
Lecture 23: Learning 2

Victor R. Lesser
CMPSCI 683

Fall 2010

V. Lesser; CS683, F10

Today’s Lecture

 Continuation of Decision Tree
Algorithms for Classification
 How do we construct them

 Neural Networks

V. Lesser; CS683, F10

No

No

No

No Yes

Yes

Yes

Yes

• How can we
construct such
a tree?

• What are
criterion for
“good”
decision
trees*?

V. Lesser; CS683, F10

Constructing the Decision Tree
Construct a root node that includes all the examples, then for

each node:
1. if there are both positive and negative examples, choose the

best attribute to split them.
2. if all the examples are pos (neg) answer yes (no).
3.  if there are no examples for a case (no observed examples)

then choose a default based on the majority classification at
the parent. – suppose you split on attribute raining
•  No case of raining -yes when hungry- yes, alternate - yes
•  No (x2,x10) Yes (x1,x4,x12) when hungry- yes, alternate - yes

4. if there are no attributes left but we have both pos and neg
examples, this means that the selected features are not
sufficient for classification or that there is error in the
examples. (can use majority vote.)

V. Lesser; CS683, F10

Decision Tree Algorithm*

 Basic idea is to build the tree greedily.
  Decisions once made are not revised
  No search -- WHY?

 Choose “most significant attribute” to be the root.
Then split the dataset based on values of attribute,
and repeat process on new terminal leaves.
  One step look ahead

 Define “significance” using information theory
(based on information gain or “entropy”).

Finding the smallest decision tree is an intractable problem
V. Lesser; CS683, F10

Choosing the Best Attribute Based on
Information Theory*

  Expected amount of information provided by an attribute
  Similar to the concept of value of perfect information?

  Amount of information content in a set of examples
  vi possible answers, P(vi) probability of occurring

  Example 12 cases, 6 pos, 6 neg; information 1 bit

  Info content after splitting, v values of Attribute A

V. Lesser; CS683, F10

Choosing the Best Attribute Based on
Information Theory cont.*

Prior to splitting - after splitting

Choose attribute with largest gain which is Patrons

V. Lesser; CS683, F10

Splitting the Examples

+: X1, X3, X4, X6, X8, X12
-: X2, X5, X7, X9, X10, X11

Patrons?

+:
-: X7, X11

+: X1, X3, X6, X8
-:

+: X4, X12
-: X2, X5, X9, X10

None Some Full

  A perfect attribute divides the examples into sets that
are all positive and negative

V. Lesser; CS683, F10

Splitting Examples cont.

French

+: X1, X3, X4, X6, X8, X12
-: X2, X5, X7, X9, X10, X11

Type?

+: X1
-: X5

+: X4, X8
-: X2, X11

+: X3, X12
-: X7, X9

Italian Burger

+: X6
-: X10

Thai

V. Lesser; CS683, F10

Splitting Examples cont.

+: X4, X12
-: X2, X10

+:
-: X5, X9

+: X1, X3, X4, X6, X8, X12
-: X2, X5, X7, X9, X10, X11

Patrons?

+:
-: X7, X11

+: X1, X3, X6, X8
-:

+: X4, X12
-: X2, X5, X9, X10

None Some Full

No

N
Hungry?

Y

Yes

V. Lesser; CS683, F10

Example (Quinlan ‘83)

HEIGHT!
SHORT !TALL!

 EYES!
BROWN !BLUE!

+
–

+
–

+
–

 HAIR!
BLOND DARK RED !

Partition on hair has most information gain

Class Height Hair Eyes
 - Short Blond Brown
 - Tall Dark Brown
 + Tall Blond Blue
 - Tall Dark Blue
 - Short Dark Blue
 + Tall Red Blue
 - Tall Blond Brown
 + Short Blond Blue

V. Lesser; CS683, F10

Example (Quinlan ‘83) cont.

Class Height Eyes Class Height Eyes Class Height Eyes
 - Short Brown - Tall Brown - Tall Blue
 + Tall Blue - Tall Blue
 - Tall Brown - Short Blue
 + Short Blue

EYES ARE BETTER ATTRIBUTE (Gain of 1 vs. 0)!

HAIR!
BLOND ! DARK ! RED !

HEIGHT!
SHORT !TALL!

