
Lecture 25: Learning 4 

Victor R. Lesser 
CMPSCI 683 

Fall 2010 

Final Exam Information 
  Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res 

Ctr Rm A301 
  2 Hours but obviously you can leave early! 

  Open Book but no access to Internet 

  Material from Lectures 12 -25 
  Lecture 14 will not be covered on exam 
  More operational than conceptual in that I will require you to 

carry out steps of an algorithm or inference process 
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Today’s Lecture 

 Reinforcement Learning 
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Problem with Supervised Learning 

  Supervised learning is sometimes unrealistic: where 
will correct answers come from? 
  New directions emerging in the use of redundant 

information as a way of getting around the lack of extensive 
training data 

  In many cases, the agent will only receive a single 
reward, after a long sequence of actions/decisions. 

  Environments change, and so the agent must adjust its 
action choices. 
  On-line issue 
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Reinforcement Learning 

 Using feedback/rewards to learn a 
successful agent function. 

 Rewards may be provided following each 
action, or only when the agent reaches a 
terminal state. 

 Rewards can be components of the actual 
utility function or they can be hints (“nice 
move”, “bad dog”, etc.). 
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Reinforcement Learning 

Perception/reward 

action 

Environment 

Utility(reward) depends on a sequence of decisions"

Agent 

How to learn best action (maximize expected 
reward)  to take at each state of Agent 
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Reinforcement Learning Problem 

action at 

r1 r2 r3 

state st 

Agent 

Environment 
st+1 

rt+1 

reward rt 

a0 a1 a2 s0 s1 s2 s3 
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RL and Markov Decision Processes 

 S - finite set of domain states 
 A - finite set of actions 
 P(sʹ′|s,a) - state transition function 
 r(s,a) - reward function 
 S0 - initial state 
 The Markov assumption: 

P(st | st-1,st-2,…,s1,a) = P(st | st-1,a)	
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RL Learning Task 

Execute actions in the environment, observe results and 
  Learn a policy π(s) : S → A from states st∈S to actions 

at∈A that maximizes the expected reward : E[rt+γ rt+1+ γ2 
rt+2+…] from any starting state st 

  0<γ<1 is the discount factor for future rewards  
  Target function is π(s) : S → A  
  But there are no direct training examples of the form 

<s,a>, i.e., what action is the right one to take in state s 
  Training examples are of the form <<s,a,s’>,r> 
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Key Features of Reinforcement Learning 

  Learner is not told which actions to take 
  Learning about, from, and while interacting with an external 

environment 
  Trial-and-Error search 
  Possibility of delayed reward 

  Sacrifice short-term gains for greater long-term gains 
  The need to explore and exploit 

  On-line Integrating performance and learning 
  Considers the whole problem of a goal-directed agent 

interacting with an uncertain environment 
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Reinforcement Learning: 
Two Approaches 

 Learning Model of Markov Decision Process 
  Learn model of operators transitions and their 

rewards 
  Compute optimal policy (value/policy iteration) 

based on model   
 Learning Optimal Policy Directly 

  You don’t necessarily need to explicit learn 
MDP model in order to compute optimal policy 
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Two basic designs 

  Utility-based agent learns a Utility function on states 
(or histories) which can be used in order to select 
actions 

  Must have a model of the environment 
  Know the result of the action (what state the action leads to) 

  Q-learning agent learns an Action-value function for 
each state (also called Q-learning; does not require a 
model of the environment) 

  Does not need a model of the environment, only compare its 
available choices 

  Can not look ahead because do not know where their 
actions lead. 
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Utility function and action-value function 

 Utility function denotes the reward for starting in 
state s and following policy π.	



  Uπ(s)= rt+γ rt+1+ γ2 rt+2+…= Σi=0 γi rt+i 

 Action value function denotes the reward for 
starting in state s, taking action a and following 
policy π afterwards. 

Qπ(s,a)= r(s,a) + γ rt+1+ γ2 rt+2+…= r(s,a) + γUπ(π(s,a)) 
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Optimal Value Functions and Policies 

There exist optimal value functions:!

And corresponding optimal policies:!

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

π*  is the greedy policy with respect to Q*"
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Passive versus Active learning  

  A passive learner simply watches the 
world going by, and tries to learn the utility 
of being in various states. 

  An active learner must also act using the 
learned information, and can use its 
problem generator to suggest explorations 
of unknown portions of the environment. 
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What Many RL Algorithms Do 

Experience!
Build!

Value!
Function!

Policy!• Continual, online 
• Simultaneous acting and learning 

Select !
V →V*	


Q →Q*	



π →π*	



Predictions!

. . ."

Actions !
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RL Interaction of Policy and Value 

Policy!
Value!

Function!

Policy evaluation!

policy!
improvement!

value !
learning!

“greedification”!

