
Lecture 25: Learning 4

Victor R. Lesser
CMPSCI 683

Fall 2010

Final Exam Information
  Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res

Ctr Rm A301
  2 Hours but obviously you can leave early!

  Open Book but no access to Internet

  Material from Lectures 12 -25
  Lecture 14 will not be covered on exam
  More operational than conceptual in that I will require you to

carry out steps of an algorithm or inference process

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Today’s Lecture

 Reinforcement Learning

V. Lesser; CS683, F10

Problem with Supervised Learning

  Supervised learning is sometimes unrealistic: where
will correct answers come from?
  New directions emerging in the use of redundant

information as a way of getting around the lack of extensive
training data

  In many cases, the agent will only receive a single
reward, after a long sequence of actions/decisions.

  Environments change, and so the agent must adjust its
action choices.
  On-line issue

V. Lesser; CS683, F10

Reinforcement Learning

 Using feedback/rewards to learn a
successful agent function.

 Rewards may be provided following each
action, or only when the agent reaches a
terminal state.

 Rewards can be components of the actual
utility function or they can be hints (“nice
move”, “bad dog”, etc.).

V. Lesser; CS683, F10

Reinforcement Learning

Perception/reward

action

Environment

Utility(reward) depends on a sequence of decisions"

Agent

How to learn best action (maximize expected
reward) to take at each state of Agent

V. Lesser; CS683, F10

Reinforcement Learning Problem

action at

r1 r2 r3

state st

Agent

Environment
st+1

rt+1

reward rt

a0 a1 a2 s0 s1 s2 s3

V. Lesser; CS683, F10

RL and Markov Decision Processes

 S - finite set of domain states
 A - finite set of actions
 P(sʹ′|s,a) - state transition function
 r(s,a) - reward function
 S0 - initial state
 The Markov assumption:

P(st | st-1,st-2,…,s1,a) = P(st | st-1,a)	

V. Lesser; CS683, F10

RL Learning Task

Execute actions in the environment, observe results and
  Learn a policy π(s) : S → A from states st∈S to actions

at∈A that maximizes the expected reward : E[rt+γ rt+1+ γ2
rt+2+…] from any starting state st

  0<γ<1 is the discount factor for future rewards
  Target function is π(s) : S → A
  But there are no direct training examples of the form

<s,a>, i.e., what action is the right one to take in state s
  Training examples are of the form <<s,a,s’>,r>

V. Lesser; CS683, F10

Key Features of Reinforcement Learning

  Learner is not told which actions to take
  Learning about, from, and while interacting with an external

environment
  Trial-and-Error search
  Possibility of delayed reward

  Sacrifice short-term gains for greater long-term gains
  The need to explore and exploit

  On-line Integrating performance and learning
  Considers the whole problem of a goal-directed agent

interacting with an uncertain environment

V. Lesser; CS683, F10

Reinforcement Learning:
Two Approaches

 Learning Model of Markov Decision Process
  Learn model of operators transitions and their

rewards
  Compute optimal policy (value/policy iteration)

based on model
 Learning Optimal Policy Directly

  You don’t necessarily need to explicit learn
MDP model in order to compute optimal policy

V. Lesser; CS683, F10

Two basic designs

  Utility-based agent learns a Utility function on states
(or histories) which can be used in order to select
actions

  Must have a model of the environment
  Know the result of the action (what state the action leads to)

  Q-learning agent learns an Action-value function for
each state (also called Q-learning; does not require a
model of the environment)

  Does not need a model of the environment, only compare its
available choices

  Can not look ahead because do not know where their
actions lead.

V. Lesser; CS683, F10

Utility function and action-value function

 Utility function denotes the reward for starting in
state s and following policy π.	

 Uπ(s)= rt+γ rt+1+ γ2 rt+2+…= Σi=0 γi rt+i

 Action value function denotes the reward for
starting in state s, taking action a and following
policy π afterwards.

Qπ(s,a)= r(s,a) + γ rt+1+ γ2 rt+2+…= r(s,a) + γUπ(π(s,a))

V. Lesser; CS683, F10

Optimal Value Functions and Policies

There exist optimal value functions:!

And corresponding optimal policies:!

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

π* is the greedy policy with respect to Q*"

V. Lesser; CS683, F10 V. Lesser; CS683, F10

Passive versus Active learning

  A passive learner simply watches the
world going by, and tries to learn the utility
of being in various states.

  An active learner must also act using the
learned information, and can use its
problem generator to suggest explorations
of unknown portions of the environment.

V. Lesser; CS683, F10

What Many RL Algorithms Do

Experience!
Build!

Value!
Function!

Policy!• Continual, online
• Simultaneous acting and learning

Select !
V →V*	

Q →Q*	

π →π*	

Predictions!

. . ."

Actions !

V. Lesser; CS683, F10

RL Interaction of Policy and Value

Policy!
Value!

Function!

Policy evaluation!

policy!
improvement!

value !
learning!

“greedification”!

