
Lecture 25: Learning 4 

Victor R. Lesser 
CMPSCI 683 

Fall 2010 

Final Exam Information 
  Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res 

Ctr Rm A301 
  2 Hours but obviously you can leave early! 

  Open Book but no access to Internet 

  Material from Lectures 12 -25 
  Lecture 14 will not be covered on exam 
  More operational than conceptual in that I will require you to 

carry out steps of an algorithm or inference process 
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Today’s Lecture 

 Reinforcement Learning 
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Problem with Supervised Learning 

  Supervised learning is sometimes unrealistic: where 
will correct answers come from? 
  New directions emerging in the use of redundant 

information as a way of getting around the lack of extensive 
training data 

  In many cases, the agent will only receive a single 
reward, after a long sequence of actions/decisions. 

  Environments change, and so the agent must adjust its 
action choices. 
  On-line issue 
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Reinforcement Learning 

 Using feedback/rewards to learn a 
successful agent function. 

 Rewards may be provided following each 
action, or only when the agent reaches a 
terminal state. 

 Rewards can be components of the actual 
utility function or they can be hints (“nice 
move”, “bad dog”, etc.). 
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Reinforcement Learning 

Perception/reward 

action 

Environment 

Utility(reward) depends on a sequence of decisions"

Agent 

How to learn best action (maximize expected 
reward)  to take at each state of Agent 
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Reinforcement Learning Problem 

action at 

r1 r2 r3 

state st 

Agent 

Environment 
st+1 

rt+1 

reward rt 

a0 a1 a2 s0 s1 s2 s3 
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RL and Markov Decision Processes 

 S - finite set of domain states 
 A - finite set of actions 
 P(sʹ′|s,a) - state transition function 
 r(s,a) - reward function 
 S0 - initial state 
 The Markov assumption: 

P(st | st-1,st-2,…,s1,a) = P(st | st-1,a)	
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RL Learning Task 

Execute actions in the environment, observe results and 
  Learn a policy π(s) : S → A from states st∈S to actions 

at∈A that maximizes the expected reward : E[rt+γ rt+1+ γ2 
rt+2+…] from any starting state st 

  0<γ<1 is the discount factor for future rewards  
  Target function is π(s) : S → A  
  But there are no direct training examples of the form 

<s,a>, i.e., what action is the right one to take in state s 
  Training examples are of the form <<s,a,s’>,r> 
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Key Features of Reinforcement Learning 

  Learner is not told which actions to take 
  Learning about, from, and while interacting with an external 

environment 
  Trial-and-Error search 
  Possibility of delayed reward 

  Sacrifice short-term gains for greater long-term gains 
  The need to explore and exploit 

  On-line Integrating performance and learning 
  Considers the whole problem of a goal-directed agent 

interacting with an uncertain environment 
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Reinforcement Learning: 
Two Approaches 

 Learning Model of Markov Decision Process 
  Learn model of operators transitions and their 

rewards 
  Compute optimal policy (value/policy iteration) 

based on model   
 Learning Optimal Policy Directly 

  You don’t necessarily need to explicit learn 
MDP model in order to compute optimal policy 
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Two basic designs 

  Utility-based agent learns a Utility function on states 
(or histories) which can be used in order to select 
actions 

  Must have a model of the environment 
  Know the result of the action (what state the action leads to) 

  Q-learning agent learns an Action-value function for 
each state (also called Q-learning; does not require a 
model of the environment) 

  Does not need a model of the environment, only compare its 
available choices 

  Can not look ahead because do not know where their 
actions lead. 
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Utility function and action-value function 

 Utility function denotes the reward for starting in 
state s and following policy π.	


  Uπ(s)= rt+γ rt+1+ γ2 rt+2+…= Σi=0 γi rt+i 

 Action value function denotes the reward for 
starting in state s, taking action a and following 
policy π afterwards. 

Qπ(s,a)= r(s,a) + γ rt+1+ γ2 rt+2+…= r(s,a) + γUπ(π(s,a)) 
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Optimal Value Functions and Policies 

There exist optimal value functions:!

And corresponding optimal policies:!

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

π*  is the greedy policy with respect to Q*"
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Passive versus Active learning  

  A passive learner simply watches the 
world going by, and tries to learn the utility 
of being in various states. 

  An active learner must also act using the 
learned information, and can use its 
problem generator to suggest explorations 
of unknown portions of the environment. 
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What Many RL Algorithms Do 

Experience!
Build!

Value!
Function!

Policy!• Continual, online 
• Simultaneous acting and learning 

Select !
V →V*	

Q →Q*	


π →π*	


Predictions!

. . ."

Actions !
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RL Interaction of Policy and Value 

Policy!
Value!

Function!

Policy evaluation!

policy!
improvement!

value !
learning!

“greedification”!

π	


V*,  Q*	


V, Q	


π*	
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Passive Learning in Known Environment 

Given: 
  A Markov model of the environment. 

