
Lecture 25: Learning 4

Victor R. Lesser
CMPSCI 683

Fall 2010

Final Exam Information
  Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res

Ctr Rm A301
  2 Hours but obviously you can leave early!

  Open Book but no access to Internet

  Material from Lectures 12 -25
  Lecture 14 will not be covered on exam
  More operational than conceptual in that I will require you to

carry out steps of an algorithm or inference process

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Today’s Lecture

 Reinforcement Learning

V. Lesser; CS683, F10

Problem with Supervised Learning

  Supervised learning is sometimes unrealistic: where
will correct answers come from?
  New directions emerging in the use of redundant

information as a way of getting around the lack of extensive
training data

  In many cases, the agent will only receive a single
reward, after a long sequence of actions/decisions.

  Environments change, and so the agent must adjust its
action choices.
  On-line issue

V. Lesser; CS683, F10

Reinforcement Learning

 Using feedback/rewards to learn a
successful agent function.

 Rewards may be provided following each
action, or only when the agent reaches a
terminal state.

 Rewards can be components of the actual
utility function or they can be hints (“nice
move”, “bad dog”, etc.).

V. Lesser; CS683, F10

Reinforcement Learning

Perception/reward

action

Environment

Utility(reward) depends on a sequence of decisions"

Agent

How to learn best action (maximize expected
reward) to take at each state of Agent

V. Lesser; CS683, F10

Reinforcement Learning Problem

action at

r1 r2 r3

state st

Agent

Environment
st+1

rt+1

reward rt

a0 a1 a2 s0 s1 s2 s3

V. Lesser; CS683, F10

RL and Markov Decision Processes

 S - finite set of domain states
 A - finite set of actions
 P(sʹ′|s,a) - state transition function
 r(s,a) - reward function
 S0 - initial state
 The Markov assumption:

P(st | st-1,st-2,…,s1,a) = P(st | st-1,a)	

V. Lesser; CS683, F10

RL Learning Task

Execute actions in the environment, observe results and
  Learn a policy π(s) : S → A from states st∈S to actions

at∈A that maximizes the expected reward : E[rt+γ rt+1+ γ2
rt+2+…] from any starting state st

  0<γ<1 is the discount factor for future rewards
  Target function is π(s) : S → A
  But there are no direct training examples of the form

<s,a>, i.e., what action is the right one to take in state s
  Training examples are of the form <<s,a,s’>,r>

V. Lesser; CS683, F10

Key Features of Reinforcement Learning

  Learner is not told which actions to take
  Learning about, from, and while interacting with an external

environment
  Trial-and-Error search
  Possibility of delayed reward

  Sacrifice short-term gains for greater long-term gains
  The need to explore and exploit

  On-line Integrating performance and learning
  Considers the whole problem of a goal-directed agent

interacting with an uncertain environment

V. Lesser; CS683, F10

Reinforcement Learning:
Two Approaches

 Learning Model of Markov Decision Process
  Learn model of operators transitions and their

rewards
  Compute optimal policy (value/policy iteration)

based on model
 Learning Optimal Policy Directly

  You don’t necessarily need to explicit learn
MDP model in order to compute optimal policy

V. Lesser; CS683, F10

Two basic designs

  Utility-based agent learns a Utility function on states
(or histories) which can be used in order to select
actions

  Must have a model of the environment
  Know the result of the action (what state the action leads to)

  Q-learning agent learns an Action-value function for
each state (also called Q-learning; does not require a
model of the environment)

  Does not need a model of the environment, only compare its
available choices

  Can not look ahead because do not know where their
actions lead.

V. Lesser; CS683, F10

Utility function and action-value function

 Utility function denotes the reward for starting in
state s and following policy π.	

 Uπ(s)= rt+γ rt+1+ γ2 rt+2+…= Σi=0 γi rt+i

 Action value function denotes the reward for
starting in state s, taking action a and following
policy π afterwards.

Qπ(s,a)= r(s,a) + γ rt+1+ γ2 rt+2+…= r(s,a) + γUπ(π(s,a))

V. Lesser; CS683, F10

Optimal Value Functions and Policies

There exist optimal value functions:!

And corresponding optimal policies:!

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

π* is the greedy policy with respect to Q*"

V. Lesser; CS683, F10 V. Lesser; CS683, F10

Passive versus Active learning

  A passive learner simply watches the
world going by, and tries to learn the utility
of being in various states.

  An active learner must also act using the
learned information, and can use its
problem generator to suggest explorations
of unknown portions of the environment.

V. Lesser; CS683, F10

What Many RL Algorithms Do

Experience!
Build!

Value!
Function!

Policy!• Continual, online
• Simultaneous acting and learning

Select !
V →V*	

Q →Q*	

π →π*	

Predictions!

. . ."

Actions !

V. Lesser; CS683, F10

RL Interaction of Policy and Value

Policy!
Value!

Function!

Policy evaluation!

policy!
improvement!

value !
learning!

“greedification”!