π	



V*,  Q*	



V, Q	



π*	
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Passive Learning in Known Environment 

Given: 
  A Markov model of the environment. 

  P(s,s',a) – probability of transition from s  to s'  given a 
  R(s,s',a) – expected reward on transition s  to s'  given a 

  States, with probabilistic actions. 
  Terminal states have rewards/utilities. 

Problem: 
  Learn expected utility of each state V(s) or U(s). 
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Example 

S 

• Non-deterministic actions (transition model unknown to agent) 
• Every state besides terminal states has reward -0.04 
• Percepts tell you: [State, Reward, Terminal?] 
• 3 Sequences of (state,action,reward) 

+1 
-1 0.8 

0.1 0.1 

1 

2 

3 

4 

1 

2 3 



V. Lesser; CS683, F10 

Learning Utility Functions 

 A training sequence is an instance of world 
transitions from an initial state to a terminal 
state. 

 The additive utility assumption: utility of a 
sequence is the sum of the rewards over the 
states of the sequence. 

 Under this assumption, the utility of a state 
is the expected reward-to-go of that state. 
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Direct Utility Estimation* 
  Developed in the late 1950's in the area of adaptive 

control theory. 
  Just keep a running average of rewards for each state. 
  For each training sequence, compute the reward-to-go 

for each state in the sequence and update the utilities. 

V. Lesser; CS683, F10 

Direct Utility Estimation, cont  

  i = st 
  Reward-to-go (i) = sum of rt+1+ rt+2 + …. rterminal 
   U(i)ni+1 = (U(i)ni + reward-to-go (i))/ (ni+1) 
   ni = ni+1 

t	


. . .! s	

t	

 a	



r	

t +1	

 s	

t +1	


t +1	

a	



r	

t +2	

 s	

t +2	


t +2	

a	



r	

t +3	

 s	

t +3	

 . . .!
t +3	

a	



T T T TT

T T T T T

V. Lesser; CS683, F10 

Problems with Direct Utility Estimation 

Converges very slowly because it ignores 
the relationship between neighboring states: 

New 
(3,2) 
U=? 

Old 
(3,3) 

U=0.96 

? 

+1 

p=.1 
p=.8 

p=.1 

In updating (3,2) not using any 
knowledge about current value of (3,3) 
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Adaptive Dynamic Programming 

Utilities of neighboring states are mutually constrained, 
Bellman equation: 

 U(s) = R(s) + γ Σs’P(s,a,s’) U(s’) 
Estimate P(s,a,s’) from the frequency with which s’ 

is reached when executing a in s. 
Can use value iteration: initialize utilities based on the 

rewards and update all values based on the above 
equation. 

Sometime intractable given a big state space. 
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Adaptive/Stochastic Dynamic 
Programming 

T T T TT

T T T T T
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TD: Temporal Difference Learning 
  One of the first RL algorithms 
  Learn the value of a fixed policy (no optimization; just 

prediction) 
  Approximate the constraint equations without solving 

them for all states. 

  Modify U(s) whenever we see a transition from s to s’ 
using the following rule: 

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s)) 

Problem:  We don’t know this. 
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Temporal Difference Learning cont. 

 U(s) = U(s) + α (R(s) + γ U(s’) - U(s)) 

  The modification moves U(s) closer to satisfying 
the original equation. 

  α: learning rate, can be a function α (N(s)) that 
decreases as N(s) increases [number of times 
visting state s]. 

  Rewrite to get 
U(s)= (1-α) U(s) + α ( R(s) + γ U(s’) ) 

TD Error 



V. Lesser; CS683, F10 

Temporal Difference (TD) 
Learning 

T T T TT

T T T T T

Sutton, 1988	



After 
each 
action 
update 
the 
state 
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An Extended Example: Tic-Tac-Toe 
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} x’s move	



} x’s move	



} o’s move	



} x’s move	



} o’s move	
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Assume an imperfect opponent:	


       —he/she sometimes makes mistakes	
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An RL Approach to Tic-Tac-Toe 

1. Make a table with one entry per state:	



2. Now play lots of games.	


	

To pick our moves, 	



            look ahead one step:	



State         V(s) – estimated probability of winning	


.5          ?	


.5          ?	

. . .	



. . .	



. . .	


. . .	



1        win	



0        loss	



. . .	


. . .	



0       draw	



x	



x	

x	

x	


o	

o	



o	

o	

o	

x	

 x	



o	

o	


o	

 o	

x	

x	

 x	

x	

o	



current state	



various possible	


next states	

*	



Just pick the next state with the highest	


estimated prob. of winning — the largest V(s);	


a greedy move.	



But 10% of the time pick a move at random;	


an exploratory move.	
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RL Learning Rule for Tic-Tac-Toe 

..

