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Today’s Lecture 

 Continuation of Decision Tree 
Algorithms for Classification 
 How do we construct them 

 Neural Networks 
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• How  can we 
construct such 
a tree? 

• What are 
criterion for 
“good” 
decision 
trees*? 
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Constructing the Decision Tree 
Construct a root node that includes all the examples, then for 

each node: 
1.   if there are both positive and negative examples, choose the 

best attribute to split them. 
2.   if all the examples are pos (neg) answer yes (no). 
3.  if there are no examples for a case (no observed examples) 

then choose a default based on the majority classification at 
the parent. – suppose you split on attribute raining 
•  No case of raining -yes when hungry- yes, alternate - yes 
•  No (x2,x10) Yes (x1,x4,x12) when hungry- yes, alternate - yes 

4.  if there are no attributes left but we have both pos and neg 
examples, this means that the selected features are not 
sufficient for classification or that there is error in the 
examples. (can use majority vote.) 
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Decision Tree Algorithm* 

 Basic idea is to build the tree greedily. 
  Decisions once made are not revised 
  No search -- WHY? 

 Choose “most significant attribute” to be the root.  
Then split the dataset based on values of attribute, 
and repeat process on new terminal leaves. 
  One step look ahead 

 Define “significance” using information theory 
(based on information gain or “entropy”). 

Finding the smallest decision tree is an intractable problem 
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Choosing the Best Attribute Based on 
Information Theory* 

  Expected amount of information provided by an attribute 
  Similar to the concept of value of perfect information? 

  Amount of information content in a set of examples 
  vi possible answers, P(vi) probability of occurring  

  Example 12 cases, 6 pos, 6 neg; information 1 bit 

  Info content after splitting, v values of Attribute A 
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Choosing the Best Attribute Based on 
Information Theory cont.* 

Prior to splitting - after splitting 

Choose attribute with largest gain which is Patrons 
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Splitting the Examples 

+: X1, X3, X4, X6, X8, X12 
-: X2, X5, X7, X9, X10, X11 

Patrons? 

+:  
-: X7, X11 

+: X1, X3, X6, X8 
-: 

+: X4, X12 
-: X2, X5, X9, X10 

None Some Full 

  A perfect attribute divides the examples into sets that 
are all positive and negative 
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Splitting Examples cont. 

French 

+: X1, X3, X4, X6, X8, X12 
-: X2, X5, X7, X9, X10, X11 

Type? 

+: X1 
-: X5 

+: X4, X8 
-: X2, X11 

+: X3, X12 
-: X7, X9 

Italian Burger 

+: X6 
-: X10 

Thai 
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Splitting Examples cont. 

+: X4, X12 
-: X2, X10 

+:  
-: X5, X9 

+: X1, X3, X4, X6, X8, X12 
-: X2, X5, X7, X9, X10, X11 

Patrons? 

+:  
-: X7, X11 

+: X1, X3, X6, X8 
-: 

+: X4, X12 
-: X2, X5, X9, X10 

None Some Full 

No 

N 
Hungry? 

Y 

Yes 
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Example (Quinlan ‘83) 

HEIGHT!
SHORT !TALL!

  EYES!
BROWN !BLUE!

+ 
– 

+ 
– 

+ 
– 

  HAIR!
BLOND    DARK    RED !

Partition on hair has most information gain 

Class  Height  Hair  Eyes 
  -  Short  Blond  Brown 
  -  Tall  Dark  Brown 
 +  Tall  Blond  Blue 
 -  Tall  Dark  Blue 
 -  Short  Dark  Blue 
 +  Tall  Red  Blue 
 -  Tall  Blond  Brown 
 +  Short  Blond  Blue 
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Example (Quinlan ‘83) cont. 

Class Height Eyes  Class Height Eyes  Class Height Eyes 
  -       Short   Brown    -        Tall    Brown   -        Tall      Blue 
  +      Tall      Blue      -        Tall     Blue                                        
  -       Tall      Brown           -        Short  Blue                                        
  +      Short   Blue 

EYES ARE BETTER ATTRIBUTE (Gain of 1 vs. 0)!

HAIR!
BLOND ! DARK ! RED !

HEIGHT!
SHORT !TALL!

