Lecture 21: Uncertainty 6

Victor R. Lesser CMPSCI 683 Fall 2010

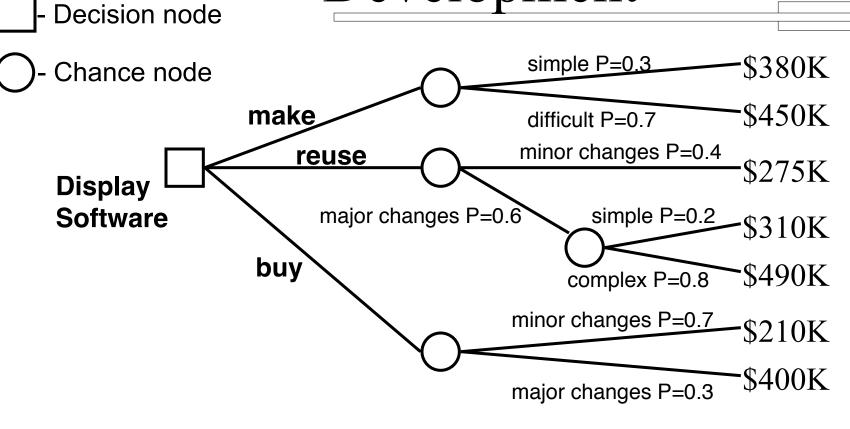
Today's Lecture

Decision Trees and Networks

Decision Trees

- A decision tree is an explicit representation of all the possible scenarios from a given state.
- Each path corresponds to decisions made by the agent, actions taken, possible observations, state changes, and a final outcome node.
- Similar to a game played against "nature"

Example 1: Software Development



- EU(make) = 0.3 * \$380K + 0.7 * \$450K = \$429K
- EU(reuse) = 0.4 * \$275K + 0.6 * [0.2 * \$310K + 0.8 * \$490K] = \$382.4K
- EU(buy) = 0.7 * \$210K + 0.3 * \$400K = \$267K; best choice

Example 2: Buying a car

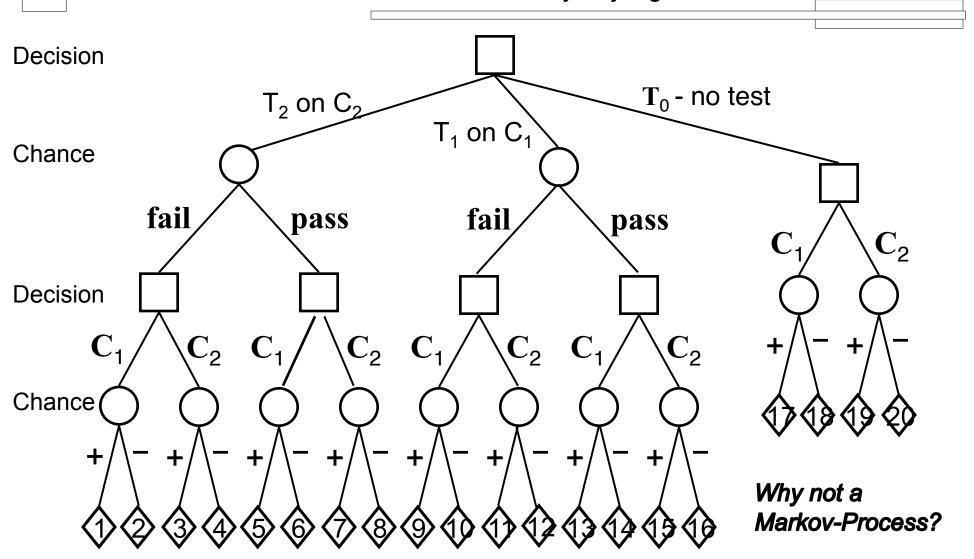
- There are two candidate cars C_1 and C_2 , each can be of good quality (+) or bad quality (-).
- There are two possible tests, T_1 on C_1 (costs \$50) and T_2 on C_2 (costs \$20).
- ◆ C₁ costs \$1500 (\$500 below market value) but if it is of bad quality repair cost is \$700.
 - 500 gain or 200 lost
- C₂ costs \$1150 (\$250 below market value) but if it is of bad quality repair cost is \$150.
 - **250** gain or 100 gain
- Buyer must buy one of the cars and can perform at most one test. -- What other information?

