Lecture 23: Learning 2

Victor R. Lesser CMPSCI 683 Fall 2010

Today's Lecture

- •Continuation of Decision Tree Algorithms for Classification
 - How do we construct them
- Neural Networks

Choosing the Best Attribute Based on Information Theory*

- Expected amount of information provided by an attribute • *Similar to the concept of value of perfect information?*
- Amount of information content in a set of examples
 - v_i possible answers, $P(v_i)$ probability of occurring $I(P(v_1),...,P(v_n)) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$
 - Example 12 cases, 6 pos, 6 neg; information 1 bit

$$I\left(\frac{p}{p+n},\frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

• Info content after splitting, v values of Attribute A remainder(A) = $\sum_{i=1}^{v} \frac{p_i + n_i}{p + n_i} \left(\frac{p_i}{p_j + n_i}, \frac{n_i}{p_j + n_i} \right)$

Hypothesis Space Search in Decision Tree

- Complete space of finite discrete-valued functions relative to available attributes
- Maintains only a single current hypothesis (decision tree)
- Performs no backtracking in its search
- Uses all training examples at each step in the search to make statistically-based decisions regarding how to refine current hypothesis

Inductive Bias in Decision Tree Construction

- Selects in favor of shorter trees over longer ones
- Selects trees that place the attributes with highest information gain closest to the root

h(x) is to f(x)?

- Try *h*(*x*) on a *test set* (*data not trained on*)
- Learning curve: Measure % correct predictions on the test set as a function of the size of the training set.

Overfitting in Decision Trees

- A hypothesis *overfits* the training examples if there is some other hypothesis that fits the *training examples less well, yet actually performs better over the entire distribution of instances*
- Causes of overfitting
 - Lack of Examples small number of examples associated with leaf
 - Coincidental regularities cause the construction of more detail tree than warranted
 - Noisy Data construct tree to explain noisy data

Avoiding Overfitting

- Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data
- Post-prune the tree
 - Use non-training instances (test data) to evaluate based on a statistical test to estimate whether pruning a particular node is likely to produce an improvement beyond the training set

Broadening the applicability - Missing Data

- 1: Add new attribute value "unknown"
- 2: Estimate missing value based on other examples for which this attribute has a known value
 - Assign value that is most common among training examples at parent node why parent node?
- 3: Instantiated example with all possible values of missing attribute but assign weights to each instance based on likelihood of missing value being a particular value given the distribution of examples in the parent node
 - Modify decision tree algorithm to take into account weighting

Broadening the applicability -Multi-valued Attributes

- Handling multi-valued (large) attributes and classification
 - Need another measure of information gain
 - Information gain measure gives inappropriate indication of attributed usefulness because of likelihood of singleton values
 - Normalized Gain rather than Absolute Gain
 Gain ratio--Gain over intrinsic information content

Broadening the Applicability - Continuous-Valued attributes

- Continuous-valued attributes
 - DiscretizeExample \$, \$\$, \$\$\$
 - Preprocess to find out which ranges give the most useful information for classification purposes

Preprocessing for Continuous-Valued Attributes

- Sort instances based on value of an attribute (e.g. temperature)
- Identify adjacent examples that differ in their target classification
- Generate a set of candidate thresholds midway between corresponding examples
- Use information gain to decide appropriate threshold

Incremental Decision Tree Construction

- Assumed all case available at start of construction of decision tree
 - Exploits knowledge of all cases to make decisions what attributes to use next
- What happens if we are doing the learning online
 - Reconstruction decision tree after you acquire a certain number of new cases vs.
 - Approach tree construction as incremental process where as you acquire new information you exploit it

Neural Networks

- Representing functions using networks of simple arithmetic computing elements
- Learning such representations from examples

Biological Inspiration Learning: The Brain

- Approximately 10¹¹ neurons, 10⁴ synapses (connections) per neuron.
- Neuron "fires" when its inputs exceed a threshold.
- Inputs are weighted and can have excitory or inhibitory effect.
- Individual firing is slow (\approx .001 second) but bandwidth is very high (\approx 10¹⁴ bits/sec).
- The brain performs many tasks much faster than a computer (Scene recognition time ≈ .1 second).
 Turning point coming in 2015? Computational power of
 - computers equal that of Brain– Called the Singularity!
- Learning and graceful degradation.

What is Connectionist Computation?

Computational architectures and cognitive models that are neurally-inspired:

- Faithful to coarse neural constraints not neural models
- Large numbers of simple (neuron-like) processing units interconnected through weighted links
- They compute by transmitting symbolically coded messages
- Inhibitory and excitory signals
- "program" in the structure of the interconnections
- "massive parallelism" and no centralized control

Some Properties of Connectionist Systems

• Ability to bring large numbers of interacting soft constraints to bear on problem solving

_

- Noise resistance, error tolerance, graceful degradation
- Ability to do complex multi-layer recognition with a large number of inputs/outputs (quickly)
- Learning with generalization
- Biological plausibility
- Potential for speed of processing through fine-grained parallelism

Applications of neural networks

- Automobile automatic guidance systems
- Credit application evaluation, mortgage screening, real estate appraisal
- Object recognition (faces, characters)
- Speech recognition and voice synthesis
- Market forecasting, automatic bond trading
- Robot control, process control
- Breast cancer cell analysis
- Oil and gas exploration
- Image and data compression

Neural Network Learning

- Robust approach to approximating realvalued, discrete-value and vector-valued target functions
- Learning the Weights (and Connectivity)
 w = 0 implies no connectivity (no
 - w_{j,i} = 0 implies no connectivity (no constraints) among nodes a_j and a_i

Network Structure

- Feed-Forward Networks: unidirectional links
 - No cycles (DAG)
 - No internal state other than weights
 - Layered feed-forward
 - Each unit is linked only to units in the next layer
 - Synchronized movement of information from layer
 - to layer
 - Relatively understood

Network Structure cont.

- Recurrent Network: arbitrary links
 - Activation is fed back to units that caused it
 - Internal state stored in activation levels
 - Notice no state held in feed-forward network
 - Can be unstable, oscillate etc.
 - Can represent more complex functions

Next Lecture

Continuation of Neural Networks