
Lecture 24: Learning 3 

Victor R. Lesser 
CMPSCI 683 

Fall 2010 



V. Lesser; CS683, F10 

Today’s Lecture 

 Continuation of Neural Networks 



V. Lesser; CS683, F10 

Artificial Neural Networks 
 Compose of nodes/units connected by links 
 Each link has a numeric weight associated with it 
 Processing units compute weighted sum of their inputs, and then 
apply a threshold function. 

  Linear function combines inputs= sum (wj,I• aj …. wk,I• ak) 
   interacting constraints 

  Non-linear function g transforms combined input to activation value 

output 
links 

aj 

: 
ak 

input 
links 

g Σ	


Input    Activation  Output 
function   function   

Wj,i 

ai 



V. Lesser; CS683, F10 

Neural Network Learning 

 Robust approach to approximating real-
valued, discrete-value and vector-valued 
target functions 

 Learning the Weights (and Connectivity) 
  wj,i =  0 implies no connectivity (no 

constraints) among nodes aj  and ai 



V. Lesser; CS683, F10 

Perceptron 
  Single-layered feed-forward networks 
studied in the late 1950’s. 

Σ	

x2 

x1 
x0=1 

xn 

wn 

w2 

w1 

: 
O 

w0 



V. Lesser; CS683, F10 

Decision Surface of a Perceptron 

 Represents some useful functions 
  linearly separable 

 But some functions not representable 
  XOR 

x2 + x2 

x1 

+ 

+ 
+ 

_ 
_ 

_ 

x1 + 

+ 

_ 

_ 

Hyperplane in the input space 



V. Lesser; CS683, F10 

Problem Encoding in Neural Net 

 Local encoding 
  Each attributed single input value 
  Pick appropriate number of  distinct values to 

correspond to distinct symbolic attributed value 

 Distributed encoding 
  One input value for each value of the attribute 
  Value is one or zero whether value has that attribute 

  X between 0 and 3; 4 distinct inputs y1,y2,y3,y4;  
  X=3; y1=0,y2=0,y3=0,y4=1  



V. Lesser; CS683, F10 

Perceptron Learning 
Perceptron learning rule: 

wi← wi + α (t-o) xi;  
reduce difference between observed (o) and  

predicted value (t) in small increments to reflect 
contribution of particular input value to correctness of 

output value 
where: 
   t  is the target value of training example 
   o  is the perceptron output 
   α  is a small constant (e.g., .1) called the learning rate 
   xi   is either 1 or -1, the i th input value 

t=1, o=-1, 2 



V. Lesser; CS683, F10 

Perceptron Convergence Theorem 
The perceptron learning rule will converge to a set of 
weights that correctly represents the examples, as long 

as the examples represent a “linearly separable” 
function and α is sufficiently small. 

Why does it work? 
 Perceptron is doing gradient-descent in weight 
space that has no local minima. 
   Optimization in the weight space based on sum of squared 

errors 
all training examples 



V. Lesser; CS683, F10 

Learning the majority function of 11 inputs 



V. Lesser; CS683, F10 

Learning the WillWait predicate 



V. Lesser; CS683, F10 

Gradient Descent and the Delta Rule 

  Delta Rule: wi← wi + αΣD (td-od)xid 
  D is set of entire training examples 
  If training examples are not linearly separable, Delta rule 

converges towards best-fit approximation to target concept 
  Use gradient descent search to search hypothesis space of 

possible weight vectors to find the weights that best fit the 
training example 
  Arbitrary initial weight vector 

  At each step, weight vector is altered in the direction that 
produces the steep descent along error surface until global 
minimum error is reached  
  least mean square error over all training examples 



V. Lesser; CS683, F10 

Error Surface of Different Hypotheses 

2
5"

For a linear unit with two 
weights, the hypothesis space 
H is the w0, w1 plane. The 
vertical axis indicates the 
error of the corresponding 
weight vector hypothesis, 
relative to a fixed set of 
training examples. The arrow 
shows the at 
one particular point, 
indicating the direction in the 
w0, w1 plane producing 
steepest descent along the 
error surface. 



V. Lesser; CS683, F10 

Delta Rule continued 

  Convergence guaranteed for perceptron since error 
surface contains only a single global minimum and 
learning rate sufficiently small  
  large number of iterations 

  Larger learning rate 
  Possibly overshoot minimum in the error surface 
  Can use larger learning rate if gradually reduce value of 

learning rate over time 
  Similar to simulated annealing 



V. Lesser; CS683, F10 

Stochastic Approximation to Gradient Descent 

  Incremental gradient descent by updating weights per 
example 
  wi← wi + α(t-o’)xi  ; based on error per individual trial 

rather than sum 

  Looks similar to perceptron rule 
  o’ not thresholded perceptron (no g) output rather linear 

combinations of inputs w . x 

  Reduces cost of each update cycle 
  Do not update based on all training example on each cycle 

  Needs smaller learning rate 
  More update cycles than gradient descent      



V. Lesser; CS683, F10 

Multilayer networks 

 Problem with Perceptrons is coverage: many 
functions cannot be represented as a network. 
  sum threshold function 

 But with one “hidden layer” and the sigmoid 
threshold function, can represent any continuous 
function. 
  Choosing the right number of hidden units is still not 

well understood 
 With two hidden layers, can represent any 

discontinuous function. 