Example 2: Buying a car cont.

- The chances that the cars are of good quality are 0.70 for C_1 and 0.80 for C_2 .
- Test T_1 on C_1 will confirm good quality with probability 0.80 if C_1 =good and will confirm bad quality with probability 0.65 if C_1 = bad.
 - Imperfect information
- ◆ Test T₂ on C₂ will confirm good quality with probability 0.75 and will confirm bad quality with probability 0.70.

Example 2: Buying a car cont.

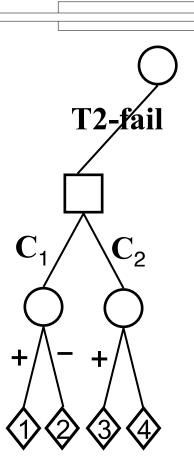
What are the decisions and how can you judge their outcomes?



Evaluating decision trees

- 1. Traverse the tree in a depth-first manner:
 - (a) Assign a value to each *leaf node* based on the outcome, then back-up outcome values
 - (b) Calculate the average utility at each *chance* node based on the likelihood of each outcome
 - (c) Calculate the maximum utility at each *decision node*, while marking the maximum branch
- 2. Trace back the marked branches, from the root node down to find the desired optimal (conditional) plan.

Finding the value of (perfect or imperfect) information in a decision tree.



Additional Information

Buyer knows car c₁ is good quality

$$70\% P(c_1=good) = .7$$

Buyer knows car c₂ is good quality

$$80\% P(c_2=good) = .8$$

Test t_1 check quality of car c_1

$$P(t_1=pass|c_1=good) = .8$$

$$P(t_1=pass|c_1=bad) = .35$$

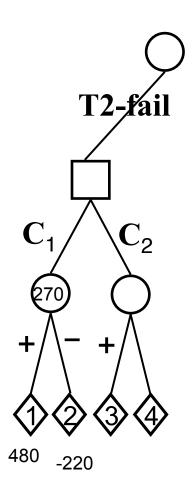
Test of t_2 check quality of car c_2

$$P(t_2=pass|c_2=good) = .75$$

$$P(t_2=pass|c_2=bad) = .3$$

Details of Example

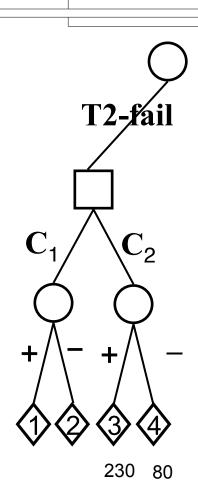
- Case 1
 - P(c1=good|t2=fail)=p(c1=good)=.7; test t2 does not say anything about c1
 - Utility = $2000(value\ of\ car)$ - $1500(cost\ of\ car)$ - $20(cost\ of\ test)$ =480
- Case 2
 - P(c1=bad|t2=fail) = p(c1=bad) = 1 p(c1=good) = .3
 - Utility = 2000-1500-700(cost of repair)-20 = -220
- Expected Utility of Chance Node of 1&2
 - .7 x480 + .3x-220 = 270



Details of Example cont

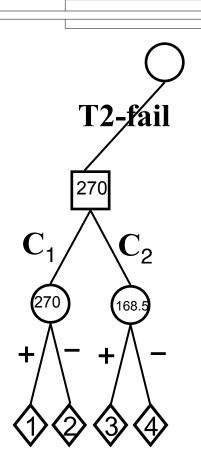
▼ Case 3

- \blacksquare P(c2=good|t2=fail) =
- P(t2=fail|c2=good) P(c2=good)/P(t2=fail) =
- (.25x.8=.2)/P(t2=fail) =
- Normalize .2/.34 (=.2+.14), .14/.34 (over c2=bad case 4)
- **.** .59
- Utility = 1400-1150-20= 230
- Case 4
 - P(c2=bad/t2=fail) =
 - P(t2=fail/c2=bad) P(c2=bad)/P(t2=fail) =
 - \bullet (.7x.2=.14) / P(t2=fail) =
 - **.**41
 - Utility = 1400-1150-20-150= 80
- Expected Utility of Chance Node of 3&4
 - \bullet .59 x230 +.41x80 =168.5