•

our move {
opponent's move {

our move {

starting position

•

•

•

a

b

c*

d

ee*

opponent's move {

c

•f

•g*g

opponent's move {
our move {

.

•

“Exploratory” move	



x o 

x 

x o 

x 

Take action O  

Non-deterministic 
outcome based on 
opponent’s move 
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More Complex TD Backups 

trial! primitive TD backups!

1–λ	



λ(1–λ)!

λ  (1–λ)!2!

λ	

3!

Σ = 1!

e.g.  TD ( λ )!

Incrementally 
computes a weighted 
mixture of these 
backups as states are 
visited!

λ = 0           Simple TD!
λ = 1           Simple Monte Carlo!

Blending the 
backups 
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Simple Monte Carlo 

T T T TT

T T T T T
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Space of Backups 
Dynamic 	



programming	



Temporal-	


difference	


learning	



Monte Carlo	



Exhaustive	


search	



λ	



full	


backups	



sample	


backups	



shallow	


backups	

 deep	



backups	



Backup 
from all 
terminal 
states  
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Limitation of Learning V* 
Deterministic Case 

Choose best action from any state s using learned V*"
  π*(s)=argamax [r(s, a) + γV*(δ(s, a))]; deterministic case 

A problem:"
• This works well if agent knows δ: S x A→S and r: S x 

A→ℜ 
• But when it doesnʼt, it canʼt choose actions this way"
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Q Learning for Deterministic Case 

Define new function very similar to V* 
 Q (s,a)≡r(s,a) +γV*(δ(s,a)) 

If agent learns Q, it can choose optimal action 
even without knowing r or δ! 

 π*(s)=argamax[r(s,a)+ γV*(δ(s,a))] 

  π*(s)=argamaxQ (s,a) 

Q is the evaluation function agent will learn!
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Training Rule to Learn Q for 
Deterministic Operators 

Note Q and V* closely related:"
 V*(s)=max Q (s,aʹ′) 

                     a’ 

Which allows us to write Q recursively as  
 Q(st,at)=r (st,at)+ γV*(δ(st,at))) 
   = r (st,at)+ γmax Q (st+1,aʹ′) 

                                                      a’ 

Let       denote learnerʼs current approximation to Q. Consider 
training rule"

Where sʹ′ is the state resulting from applying action a in state 
s, and aʹ′ is the set of actions from sʹ′  

aʹ′ 
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Q Learning for Deterministic Worlds  
 For each s,a initialize table entry 
 Observe current state s 
 Do forever: 

  Select an action a and execute it   
  Receive immediate reward r 
  Observe the new state sʹ′ 
  Update the table entry for               as follows: 

  s←sʹ′ 
aʹ′ 
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Updating 
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Nondeterministic Q learning Case 

What if reward and next state are non-
deterministic?"

We redefine V,Q by taking expected values"

 Vπ(s)≡E[rt+γrt+1+γrt+2+…] 

         ≡E[     γirt+i ] 

 Q(s,a)≡E[r(s, a) + γV*(δ(s,a))] 
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Nondeterministic Case, cont’d 
Q learning generalizes to non-deterministic worlds "
Alter training rule to 

Where"

Can still prove convergence of       to Q"
[Watkins and Dayan, 1992] 

aʹ′ 
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Q-learning cont. 
  Is it better to learn a model and a utility function, 

or to learn an action-value function with no 
model? 

 This is a fundamental question in AI where much 
of the research is based on a knowledge-based 
approach. 

 Some researchers claim that the availability of 
model free methods such as Q-learning means 
that the KB approach is unnecessary (or too 
complex). 
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What actions to choose? 

  Problem: choosing actions with the highest expected 
utility ignores their contribution to learning. 

  Tradeoff between immediate good and long-term 
good (exploration vs. exploitation). 

  A random-walk agent learns faster but never uses that 
knowledge. 

  A greedy agent learns very slowly and acts based on 
current, inaccurate knowledge. 
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What’s the best exploration policy? 

 Give some weight to actions that were not 
tried very often in a given state, but counter 
that by knowledge that utility may be low. 
  Key idea is that in early stages of learning, 

estimations can be unrealistic low  

 Similar to simulated annealing in that in the 
early phase of search more willing to 
explore 
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Practical issues - large State Set 

  Too many states:  Can define Q as a weighted sum 
of state features (factored state), or a neural net.  
Adjust the previous equations to update weights 
rather than updating Q.  
  Can have different neural networks for each action 
  This approach used very successfully in TD-Gammon 

(neural network). 

  Continuous state-space:  Can discretize it.   
Pole-balancing example (1968). 
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Reinforcement Learning Differs From 
Supervised Learning 

 no presentation of input/output pairs 
 agent chooses actions, receives 

reinforcement 
 worlds are usually non-deterministic 
 on-line performance is important 
 system must explore the space of actions 
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End of Course 

    GOOD LUCK!! 