V. Lesser; CS683, F10 

Learning Multi-Layered Feed-Forward 
Networks 

 Back-Propagation Learning 
 How to assess the blame for an error and 

divide it among the contributing weights 
at the same and different layers 

 Gradient descent over network weight 
vector 



V. Lesser; CS683, F10 

Hidden layers 
Ik 

Oi=g(Σ wj,iaj) 

aj=g(Σ wk,jIk) 

j k i 

How to modify 
wk,j since it 
contributes to 
multiple Oi’s ?? 



V. Lesser; CS683, F10 

2-Layer Stochastic Back-Propagation 

  Provides a way of dividing the calculation of 
gradient among the units, so that change in each 
weight can be calculated by the unit to which the 
weight is attached, using only local information 

  Based on minimizing 
; i multiple output units; 
 over multiple examples d  E(W)= ½ *SumdSumi(ti,d-oi,d)2 



V. Lesser; CS683, F10 

Back-Propagation, cont. 
  First level of Back propagation to hidden layer 

  Second level of Back propagation to input layer* 

  Summing the error terms for each output unit influence by 
wkj thru aj, weighting each by the wji;; the degree to which 
hidden unit is “responsible for” error in output 

Gradient of error (Oi) with respect to Wji Oi aj Wji 

Gradient Affect 
of aj on oi’s  

aj lk Wkj 

O1 
On 

Wji 



V. Lesser; CS683, F10 

Steps in Back-Propagation 

 Compute the delta values for the output 
units using the observed error 

 Starting with output layer, repeat the 
following for each layer in the network 
  Propagate delta values back to previous layer 
  Update the weights between the two layers 



V. Lesser; CS683, F10 

Back-Propagation, cont. 



V. Lesser; CS683, F10 

Back-Propagation Algorithm 



V. Lesser; CS683, F10 

Learning the WillWait predicate 



V. Lesser; CS683, F10 

Hypothesis Space 
 N-dimensional Euclidean Space of 

network weights 
 Continuous 

  Contrast with discrete space of decision tree  
 Error Measure is differentiable with 

respect to continous parameters 
  Results in well-defined error gradient that 

provides a useful structure for organizing the 
search for the best hypothesis 



V. Lesser; CS683, F10 

Network Implicitly Generalizes 

 Smooth Interpolation between data points 
  Smoothly varying decision regions 

 Tend to label points in between positive 
examples as positive examples if no negative 
examples 



V. Lesser; CS683, F10 

Overfitting and Stopping Criteria 
  Backprop is susceptible to overfitting 

  After initial learning weights are being tuned to fit 
idiosyncrasies of training examples and noise 

  Overly complex decision surfaces constructed 
  Issue of how many hidden nodes 

  Weight Decay -- decrease weight by some small 
factor during each iteration thru data 
  Keep weight values small to bias learning against complex 

decision surfaces 
  Exploit Validation Set 

  Keep track of error in validation set during search 
  Use weight setting that minimizes error 



34 

overfitting 

local minimum 
Can’t use 
validation 
set to 
define 
stopping 
criterion 

V. Lesser; CS683, F10 



V. Lesser; CS683, F10 

Convergence 
 Error Surface can have multiple local minimum 

  Guaranteed to converge only to local minimum 

 Momentum model 
  Weight update partially dependent on the n-1 

iteration  
  Δwji(n)=η δj xji + αΔ wji (n-1) 
  Helps not to get stuck in local minimum 
  Gradually increasing the step size of the search in 

regions where the gradient is unchanging 



V. Lesser; CS683, F10 

Learned Hidden Layer Representation: 
New Features 

Figure 4.7 Learned Hidden Layer Representation.  This 8 x 3 x 8 network was trained to learn the 
identity function, using the eight training examples shown.  After 5000 training epochs, the three hidden 
unit values encode the eight district inputs using the encoding shown on the right.  Notice if the encoded 
values are rounded zero or one, the result is the standard binary encoding for eight distinct values.   



V. Lesser; CS683, F10 

Back-propagation 
 Gradient descent over network weight vector 
 Easily generalizes to any directed graph 
 Will find a local, not necessarily global error 

minimum 
 Minimizes error over training examples — will 

it generalize well to subsequent examples? 
 Training is slow — can take thousands of 

iterations. 
 Using network after training is very fast 



V. Lesser; CS683, F10 

Applicability of Neural Networks 

  Instances are represented by many attribute-value 
pairs 

  The target function output may be discrete-valued, 
real-valued, or a vector of several real- or discrete-
valued attributes 

  The training examples may contain errors 
  Long training times are acceptable 
  Fast evaluation of the learned target function may 

be required 
  The ability of humans to understand the learned 

target function is not important 



V. Lesser; CS683, F10 

Next Lecture 

 Reinforcement Learning 