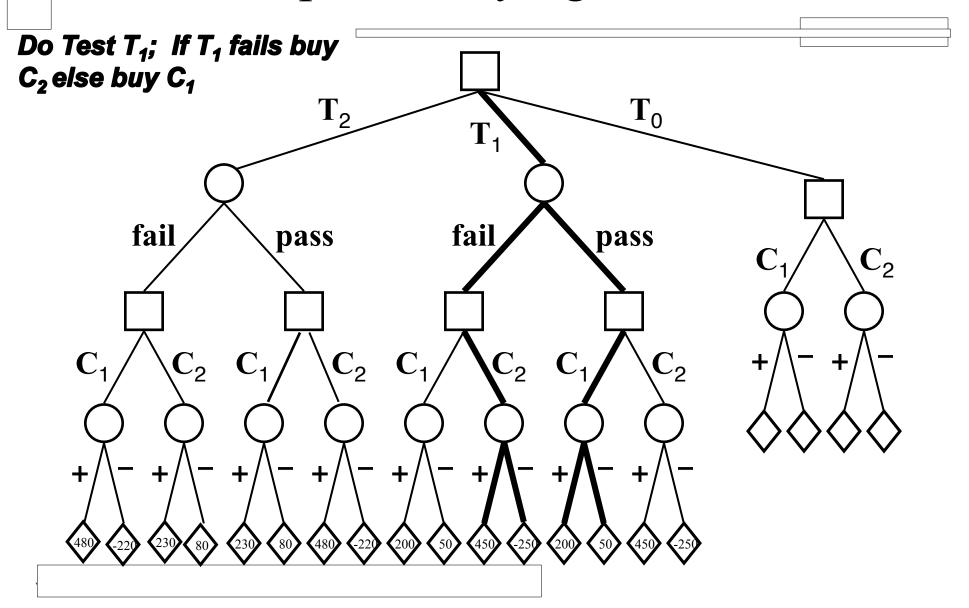


Details of Example cont

- What is the decision if
 - Decide to do test t2
 - It comes out false
 - Do you buy c1 or c2?
 - E(c1|test t2=fail) = Expected Utility of Chance Node of 1&2 = 270
 - E(c2|test t2=fail) = Expected Utility of Chance Node of 3&4 = 168.5



Example 2: Buying a car cont.



Decision Networks/Influence Diagrams

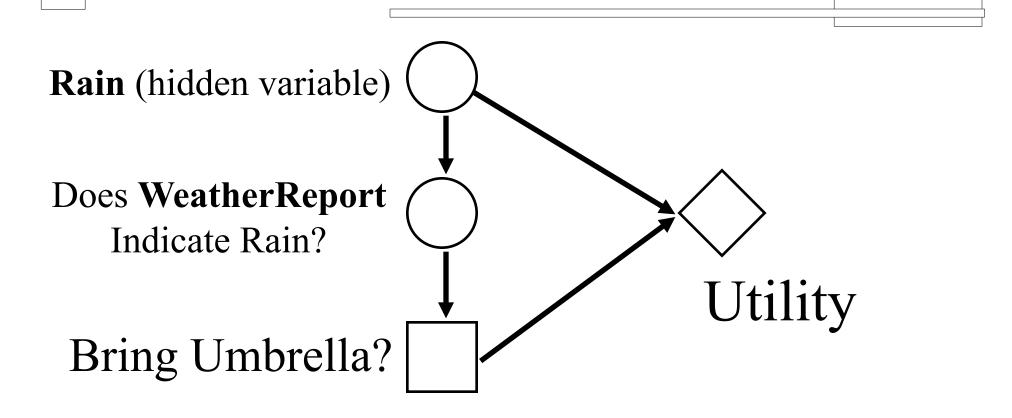
• Decision networks or influence diagrams are an extension of belief networks that allow for reasoning about actions and utility.

◆ The network represents information about the agent's current state, its possible actions, the possible outcome of those actions, and their utility.