  P(s,s',a) – probability of transition from s  to s'  given a 
  R(s,s',a) – expected reward on transition s  to s'  given a 

  States, with probabilistic actions. 
  Terminal states have rewards/utilities. 

Problem: 
  Learn expected utility of each state V(s) or U(s). 
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Example 

S 

• Non-deterministic actions (transition model unknown to agent) 
• Every state besides terminal states has reward -0.04 
• Percepts tell you: [State, Reward, Terminal?] 
• 3 Sequences of (state,action,reward) 

+1 
-1 0.8 

0.1 0.1 

1 

2 

3 

4 

1 

2 3 
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Learning Utility Functions 

 A training sequence is an instance of world 
transitions from an initial state to a terminal 
state. 

 The additive utility assumption: utility of a 
sequence is the sum of the rewards over the 
states of the sequence. 

 Under this assumption, the utility of a state 
is the expected reward-to-go of that state. 
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Direct Utility Estimation* 
  Developed in the late 1950's in the area of adaptive 

control theory. 
  Just keep a running average of rewards for each state. 
  For each training sequence, compute the reward-to-go 

for each state in the sequence and update the utilities. 
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Direct Utility Estimation, cont  

  i = st 
  Reward-to-go (i) = sum of rt+1+ rt+2 + …. rterminal 
   U(i)ni+1 = (U(i)ni + reward-to-go (i))/ (ni+1) 
   ni = ni+1 

t	

. . .! s	
t	
 a	


r	
t +1	
 s	
t +1	

t +1	
a	


r	
t +2	
 s	
t +2	

t +2	
a	


r	
t +3	
 s	
t +3	
 . . .!
t +3	
a	


T T T TT

T T T T T
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Problems with Direct Utility Estimation 

Converges very slowly because it ignores 
the relationship between neighboring states: 

New 
(3,2) 
U=? 

Old 
(3,3) 

U=0.96 

? 

+1 

p=.1 
p=.8 

p=.1 

In updating (3,2) not using any 
knowledge about current value of (3,3) 
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Adaptive Dynamic Programming 

Utilities of neighboring states are mutually constrained, 
Bellman equation: 

 U(s) = R(s) + γ Σs’P(s,a,s’) U(s’) 
Estimate P(s,a,s’) from the frequency with which s’ 

is reached when executing a in s. 
Can use value iteration: initialize utilities based on the 

rewards and update all values based on the above 
equation. 

Sometime intractable given a big state space. 
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Adaptive/Stochastic Dynamic 
Programming 

T T T TT

T T T T T
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TD: Temporal Difference Learning 
  One of the first RL algorithms 
  Learn the value of a fixed policy (no optimization; just 

prediction) 
  Approximate the constraint equations without solving 

them for all states. 

  Modify U(s) whenever we see a transition from s to s’ 
using the following rule: 

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s)) 

Problem:  We don’t know this. 
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Temporal Difference Learning cont. 

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s)) 

  The modification moves U(s) closer to satisfying 
the original equation. 

  α: learning rate, can be a function α (N(s)) that 
decreases as N(s) increases [number of times 
visting state s]. 

  Rewrite to get 
U(s)= (1-α) U(s) + α ( R(s) + γ U(s’) ) 

TD Error 
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Temporal Difference (TD) 
Learning 

T T T TT

T T T T T

Sutton, 1988	


After 
each 
action 
update 
the 
state 
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An Extended Example: Tic-Tac-Toe 

X	
 X	
X	
O	
 O	

X	


X	
O	

X	


O	

X	
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X	

O	

X	


X	
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X	


O	

X	
 O	


X	
O	

X	


O	

X	
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X	


} x’s move	


} x’s move	


} o’s move	


} x’s move	


} o’s move	


...	


...	
...	
 ...	


...	
 ...	
 ...	
 ...	
 ...	


x	
 x	

x	


x	
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x	
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x	
x	
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Assume an imperfect opponent:	

       —he/she sometimes makes mistakes	
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An RL Approach to Tic-Tac-Toe 

1. Make a table with one entry per state:	


2. Now play lots of games.	

	
To pick our moves, 	


            look ahead one step:	


State         V(s) – estimated probability of winning	

.5          ?	

.5          ?	
. . .	


. . .	


. . .	

. . .	


1        win	


0        loss	


. . .	

. . .	


0       draw	


x	


x	
x	
x	

o	
o	


o	
o	
o	
x	
 x	


o	
o	

o	
 o	
x	
x	
 x	
x	
o	


current state	


various possible	

next states	
*	


Just pick the next state with the highest	

estimated prob. of winning — the largest V(s);	

a greedy move.	


But 10% of the time pick a move at random;	

an exploratory move.	


V. Lesser; CS683, F10 

RL Learning Rule for Tic-Tac-Toe 

..