π	

V*, Q*	

V, Q	

π*	

V. Lesser; CS683, F10

Passive Learning in Known Environment

Given:
  A Markov model of the environment.

  P(s,s',a) – probability of transition from s to s' given a
  R(s,s',a) – expected reward on transition s to s' given a

  States, with probabilistic actions.
  Terminal states have rewards/utilities.

Problem:
  Learn expected utility of each state V(s) or U(s).

V. Lesser; CS683, F10

Example

S

• Non-deterministic actions (transition model unknown to agent)
• Every state besides terminal states has reward -0.04
• Percepts tell you: [State, Reward, Terminal?]
• 3 Sequences of (state,action,reward)

+1
-1 0.8

0.1 0.1

1

2

3

4

1

2 3

V. Lesser; CS683, F10

Learning Utility Functions

 A training sequence is an instance of world
transitions from an initial state to a terminal
state.

 The additive utility assumption: utility of a
sequence is the sum of the rewards over the
states of the sequence.

 Under this assumption, the utility of a state
is the expected reward-to-go of that state.

V. Lesser; CS683, F10

Direct Utility Estimation*
  Developed in the late 1950's in the area of adaptive

control theory.
  Just keep a running average of rewards for each state.
  For each training sequence, compute the reward-to-go

for each state in the sequence and update the utilities.

V. Lesser; CS683, F10

Direct Utility Estimation, cont

  i = st
  Reward-to-go (i) = sum of rt+1+ rt+2 + …. rterminal
  U(i)ni+1 = (U(i)ni + reward-to-go (i))/ (ni+1)
  ni = ni+1

t	

. . .! s	

t	

 a	

r	

t +1	

 s	

t +1	

t +1	

a	

r	

t +2	

 s	

t +2	

t +2	

a	

r	

t +3	

 s	

t +3	

 . . .!
t +3	

a	

T T T TT

T T T T T

V. Lesser; CS683, F10

Problems with Direct Utility Estimation

Converges very slowly because it ignores
the relationship between neighboring states:

New
(3,2)
U=?

Old
(3,3)

U=0.96

?

+1

p=.1
p=.8

p=.1

In updating (3,2) not using any
knowledge about current value of (3,3)

V. Lesser; CS683, F10

Adaptive Dynamic Programming

Utilities of neighboring states are mutually constrained,
Bellman equation:

 U(s) = R(s) + γ Σs’P(s,a,s’) U(s’)
Estimate P(s,a,s’) from the frequency with which s’

is reached when executing a in s.
Can use value iteration: initialize utilities based on the

rewards and update all values based on the above
equation.

Sometime intractable given a big state space.

V. Lesser; CS683, F10

Adaptive/Stochastic Dynamic
Programming

T T T TT

T T T T T

V. Lesser; CS683, F10

TD: Temporal Difference Learning
  One of the first RL algorithms
  Learn the value of a fixed policy (no optimization; just

prediction)
  Approximate the constraint equations without solving

them for all states.

  Modify U(s) whenever we see a transition from s to s’
using the following rule:

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s))

Problem: We don’t know this.

V. Lesser; CS683, F10

Temporal Difference Learning cont.

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s))

  The modification moves U(s) closer to satisfying
the original equation.

  α: learning rate, can be a function α (N(s)) that
decreases as N(s) increases [number of times
visting state s].

  Rewrite to get
U(s)= (1-α) U(s) + α (R(s) + γ U(s’))

TD Error

V. Lesser; CS683, F10

Temporal Difference (TD)
Learning

T T T TT

T T T T T

Sutton, 1988	

After
each
action
update
the
state

V. Lesser; CS683, F10

An Extended Example: Tic-Tac-Toe

X	

 X	

X	

O	

 O	

X	

X	

O	

X	

O	

X	

O	

X	

O	

X	

X	

O	

X	

O	

X	

 O	

X	

O	

X	

O	

X	

 O	

X	

} x’s move	

} x’s move	

} o’s move	

} x’s move	

} o’s move	

...	

...	

...	

 ...	

...	

 ...	

 ...	

 ...	

 ...	

x	

 x	

x	

x	

o	

x	

o	

x	

o	

x	

x	

x	

x	

o	

o	

Assume an imperfect opponent:	

 —he/she sometimes makes mistakes	

V. Lesser; CS683, F10

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:	

2. Now play lots of games.	

	

To pick our moves, 	

 look ahead one step:	

State V(s) – estimated probability of winning	

.5 ?	

.5 ?	

. . .	

. . .	

. . .	

. . .	

1 win	

0 loss	

. . .	

. . .	

0 draw	

x	

x	

x	

x	

o	

o	

o	

o	

o	

x	

 x	

o	

o	

o	

 o	

x	

x	

 x	

x	

o	

current state	

various possible	

next states	

*	

Just pick the next state with the highest	

estimated prob. of winning — the largest V(s);	

a greedy move.	

But 10% of the time pick a move at random;	

an exploratory move.	

V. Lesser; CS683, F10

RL Learning Rule for Tic-Tac-Toe

..