Nodes in a Decision Network

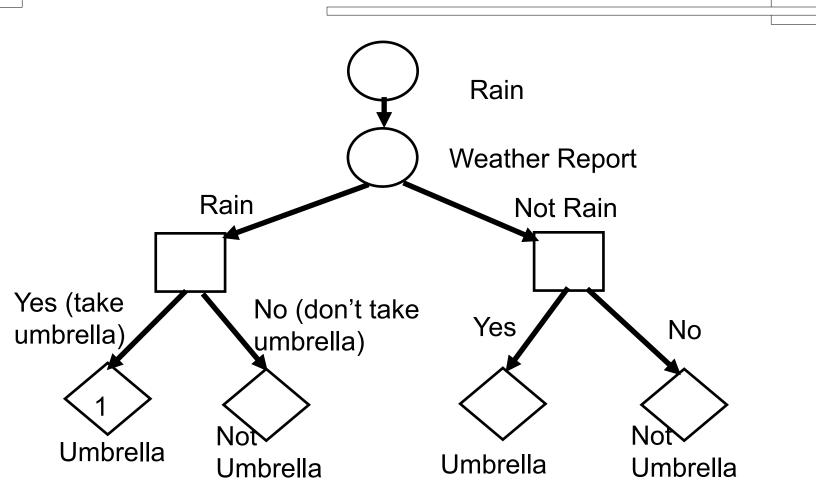
- Chance nodes (ovals) have CPTs (conditional probability tables) that depend on the states of the parent nodes (chance or decision).
- Decision nodes (squares) represent options available to the decision maker.
- Utility nodes (**Diamonds**) or value nodes represent the overall utility *based on the states of the parent nodes*.

Example 3: Taking an Umbrella



Parameters: P(Rain), P(WeatherReport|Rain), P(WeatherReport|¬Rain), Utility(Rain,Umbrella)

"Taking an Umbrella" as Decision Tree

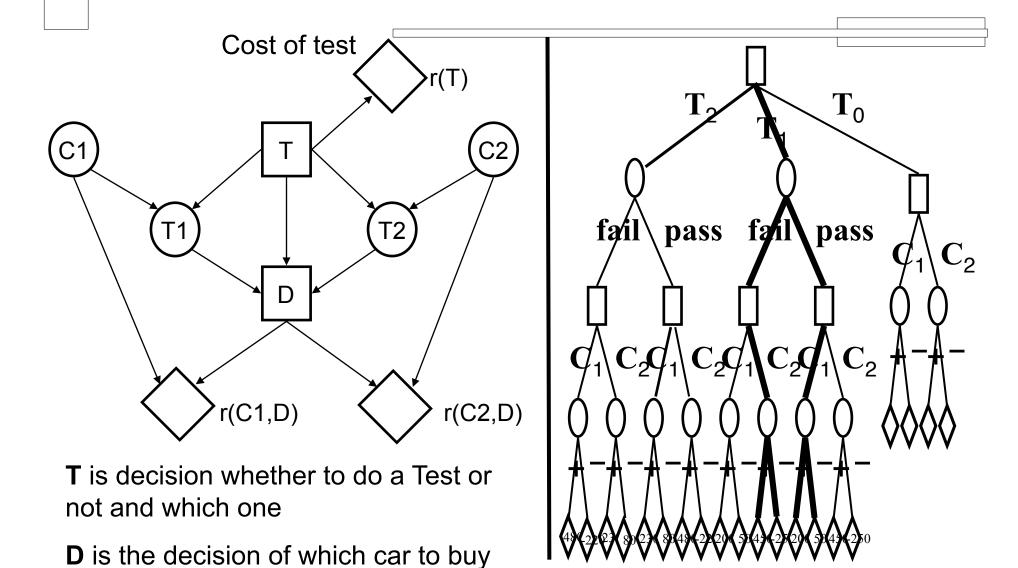


Case 1:U(Umbrella|W=Rain)*P(W=Rain|WR=Rain) +U(Umbrella|W=not Rain)*P(W= not Rain|WR=Rain)

Knowledge in an Influence Diagram

- Causal knowledge about how events influence each other in the domain
- Knowledge about what action sequences are feasible in any given set of circumstances
 - Lays out possible temporal ordering of decisions
- Normative (Utility) knowledge about how desirable the consequences are

Example 2 as an Influence Diagram



Decision Trees vs Influence Diagrams

- Decision trees are not convenient for representing domain knowledge
 - Requires tremendous amount of storage
 - Multiple decisions nodes -- expands tree
 - Duplication of knowledge along different paths
 - Joint Probability Distribution vs Bayes Net
- Generate decision tree on the fly from more economical forms of knowledge
 - Depth-first expansion of tree for computing optimal decision

