1.3) = (0.80 +0.88)/2 = 0.84

U(4,3)=1.0;

U Direct Utility Estimation, cont

ORZGWE R
a4 G 41 G 42 G 43
*i=s,

* Reward-to-go (i) = sum of v, ;7 ¥y + eooe Vrppiina
¢ U(i),i4q = (U(@),; + reward-to-go (i))/ (n;+1)
*+ n,=n+1

U Problems with Direct Utility Estimation

Converges very slowly because it ignores
the relationship between neighboring states:

(LD)_y = (1L,2) o0 = (1,3), = (1.2) 5, = (1,3) 54 = (2.3) ., = (3.3) s = (4,3),,

0.72 0.76 0.80 0.84 0388 092 0.96 10

U(l) =072 U(2,3)=092; U(33)=096 U43)=1.0;
(L) 4 = (1,2) = (1,3, = (2,3, =33, = (32),, =~ (3.3),, =43,

In updating (3,2) not using any
knowledge about current value of (3,3)

U Adaptive Dynamic Programming

Utilities of neighboring states are mutually constrained,
Bellman equation:

U(s) =R(s) v 2,P(s,a,8") U(s’)
Estimate P(s,a,s’) from the frequency with which s’
is reached when executing a in s.

Can use value iteration: initialize utilities based on the
rewards and update all values based on the above
equation.

Sometime intractable given a big state space.

Adaptive/Stochasﬁc Dynamic
Programming

—

U TD: Temporal Difference Learning

¢ One of the first RL algorithms

+ Learn the value of a fixed policy (no optimization; just
prediction)

+ Approximate the constraint equations without solving
them for all states.

U™(5) = R(s5) + yz P(s.x(s), s (5)

Problem: We don’t know this.

* Modify U(s) whenever we see a transition from s to s’
using the following rule:

Uls) = U(s) + a(R(s) +y U(s’) ~U(s))

]

Temporal Difference Léarning cont.

—

* U(s) =U(s) + o (R(s) + y U(s”) = U(s))

TD Error

= The modification moves U(s) closer to satisfying
the original equation.

= o learning rate, can be a function a (N(s)) that
decreases as N(s) increases [number of times
visting state s].

+ Rewrite to get

U(s)= (1-a) U(s) + a (R(s) + 7 U(s))

Temporal Difference (TD)
_ Learning

—

V(s) «— (1= a)V(s) + afr +yV(s")] Sutton, 1988

After
each
action
update
the
state

V. Lessers CS683. F10

Assume an imperfect opponent:

Lesser, CS683,F10

An Extended Example: Tic-Tac-Toe

—

L Ix x x| [x xJo[x x]o[x
o o) o X

+*

} X’s move

} o’s move
} x’s move
} 0’s move

—he/she sometimes makes mistakes } x’s move

U An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

State V(s) = probability of winning
5
3 9
3 ’ 2. Now play lots of games.
1 win To pick our moves,
look ahead one step:
0 loss current state
: Qm@ various possible
0 draw & next states

< Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.

V. Lessers CS683. F10

Lesser, CS683,F10

RL Learning Rule for Tic-Tac-Toe

C
starting position X

&‘g Non-deterministic
outcome based on

%E opponent's move

Take action O

opponents move

our move

opponents move
«———— “Exploratory” move
our move

opponents move

5 the state before our g

dy move
our move

[t Y Vet Vet Vot Ve

s' ~ the state after our greedy move
We intrement each V(s) toward V(s")

V(s) < V(s) + e V(s") - V(s)]

a backup :

asmall positive fraction, eg., a=.1
the step - size parameter

U More Complex TD Backu

ps Simple Monte Carlo
V(s5) (1= a)V(5) + a REWARD(path)
trial rimitive TD backups
e.g. TD(A)
Incrementally I
computes a weighted 1
mixture of these
backups as states are
visited 1N
A=0 — Simple TD
A=1 —> Simple Monte Carl 2 (1))
3=
o 23
Blending the
backups
- ‘ - ‘
Limitation of Learning V
Space of Backups D
‘ | Deterministic Case
B Exhaustive
propramming search Backup Choose best action from any state s using learned V*
. n/gkg from all 7' (s)=arg,max [r(s, a) +yV*(8(s, a))]; deterministic case
backups A r terminal
dbob states
A problem:
* This works well if agent knows 8: S x 4—=Sand r: S x
A—=R
i E?frf"eeg'r'iléi Meng e * But when it doesn't, it can’t choose actions this way
learning
seow h sy How Much To do we Need to Know To
ackups ackups
! Learn