  EYES!
BROWN !BLUE!

1.0(Blond)- 1.0(Height)! 1.0(Blond)- 0.0(Eyes)!

Dividing Blond by 
attribute Height or 
Eyes 

+ 
- 

+ 
- 
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Decision tree learning 

; recur 
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Hypothesis Space Search 
in Decision Tree 

 Complete space of finite discrete-valued 
functions relative to available attributes 

 Maintains only a single current hypothesis 
(decision tree) 

 Performs no backtracking in its search 
 Uses all training examples at each step in the 

search to make statistically-based decisions 
regarding how to refine current hypothesis 
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Inductive Bias in Decision Tree 
Construction 

 Selects in favor of shorter trees over longer 
ones 

 Selects trees that place the attributes with 
highest information gain closest to the root 
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Full Learned Decision Tree 

  How “correct” is this? 
  Can we even judge this 

idea? 
  Not all attributes used 

  How does the number of 
examples seen relate to the 
likelihood of “correctness”? 
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Performance Measurement 
 How do we measure how close our hypothesis 

h(x) is to f(x)? 

 Try h(x) on a test set (data not trained on) 

 Learning curve: Measure % correct predictions 
on the test set as a function of the size of the 
training set. 
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Assessing Performance of Learning Algorithm 

  Randomly divide available examples into test and training set 

A learning curve for the decision tree algorithm on 100 randomly generated 
examples in the restaurant domain. The graph summarizes 20 trials. 

Could this 
be lower 
than 1 with 
test and 
training 
equal ? 

Is that 
necessarily 
bad? 
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Overfitting in Decision Trees 

A hypothesis overfits the training examples if there is 
some other hypothesis that fits the training examples 
less well, yet actually performs better over the entire 
distribution of instances 

 Causes of overfitting 
  Lack of Examples — small number of examples 

associated with leaf 
  Coincidental regularities cause the construction of more 

detail tree than warranted 
  Noisy Data — construct tree to explain noisy data 
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Avoiding Overfitting 

 Stop growing the tree earlier, before it reaches 
the point where it perfectly classifies the training 
data 

 Post-prune the tree 
  Use non-training instances (test data) to evaluate 

based on a statistical test to estimate whether pruning 
a particular node is likely to produce an improvement 
beyond the training set 
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Broadening the applicability - Missing Data 

  1: Add new attribute value - “unknown”  
  2: Estimate missing value based on other examples for 

which this attribute has a known value 
  Assign value that is most common among training examples at 

parent node – why parent node? 

  3: Instantiated example with all possible values of 
missing attribute but assign weights to each instance 
based on likelihood of missing value being a particular 
value given the distribution of examples in the parent 
node 
  Modify decision tree algorithm to take into account weighting 
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Broadening the applicability -  
Multi-valued Attributes  

 Handling multi-valued (large) attributes and 
classification 
  Need another measure of information gain  
  Information gain measure gives inappropriate 

indication of attributed usefulness because of 
likelihood of singleton values 

  Normalized Gain rather than Absolute Gain 
  Gain ratio--Gain over intrinsic information content 
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Broadening the Applicability - Continuous-
Valued attributes 

 Continuous-valued attributes 

  Discretize  
  Example $, $$, $$$ 

  Preprocess to find out which ranges give the most 
useful information for classification purposes 
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Preprocessing for Continuous-
Valued Attributes 

 Sort instances based on value of an attribute 
(e.g. temperature) 

  Identify adjacent examples that differ in their 
target classification 

 Generate a set of candidate thresholds midway 
between corresponding examples 

 Use information gain to decide appropriate 
threshold 



Incremental Decision Tree 
Construction 

 Assumed all case available at start of 
construction of decision tree 
  Exploits knowledge of all cases to make decisions 

what attributes to use next 
 What happens if we are doing the learning on-

line 
  Reconstruction decision tree after you acquire a 

certain number of new cases  vs. 
  Approach tree construction as incremental process 

where as you acquire new information you exploit it 
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Neural Networks 

  Representing functions using networks of 
simple arithmetic computing elements 

  Learning such representations from examples 
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Biological Inspiration Learning: 
The Brain 

  Approximately 1011 neurons, 104 synapses (connections) 
per neuron. 