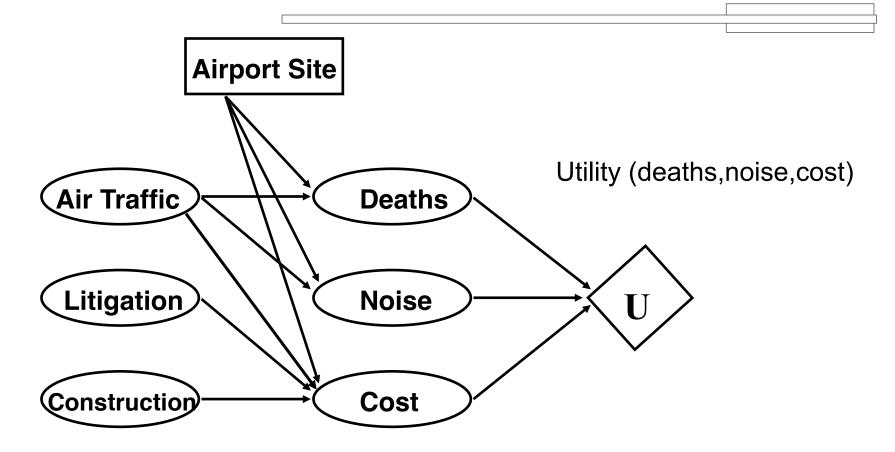
Topology of decision networks

- 1. The directed graph has no cycles.
- 2. The utility nodes have no children.
- 3. There is a directed path that contains all of the decision nodes.
- 4. A CPT is attached to each chance node specifying P(A|parents(A)).
- 5. A real valued function over parents(U) is attached to each utility node.

Semantics

- Links into decision nodes are called "information links," and they indicate that the state of the parent is known prior to the decision.
- The directed path that goes through all the decision nodes defines a temporal sequence of decisions.
- It also partitions the chance variables into sets: I_0 is the vars observed before any decision is made, I_1 is the vars observed after the first and before the second decision, etc. I_n is the set of unobserved vars.
- ◆ The "no-forgetting" assumption is that the decision maker remembers all past observations and decisions. -- Non Markov Assumption

Example 4: Airport Siting Problem



• P(cost=high|airportsite=Darien, airtraffic=low, litigation=high, construction=high)

Evaluating Decision Networks

- 1. Set the evidence variables for the current state.
- 2. For each possible value of the decision node(s):
 - (a) Set the decision node to that value.
 - (b) Calculate the posterior probabilities for the parent nodes of the utility node.
 - (c) Calculate the expected utility for the action.
- 3. Return the action/decision with the highest utility.

Similar to Cutset Conditioning of a Multiply Connected Belief Network

Imperfect Information Example 5: Mildew

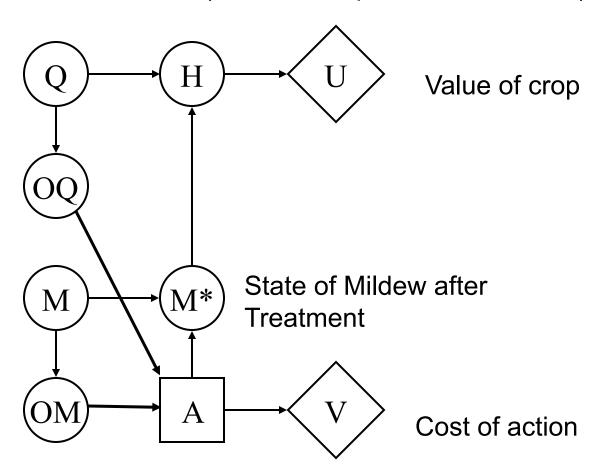
Two months before the harvest of a wheat field, the farmer observes the state Q of the crop, and he observes whether it has been attacked by mildew, M. If there is an attack, he will decide on a treatment with fungicides.