 EYES!
BROWN !BLUE!

1.0(Blond)- 1.0(Height)! 1.0(Blond)- 0.0(Eyes)!

Dividing Blond by
attribute Height or
Eyes

+
-

+
-

V. Lesser; CS683, F10

Decision tree learning

; recur

V. Lesser; CS683, F10

Hypothesis Space Search
in Decision Tree

 Complete space of finite discrete-valued
functions relative to available attributes

 Maintains only a single current hypothesis
(decision tree)

 Performs no backtracking in its search
 Uses all training examples at each step in the

search to make statistically-based decisions
regarding how to refine current hypothesis

V. Lesser; CS683, F10

Inductive Bias in Decision Tree
Construction

 Selects in favor of shorter trees over longer
ones

 Selects trees that place the attributes with
highest information gain closest to the root

V. Lesser; CS683, F10

Full Learned Decision Tree

  How “correct” is this?
  Can we even judge this

idea?
  Not all attributes used

  How does the number of
examples seen relate to the
likelihood of “correctness”?

V. Lesser; CS683, F10

Performance Measurement
 How do we measure how close our hypothesis

h(x) is to f(x)?

 Try h(x) on a test set (data not trained on)

 Learning curve: Measure % correct predictions
on the test set as a function of the size of the
training set.

V. Lesser; CS683, F10

Assessing Performance of Learning Algorithm

  Randomly divide available examples into test and training set

A learning curve for the decision tree algorithm on 100 randomly generated
examples in the restaurant domain. The graph summarizes 20 trials.

Could this
be lower
than 1 with
test and
training
equal ?

Is that
necessarily
bad?

V. Lesser; CS683, F10

Overfitting in Decision Trees

A hypothesis overfits the training examples if there is
some other hypothesis that fits the training examples
less well, yet actually performs better over the entire
distribution of instances

 Causes of overfitting
  Lack of Examples — small number of examples

associated with leaf
  Coincidental regularities cause the construction of more

detail tree than warranted
  Noisy Data — construct tree to explain noisy data

V. Lesser; CS683, F10

Avoiding Overfitting

 Stop growing the tree earlier, before it reaches
the point where it perfectly classifies the training
data

 Post-prune the tree
  Use non-training instances (test data) to evaluate

based on a statistical test to estimate whether pruning
a particular node is likely to produce an improvement
beyond the training set

V. Lesser; CS683, F10

Broadening the applicability - Missing Data

  1: Add new attribute value - “unknown”
  2: Estimate missing value based on other examples for

which this attribute has a known value
  Assign value that is most common among training examples at

parent node – why parent node?

  3: Instantiated example with all possible values of
missing attribute but assign weights to each instance
based on likelihood of missing value being a particular
value given the distribution of examples in the parent
node
  Modify decision tree algorithm to take into account weighting

V. Lesser; CS683, F10

Broadening the applicability -
Multi-valued Attributes

 Handling multi-valued (large) attributes and
classification
  Need another measure of information gain
  Information gain measure gives inappropriate

indication of attributed usefulness because of
likelihood of singleton values

  Normalized Gain rather than Absolute Gain
  Gain ratio--Gain over intrinsic information content

V. Lesser; CS683, F10

Broadening the Applicability - Continuous-
Valued attributes

 Continuous-valued attributes

  Discretize
  Example $, $$, $$$

  Preprocess to find out which ranges give the most
useful information for classification purposes

V. Lesser; CS683, F10

Preprocessing for Continuous-
Valued Attributes

 Sort instances based on value of an attribute
(e.g. temperature)

  Identify adjacent examples that differ in their
target classification

 Generate a set of candidate thresholds midway
between corresponding examples

 Use information gain to decide appropriate
threshold

Incremental Decision Tree
Construction

 Assumed all case available at start of
construction of decision tree
  Exploits knowledge of all cases to make decisions

what attributes to use next
 What happens if we are doing the learning on-

line
  Reconstruction decision tree after you acquire a

certain number of new cases vs.
  Approach tree construction as incremental process

where as you acquire new information you exploit it
V. Lesser; CS683, F10 V. Lesser; CS683, F10

Neural Networks

  Representing functions using networks of
simple arithmetic computing elements

  Learning such representations from examples

V. Lesser; CS683, F10

Biological Inspiration Learning:
The Brain

  Approximately 1011 neurons, 104 synapses (connections)
per neuron.