π	

V*, Q*	

V, Q	

π*	

V. Lesser; CS683, F10

Passive Learning in Known Environment

Given:
  A Markov model of the environment.

  P(s,s',a) – probability of transition from s to s' given a
  R(s,s',a) – expected reward on transition s to s' given a

  States, with probabilistic actions.
  Terminal states have rewards/utilities.

Problem:
  Learn expected utility of each state V(s) or U(s).

V. Lesser; CS683, F10

Example

S

• Non-deterministic actions (transition model unknown to agent)
• Every state besides terminal states has reward -0.04
• Percepts tell you: [State, Reward, Terminal?]
• 3 Sequences of (state,action,reward)

+1
-1 0.8

0.1 0.1

1

2

3

4

1

2 3

V. Lesser; CS683, F10

Learning Utility Functions

 A training sequence is an instance of world
transitions from an initial state to a terminal
state.

 The additive utility assumption: utility of a
sequence is the sum of the rewards over the
states of the sequence.

 Under this assumption, the utility of a state
is the expected reward-to-go of that state.

V. Lesser; CS683, F10

Direct Utility Estimation*
  Developed in the late 1950's in the area of adaptive

control theory.
  Just keep a running average of rewards for each state.
  For each training sequence, compute the reward-to-go

for each state in the sequence and update the utilities.

V. Lesser; CS683, F10

Direct Utility Estimation, cont

  i = st
  Reward-to-go (i) = sum of rt+1+ rt+2 + …. rterminal
  U(i)ni+1 = (U(i)ni + reward-to-go (i))/ (ni+1)
  ni = ni+1

t	

. . .! s	
t	
 a	

r	
t +1	
 s	
t +1	

t +1	
a	

r	
t +2	
 s	
t +2	

t +2	
a	

r	
t +3	
 s	
t +3	
 . . .!
t +3	
a	

T T T TT

T T T T T

V. Lesser; CS683, F10

Problems with Direct Utility Estimation

Converges very slowly because it ignores
the relationship between neighboring states:

New
(3,2)
U=?

Old
(3,3)

U=0.96

?

+1

p=.1
p=.8

p=.1

In updating (3,2) not using any
knowledge about current value of (3,3)

V. Lesser; CS683, F10

Adaptive Dynamic Programming

Utilities of neighboring states are mutually constrained,
Bellman equation:

 U(s) = R(s) + γ Σs’P(s,a,s’) U(s’)
Estimate P(s,a,s’) from the frequency with which s’

is reached when executing a in s.
Can use value iteration: initialize utilities based on the

rewards and update all values based on the above
equation.

Sometime intractable given a big state space.

V. Lesser; CS683, F10

Adaptive/Stochastic Dynamic
Programming

T T T TT

T T T T T

V. Lesser; CS683, F10

TD: Temporal Difference Learning
  One of the first RL algorithms
  Learn the value of a fixed policy (no optimization; just

prediction)
  Approximate the constraint equations without solving

them for all states.

  Modify U(s) whenever we see a transition from s to s’
using the following rule:

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s))

Problem: We don’t know this.

V. Lesser; CS683, F10

Temporal Difference Learning cont.

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s))

  The modification moves U(s) closer to satisfying
the original equation.

  α: learning rate, can be a function α (N(s)) that
decreases as N(s) increases [number of times
visting state s].

  Rewrite to get
U(s)= (1-α) U(s) + α (R(s) + γ U(s’))

TD Error

V. Lesser; CS683, F10

Temporal Difference (TD)
Learning

T T T TT

T T T T T

Sutton, 1988	

After
each
action
update
the
state

V. Lesser; CS683, F10

An Extended Example: Tic-Tac-Toe

X	
 X	
X	
O	
 O	

X	

X	
O	

X	

O	

X	
O	

X	

O	

X	

X	
O	

X	

O	

X	
 O	

X	
O	

X	

O	

X	
 O	

X	

} x’s move	

} x’s move	

} o’s move	

} x’s move	

} o’s move	

...	

...	
...	
 ...	

...	
 ...	
 ...	
 ...	
 ...	

x	
 x	

x	

x	
o	

x	

o	

x	
o	

x	

x	

x	
x	
o	

o	

Assume an imperfect opponent:	

 —he/she sometimes makes mistakes	

V. Lesser; CS683, F10

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:	

2. Now play lots of games.	

	
To pick our moves, 	

 look ahead one step:	

State V(s) – estimated probability of winning	

.5 ?	

.5 ?	
. . .	

. . .	

. . .	

. . .	

1 win	

0 loss	

. . .	

. . .	

0 draw	

x	

x	
x	
x	

o	
o	

o	
o	
o	
x	
 x	

o	
o	

o	
 o	
x	
x	
 x	
x	
o	

current state	

various possible	

next states	
*	

Just pick the next state with the highest	

estimated prob. of winning — the largest V(s);	

a greedy move.	

But 10% of the time pick a move at random;	

an exploratory move.	

V. Lesser; CS683, F10

RL Learning Rule for Tic-Tac-Toe

..