•

our move {
opponent's move {

our move {

starting position

•

•

•

a

b

c*

d

ee*

opponent's move {

c

•f

•g*g

opponent's move {
our move {

.

•

“Exploratory” move	


x o 

x 

x o 

x 

Take action O  

Non-deterministic 
outcome based on 
opponent’s move 
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More Complex TD Backups 

trial! primitive TD backups!

1–λ	


λ(1–λ)!

λ  (1–λ)!2!

λ	
3!

Σ = 1!

e.g.  TD ( λ )!

Incrementally 
computes a weighted 
mixture of these 
backups as states are 
visited!

λ = 0           Simple TD!
λ = 1           Simple Monte Carlo!

Blending the 
backups 
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Simple Monte Carlo 

T T T TT

T T T T T
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Space of Backups 
Dynamic 	


programming	


Temporal-	

difference	

learning	


Monte Carlo	


Exhaustive	

search	


λ	


full	

backups	


sample	

backups	


shallow	

backups	
 deep	


backups	


Backup 
from all 
terminal 
states  
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Limitation of Learning V* 
Deterministic Case 

Choose best action from any state s using learned V*"
  π*(s)=argamax [r(s, a) + γV*(δ(s, a))]; deterministic case 

A problem:"
• This works well if agent knows δ: S x A→S and r: S x 

A→ℜ 
• But when it doesnʼt, it canʼt choose actions this way"
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Q Learning for Deterministic Case 

Define new function very similar to V* 
 Q (s,a)≡r(s,a) +γV*(δ(s,a)) 

If agent learns Q, it can choose optimal action 
even without knowing r or δ! 

 π*(s)=argamax[r(s,a)+ γV*(δ(s,a))] 

  π*(s)=argamaxQ (s,a) 

Q is the evaluation function agent will learn!
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Training Rule to Learn Q for 
Deterministic Operators 

Note Q and V* closely related:"
 V*(s)=max Q (s,aʹ′) 

                     a’ 

Which allows us to write Q recursively as  
 Q(st,at)=r (st,at)+ γV*(δ(st,at))) 
   = r (st,at)+ γmax Q (st+1,aʹ′) 

                                                      a’ 

Let       denote learnerʼs current approximation to Q. Consider 
training rule"

Where sʹ′ is the state resulting from applying action a in state 
s, and aʹ′ is the set of actions from sʹ′  

aʹ′ 
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Q Learning for Deterministic Worlds  
 For each s,a initialize table entry 
 Observe current state s 
 Do forever: 

  Select an action a and execute it   
  Receive immediate reward r 
  Observe the new state sʹ′ 
  Update the table entry for               as follows: 

  s←sʹ′ 
aʹ′ 
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Updating 
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Nondeterministic Q learning Case 

What if reward and next state are non-
deterministic?"

We redefine V,Q by taking expected values"

 Vπ(s)≡E[rt+γrt+1+γrt+2+…] 

         ≡E[     γirt+i ] 

 Q(s,a)≡E[r(s, a) + γV*(δ(s,a))] 
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Nondeterministic Case, cont’d 
Q learning generalizes to non-deterministic worlds "
Alter training rule to 

Where"

Can still prove convergence of       to Q"
[Watkins and Dayan, 1992] 

aʹ′ 

V. Lesser; CS683, F10 

Q-learning cont. 
  Is it better to learn a model and a utility function, 

or to learn an action-value function with no 
model? 

 This is a fundamental question in AI where much 
of the research is based on a knowledge-based 
approach. 

 Some researchers claim that the availability of 
model free methods such as Q-learning means 
that the KB approach is unnecessary (or too 
complex). 
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What actions to choose? 

  Problem: choosing actions with the highest expected 
utility ignores their contribution to learning. 

  Tradeoff between immediate good and long-term 
good (exploration vs. exploitation). 

  A random-walk agent learns faster but never uses that 
knowledge. 

  A greedy agent learns very slowly and acts based on 
current, inaccurate knowledge. 



V. Lesser; CS683, F10 

What’s the best exploration policy? 

 Give some weight to actions that were not 
tried very often in a given state, but counter 
that by knowledge that utility may be low. 
  Key idea is that in early stages of learning, 

estimations can be unrealistic low  

 Similar to simulated annealing in that in the 
early phase of search more willing to 
explore 
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Practical issues - large State Set 

  Too many states:  Can define Q as a weighted sum 
of state features (factored state), or a neural net.  
Adjust the previous equations to update weights 
rather than updating Q.  
  Can have different neural networks for each action 
  This approach used very successfully in TD-Gammon 

(neural network). 

  Continuous state-space:  Can discretize it.   
Pole-balancing example (1968). 
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Reinforcement Learning Differs From 
Supervised Learning 

 no presentation of input/output pairs 
 agent chooses actions, receives 

reinforcement 
 worlds are usually non-deterministic 
 on-line performance is important 
 system must explore the space of actions 
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End of Course 

    GOOD LUCK!! 