  Neuron “fires” when its inputs exceed a threshold.
  Inputs are weighted and can have excitory or inhibitory

effect.
  Individual firing is slow (≈ .001 second) but bandwidth

is very high (≈ 1014 bits/sec).
  The brain performs many tasks much faster than a

computer (Scene recognition time ≈ .1 second).
  Turning point coming in 2015? – Computational power of

computers equal that of Brain– Called the Singularity!
  Learning and graceful degradation.

V. Lesser; CS683, F10

What is Connectionist Computation?

  Faithful to coarse neural constraints — not neural models
  Large numbers of simple (neuron-like) processing units

interconnected through weighted links
  They compute by transmitting symbolically coded

messages
  Inhibitory and excitory signals

  “program”in the structure of the interconnections
  “massive parallelism” and no centralized control

Computational architectures and cognitive models that "
are neurally-inspired:"

V. Lesser; CS683, F10

Some Properties of Connectionist Systems

  Ability to bring large numbers of interacting soft
constraints to bear on problem solving

  Noise resistance, error tolerance, graceful degradation
  Ability to do complex multi-layer recognition with a

large number of inputs/outputs (quickly)
  Learning with generalization
  Biological plausibility
  Potential for speed of processing through fine-grained

parallelism

V. Lesser; CS683, F10

Applications of neural networks

  Automobile automatic guidance systems
  Credit application evaluation, mortgage screening, real

estate appraisal
  Object recognition (faces, characters)
  Speech recognition and voice synthesis
  Market forecasting, automatic bond trading
  Robot control, process control
  Breast cancer cell analysis
  Oil and gas exploration
  Image and data compression

V. Lesser; CS683, F10

ALVINN drives 70 mph on highways

V. Lesser; CS683, F10

Artificial Neural Networks
 Compose of nodes/units connected by links
 Each link has a numeric weight associated with it
 Processing units compute weighted sum of their inputs, and then
apply a threshold function.

  Linear function combines inputs= sum (wj,I• aj …. wk,I• ak); interacting constraints
  Non-linear function g transforms combined input to activation value

output
links

aj

:
ak

input
links

g Σ	

Input Activation Output
function function

Wj,i

ai

V. Lesser; CS683, F10

Sample G’s - activation functions

+1
ai

ini

+1
ai

ini

+1
ai

ini

-1

(a) Step function (b) Sign function (c) Sigmoid function

Can make each of these functions a threshold such that it outputs a 1
when the input is greater than threshold, can also do through dummy link

0

V. Lesser; CS683, F10

Representation of Boolean
Functions

t=-0.5 t=1.5 t=0.5

W=1

W=1

W=1

W=1

W=-1

XOR requires multi-layer network

1

x1

x2

Σ

-1.5

1.0

1.0

1

x1

x2

Σ

-0.5

1.0

1.0

-9.0

step0

step0

Figure 19.6 Units with a step function for the activation function can act as logic gates, given
appropriate thresholds and weights.

and or neg

V. Lesser; CS683, F10

Neural Network Learning

 Robust approach to approximating real-
valued, discrete-value and vector-valued
target functions

 Learning the Weights (and Connectivity)
  wj,i = 0 implies no connectivity (no

constraints) among nodes aj and ai

V. Lesser; CS683, F10

Network Structure

 Feed-Forward Networks: unidirectional
links
  No cycles (DAG)
  No internal state other than weights
  Layered feed-forward

  Each unit is linked only to units in the next layer
  Synchronized movement of information from layer

to layer

  Relatively understood

V. Lesser; CS683, F10

Multi-Layer Network: Hidden Units

A very simple, two-layer, feed-forward network with two inputs, two hidden
nodes, and one output node.

H3

H4

O5

I1

I2

w13
w35

w45

w14

w24

w23

V. Lesser; CS683, F10

Network Structure cont.

  Recurrent Network: arbitrary links

  Activation is fed back to units that caused it

  Internal state stored in activation levels

  Notice no state held in feed-forward network

  Can be unstable, oscillate etc.

  Can represent more complex functions

Next Lecture

 Continuation of Neural Networks

V. Lesser; CS683, F10