[1 ,
U O Learning for Deterministic Case

Define new function very similar to V*

O (s.a)=r(s,a) +yV'(&(s.a)

If agent learns Q, it can choose optimal action
even without knowing r or 8/

7'(s)=arg,max[r(s,a)+ yV"*(8(s,a)]

w'(s)=arg,maxQ (s,a)

Q is the evaluation function agent will learn

U Training Rule to Learn Q for

Deterministic Operators

Note Q and V* closely related:
V*(s)=max Q (s,a))
Which allows us to write Q recursively as
O(s,a)=r (s,a)+ yV'(&(s,a))
=r (Spa1)+ Vmgx 0 (Sﬁl,a/)
Let Q denote learner’s current approximation to Q. Consider
training rule

Q(s,a)« r+y maxQ(s',a)

Where s’is the state resulting from applying action a in state
s, and a'is the set of actions from s*

[1 ,
U 0 Learning for Deterministic Worlds

—
——————

+ For each s,a initialize table entry Q(s,a)«0
¢ Observe current state s

* Do forever:
= Select an action a and execute it
» Receive immediate reward r
= Observe the new state s’
» Update the table entry for Q(s,a) as follows:

Qs,a)« r+y maxQ(s',a)

wses’

d Updating
—
[p—
RE T LR
oy "
Y @ right M
initial state: 3, next state: S,
Q(81,arign) 7 +ymaxQ(s, a’)
« 0+ 0.9 max{63,81,100}
<~ 90

notice if rewards non-negative, then
(Vs,a,n) (),,H(x.u) > Qu(s,a)

and

(Vs,a,n) 0<Qu(s,a) < Q(s,a)

[1 ,
U Nondeterministic Q learning Case

What if reward and next state are non-
deterministic?

We redefine V,Q by taking expected values
VY(S)EE[’}"'V"H[-FWHZ'F~~~]

EE[E V.rm]
i=0

O(s.a)=E[r(s, a) + V' (8(s.@))/

[1 ,
U Nondeterministic Case, cont’d

—
|

Q learning generalizes to non-deterministic worlds
Alter training rule to

An(s,a) < (1= «n)@n1(S, @) + anlr + maxi, (s, a')]
a

Where e 2

T 1+ visits,(s.a)

Can still prove convergence of @ to O
[Watkins and Dayan, 1992]

U Q-learning cont.

¢ Is it better to learn a model and a utility function,
or to learn an action-value function with no
model?

¢ This is a fundamental question in Al where much

of the research is based on a knowledge-based
approach.

—

* Some researchers claim that the availability of
model free methods such as Q-learning means
that the KB approach is unnecessary (or too
complex).

U What actions to choose?

—
|

¢ Problem: choosing actions with the highest expected
utility ignores their contribution to learning.

¢ Tradeoff between immediate good and long-term
good (exploration vs. exploitation).

= A random-walk agent learns faster but never uses that
knowledge.

= A greedy agent learns very slowly and acts based on
current, inaccurate knowledge.

[,
U What’s the best exploration policy?

+ Give some weight to actions that were not
tried very often in a given state, but counter
that by knowledge that utility may be low.

= Key idea is that in early stages of learning,
estimations can be unrealistic low

+ Similar to simulated annealing in that in the
early phase of search more willing to
explore

]

Practical issues - large State Set

—

+ Too many states: Can define Q as a weighted sum
of state features (factored state), or a neural net.
Adjust the previous equations to update weights
rather than updating Q.

= Can have different neural networks for each action

= This approach used very successfully in TD-Gammon
(neural network).

+ Continuous state-space: Can discretize it.
Pole-balancing example (1968).

Reinforcement Learning Differs From
Supervised Learning

—

¢ no presentation of input/output pairs

¢ agent chooses actions, receives
reinforcement

+ worlds are usually non-deterministic
¢ on-line performance is important
* system must explore the space of actions

End of Course

GOOD LUCK!!