•

our move {
opponent's move {

our move {

starting position

•

•

•

a

b

c*

d

ee*

opponent's move {

c

•f

•g*g

opponent's move {
our move {

.

•

“Exploratory” move	

x o

x

x o

x

Take action O

Non-deterministic
outcome based on
opponent’s move

V. Lesser; CS683, F10

More Complex TD Backups

trial! primitive TD backups!

1–λ	

λ(1–λ)!

λ (1–λ)!2!

λ	

3!

Σ = 1!

e.g. TD (λ)!

Incrementally
computes a weighted
mixture of these
backups as states are
visited!

λ = 0 Simple TD!
λ = 1 Simple Monte Carlo!

Blending the
backups

V. Lesser; CS683, F10

Simple Monte Carlo

T T T TT

T T T T T

V. Lesser; CS683, F10

Space of Backups
Dynamic 	

programming	

Temporal-	

difference	

learning	

Monte Carlo	

Exhaustive	

search	

λ	

full	

backups	

sample	

backups	

shallow	

backups	

 deep	

backups	

Backup
from all
terminal
states

V. Lesser; CS683, F10

Limitation of Learning V*
Deterministic Case

Choose best action from any state s using learned V*"
 π*(s)=argamax [r(s, a) + γV*(δ(s, a))]; deterministic case

A problem:"
• This works well if agent knows δ: S x A→S and r: S x

A→ℜ
• But when it doesnʼt, it canʼt choose actions this way"

V. Lesser; CS683, F10

Q Learning for Deterministic Case

Define new function very similar to V*
 Q (s,a)≡r(s,a) +γV*(δ(s,a))

If agent learns Q, it can choose optimal action
even without knowing r or δ!

 π*(s)=argamax[r(s,a)+ γV*(δ(s,a))]

 π*(s)=argamaxQ (s,a)

Q is the evaluation function agent will learn!
V. Lesser; CS683, F10

Training Rule to Learn Q for
Deterministic Operators

Note Q and V* closely related:"
 V*(s)=max Q (s,aʹ′)

 a’

Which allows us to write Q recursively as
 Q(st,at)=r (st,at)+ γV*(δ(st,at)))
 = r (st,at)+ γmax Q (st+1,aʹ′)

 a’

Let denote learnerʼs current approximation to Q. Consider
training rule"

Where sʹ′ is the state resulting from applying action a in state
s, and aʹ′ is the set of actions from sʹ′

aʹ′

V. Lesser; CS683, F10

Q Learning for Deterministic Worlds
 For each s,a initialize table entry
 Observe current state s
 Do forever:

  Select an action a and execute it
  Receive immediate reward r
  Observe the new state sʹ′
  Update the table entry for as follows:

  s←sʹ′
aʹ′

V. Lesser; CS683, F10

Updating

V. Lesser; CS683, F10

Nondeterministic Q learning Case

What if reward and next state are non-
deterministic?"

We redefine V,Q by taking expected values"

 Vπ(s)≡E[rt+γrt+1+γrt+2+…]

 ≡E[γirt+i]

 Q(s,a)≡E[r(s, a) + γV*(δ(s,a))]

V. Lesser; CS683, F10

Nondeterministic Case, cont’d
Q learning generalizes to non-deterministic worlds "
Alter training rule to

Where"

Can still prove convergence of to Q"
[Watkins and Dayan, 1992]

aʹ′

V. Lesser; CS683, F10

Q-learning cont.
  Is it better to learn a model and a utility function,

or to learn an action-value function with no
model?

 This is a fundamental question in AI where much
of the research is based on a knowledge-based
approach.

 Some researchers claim that the availability of
model free methods such as Q-learning means
that the KB approach is unnecessary (or too
complex).

V. Lesser; CS683, F10

What actions to choose?

  Problem: choosing actions with the highest expected
utility ignores their contribution to learning.

  Tradeoff between immediate good and long-term
good (exploration vs. exploitation).

  A random-walk agent learns faster but never uses that
knowledge.

  A greedy agent learns very slowly and acts based on
current, inaccurate knowledge.

V. Lesser; CS683, F10

What’s the best exploration policy?

 Give some weight to actions that were not
tried very often in a given state, but counter
that by knowledge that utility may be low.
  Key idea is that in early stages of learning,

estimations can be unrealistic low

 Similar to simulated annealing in that in the
early phase of search more willing to
explore

V. Lesser; CS683, F10

Practical issues - large State Set

  Too many states: Can define Q as a weighted sum
of state features (factored state), or a neural net.
Adjust the previous equations to update weights
rather than updating Q.
  Can have different neural networks for each action
  This approach used very successfully in TD-Gammon

(neural network).

  Continuous state-space: Can discretize it.
Pole-balancing example (1968).

V. Lesser; CS683, F10

Reinforcement Learning Differs From
Supervised Learning

 no presentation of input/output pairs
 agent chooses actions, receives

reinforcement
 worlds are usually non-deterministic
 on-line performance is important
 system must explore the space of actions

V. Lesser; CS683, F10

End of Course

 GOOD LUCK!!