There are five variables:

- Q: fair (f), not too bad (n), average (a), good (g)
- M: no (no), little (l), moderate (m), severe (s)
- H: state of Q plus M: rotten (r),bad (b), poor (p)
 - State after action taken whether to treatment or not
- OQ: observation of Q; imperfect information on Q
- OM: observation of M; imperfect information on M

Mildew decision model

Maximize ('value of crop" - "cost of action")



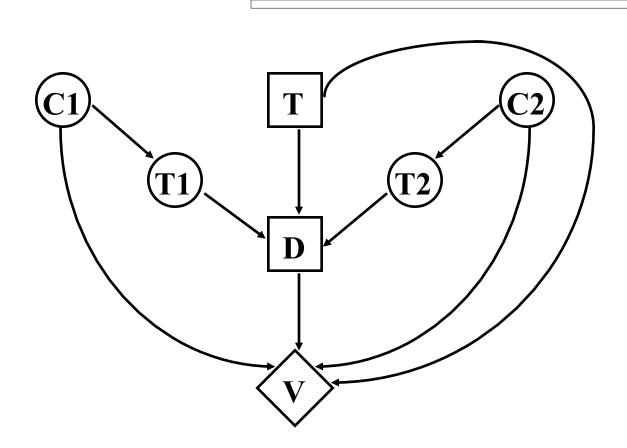
One action in general

- A single decision node *D* may have links to some chance nodes.
- A set of utility functions $U_1, ..., U_n$ over domains $X_1, ..., X_n$.
- Goal: find the decision d that maximizes $EU(D=d \mid e)$:

$$EU(D \mid e) = \sum_{X_1} U_1(X_1)P(X_1 \mid D, e) + ... + \sum_{X_n} U_n(X_n)P(X_n \mid D, e)$$

• How to solve such problems using a standard Bayesian network package?

Multiple decisions -- Policy Generation



Need a more complex evaluation technique since generating a policy (sequence of decisions)

The Domain of Decision Nodes:

Options At Decision Node D

```
• T: t_0, t_1, t_2
• D:
  If T = t_0 then { Buy 1, Buy 2 }
  If T = t_1 then {
       Buy 1 if t_1=pass else Buy 2,
       Buy 2 if t_1=pass else Buy 1,
       always Buy 1,
       always Buy 2 }
  If T = t_2 then {
       Buy 1 if t_2=pass else Buy 2,
       Buy 2 if t_2=pass else Buy 1,
       always Buy 1, always Buy 2 }
```

The Next Set of Slides were not covered in detail in class and thus will not be tested on the final exam

Evaluation by Graph Reduction

Basic idea: (Ross Shachter) Perform a sequence of transformations to the diagram that preserve the optimal policy and its value, until only the UTILITY node remains.

Similar to ideas of transformation into polytree

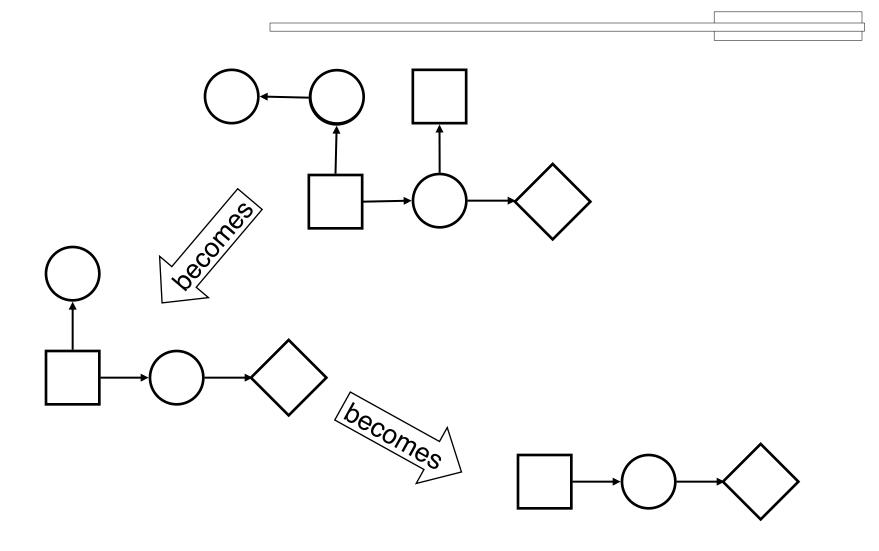
Four basic value/utility-preserving reductions:

- Barren node removal
- Chance node removal (marginalization)
- Decision node removal (maximization)
- Arc reversal (Bayes' rule)