  Neuron “fires” when its inputs exceed a threshold. 
  Inputs are weighted and can have excitory or inhibitory 

effect. 
  Individual firing is slow (≈ .001 second) but bandwidth 

is very high (≈ 1014 bits/sec). 
  The brain performs many tasks much faster than a 

computer (Scene recognition time ≈ .1 second). 
  Turning point coming in 2015? – Computational power of 

computers equal that of Brain– Called the Singularity!  
  Learning and graceful degradation. 
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What is Connectionist Computation? 

  Faithful to coarse neural constraints — not neural models 
  Large numbers of simple (neuron-like) processing units 

interconnected through weighted links 
  They compute by transmitting symbolically coded 

messages 
  Inhibitory and excitory signals 

  “program”in the structure of the interconnections 
  “massive parallelism” and no centralized control 

Computational architectures and cognitive models that "
are neurally-inspired:"
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Some Properties of Connectionist Systems 

  Ability to bring large numbers of interacting soft 
constraints to bear on problem solving  

  Noise resistance, error tolerance, graceful degradation 
  Ability to do complex multi-layer recognition with a 

large number of inputs/outputs (quickly) 
  Learning with generalization 
  Biological plausibility 
  Potential for speed of processing through fine-grained 

parallelism 
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Applications of neural networks 

  Automobile automatic guidance systems 
  Credit application evaluation, mortgage screening, real 

estate appraisal 
  Object recognition (faces, characters) 
  Speech recognition and voice synthesis 
  Market forecasting, automatic bond trading 
  Robot control, process control 
  Breast cancer cell analysis 
  Oil and gas exploration 
  Image and data compression 
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ALVINN drives 70 mph on highways 
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Artificial Neural Networks 
 Compose of nodes/units connected by links 
 Each link has a numeric weight associated with it 
 Processing units compute weighted sum of their inputs, and then 
apply a threshold function. 

  Linear function combines inputs= sum (wj,I• aj …. wk,I• ak); interacting constraints 
  Non-linear function g transforms combined input to activation value 

output 
links 

aj 

: 
ak 

input 
links 

g Σ	


Input    Activation  Output 
function   function   

Wj,i 

ai 
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Sample G’s - activation functions 

+1 
ai 

ini 

+1 
ai 

ini 

+1 
ai 

ini 

-1 

(a) Step function      (b) Sign function      (c) Sigmoid function 

Can make each of these functions a threshold such that it outputs a 1 
when the input is greater than threshold, can also do through dummy link 

0 

V. Lesser; CS683, F10 

Representation of Boolean 
Functions 

t=-0.5 t=1.5 t=0.5 

W=1 

W=1 

W=1 

W=1 

W=-1 

XOR requires multi-layer network 

1 

x1 

x2 

Σ 

-1.5 

1.0 

1.0 

1 

x1 

x2 

Σ 

-0.5 

1.0 

1.0 

-9.0 

step0 

step0 

Figure 19.6 Units with a step function for the activation function can act as logic gates, given 
appropriate thresholds and weights. 

and or neg 
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Neural Network Learning 

 Robust approach to approximating real-
valued, discrete-value and vector-valued 
target functions 

 Learning the Weights (and Connectivity) 
  wj,i =  0 implies no connectivity (no 

constraints) among nodes aj  and ai 
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Network Structure 

 Feed-Forward Networks: unidirectional 
links 
  No cycles (DAG) 
  No internal state other than weights 
  Layered feed-forward 

  Each unit is linked only to units in the next layer 
  Synchronized movement of information from layer 

to layer 

  Relatively understood 
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Multi-Layer Network: Hidden Units 

A very simple, two-layer, feed-forward network with two inputs, two hidden 
nodes, and one output node. 

H3 

H4 

O5 

I1 

I2 

w13 
w35 

w45 

w14 

w24 

w23 
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Network Structure cont. 

  Recurrent Network: arbitrary links 

  Activation is fed back to units that caused it 

  Internal state stored in activation levels 

  Notice no state held in feed-forward network 

  Can be unstable, oscillate etc. 

  Can represent more complex functions 

Next Lecture 

 Continuation of  Neural Networks 
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