•

our move {
opponent's move {

our move {

starting position

•

•

•

a

b

c*

d

ee*

opponent's move {

c

•f

•g*g

opponent's move {
our move {

.

•

“Exploratory” move	

x o

x

x o

x

Take action O

Non-deterministic
outcome based on
opponent’s move

V. Lesser; CS683, F10

More Complex TD Backups

trial! primitive TD backups!

1–λ	

λ(1–λ)!

λ (1–λ)!2!

λ	
3!

Σ = 1!

e.g. TD (λ)!

Incrementally
computes a weighted
mixture of these
backups as states are
visited!

λ = 0 Simple TD!
λ = 1 Simple Monte Carlo!

Blending the
backups

V. Lesser; CS683, F10

Simple Monte Carlo

T T T TT

T T T T T

V. Lesser; CS683, F10

Space of Backups
Dynamic 	

programming	

Temporal-	

difference	

learning	

Monte Carlo	

Exhaustive	

search	

λ	

full	

backups	

sample	

backups	

shallow	

backups	
 deep	

backups	

Backup
from all
terminal
states

V. Lesser; CS683, F10

Limitation of Learning V*
Deterministic Case

Choose best action from any state s using learned V*"
 π*(s)=argamax [r(s, a) + γV*(δ(s, a))]; deterministic case

A problem:"
• This works well if agent knows δ: S x A→S and r: S x

A→ℜ
• But when it doesnʼt, it canʼt choose actions this way"

V. Lesser; CS683, F10

Q Learning for Deterministic Case

Define new function very similar to V*
 Q (s,a)≡r(s,a) +γV*(δ(s,a))

If agent learns Q, it can choose optimal action
even without knowing r or δ!

 π*(s)=argamax[r(s,a)+ γV*(δ(s,a))]

 π*(s)=argamaxQ (s,a)

Q is the evaluation function agent will learn!
V. Lesser; CS683, F10

Training Rule to Learn Q for
Deterministic Operators

Note Q and V* closely related:"
 V*(s)=max Q (s,aʹ′)

 a’

Which allows us to write Q recursively as
 Q(st,at)=r (st,at)+ γV*(δ(st,at)))
 = r (st,at)+ γmax Q (st+1,aʹ′)

 a’

Let denote learnerʼs current approximation to Q. Consider
training rule"

Where sʹ′ is the state resulting from applying action a in state
s, and aʹ′ is the set of actions from sʹ′

aʹ′

V. Lesser; CS683, F10

Q Learning for Deterministic Worlds
 For each s,a initialize table entry
 Observe current state s
 Do forever:

  Select an action a and execute it
  Receive immediate reward r
  Observe the new state sʹ′
  Update the table entry for as follows:

  s←sʹ′
aʹ′

V. Lesser; CS683, F10

Updating

V. Lesser; CS683, F10

Nondeterministic Q learning Case

What if reward and next state are non-
deterministic?"

We redefine V,Q by taking expected values"

 Vπ(s)≡E[rt+γrt+1+γrt+2+…]

 ≡E[γirt+i]

 Q(s,a)≡E[r(s, a) + γV*(δ(s,a))]

V. Lesser; CS683, F10

Nondeterministic Case, cont’d
Q learning generalizes to non-deterministic worlds "
Alter training rule to

Where"

Can still prove convergence of to Q"
[Watkins and Dayan, 1992]

aʹ′

V. Lesser; CS683, F10

Q-learning cont.
  Is it better to learn a model and a utility function,

or to learn an action-value function with no
model?

 This is a fundamental question in AI where much
of the research is based on a knowledge-based
approach.

 Some researchers claim that the availability of
model free methods such as Q-learning means
that the KB approach is unnecessary (or too
complex).

V. Lesser; CS683, F10

What actions to choose?

  Problem: choosing actions with the highest expected
utility ignores their contribution to learning.

  Tradeoff between immediate good and long-term
good (exploration vs. exploitation).

  A random-walk agent learns faster but never uses that
knowledge.

  A greedy agent learns very slowly and acts based on
current, inaccurate knowledge.

V. Lesser; CS683, F10

What’s the best exploration policy?

 Give some weight to actions that were not
tried very often in a given state, but counter
that by knowledge that utility may be low.
  Key idea is that in early stages of learning,

estimations can be unrealistic low

 Similar to simulated annealing in that in the
early phase of search more willing to
explore

V. Lesser; CS683, F10

Practical issues - large State Set

  Too many states: Can define Q as a weighted sum
of state features (factored state), or a neural net.
Adjust the previous equations to update weights
rather than updating Q.
  Can have different neural networks for each action
  This approach used very successfully in TD-Gammon

(neural network).

  Continuous state-space: Can discretize it.
Pole-balancing example (1968).

V. Lesser; CS683, F10

Reinforcement Learning Differs From
Supervised Learning

 no presentation of input/output pairs
 agent chooses actions, receives

reinforcement
 worlds are usually non-deterministic
 on-line performance is important
 system must explore the space of actions

V. Lesser; CS683, F10

End of Course

 GOOD LUCK!!