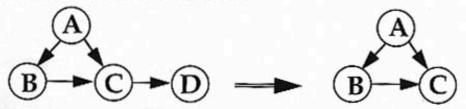
Barren node reduction

- Let X_j represent a subset of nodes of interest in an influence diagram.
- Let X_k represent a subset of evidence nodes.
- We are interested in $P(f(X_j) | X_k)$
- A node is "barren" if it has no successors and it is not a member of X_i or X_k .
- The elimination of barren nodes does not affect the value of $P(f(X_i) | X_k)$

Barren Node Removal



1 Barren Node Removal



 $\sum_{D} P(A,B,C,D) = P(A)P(B \mid A)P(C \mid B,A) \underbrace{\sum_{D} P(D \mid C)}_{=1}$

1 Removal into Value Node (by Expectation)

 $V(D) = \sum_X V(X,D)^* P(X)$

Notation for Shachter's algorithm

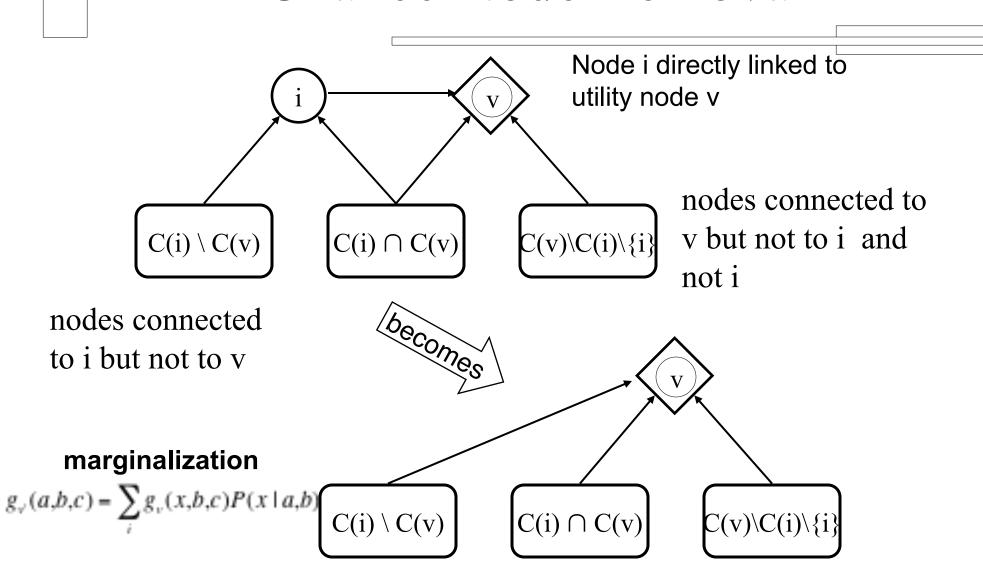
For chance nodes:

- ◆ S(i) = direct successors = children
- ◆ C(i) = conditional predecessors = parents

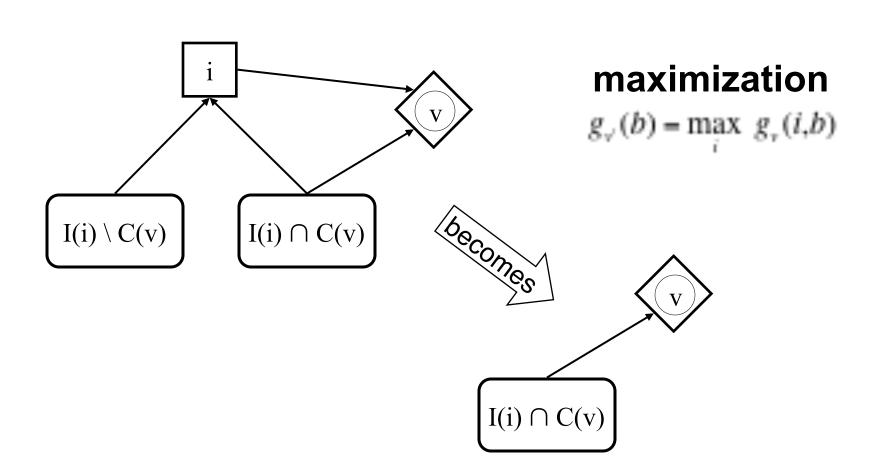
For decision nodes

◆ I(i) = information predecessors = parents

Chance Node Removal



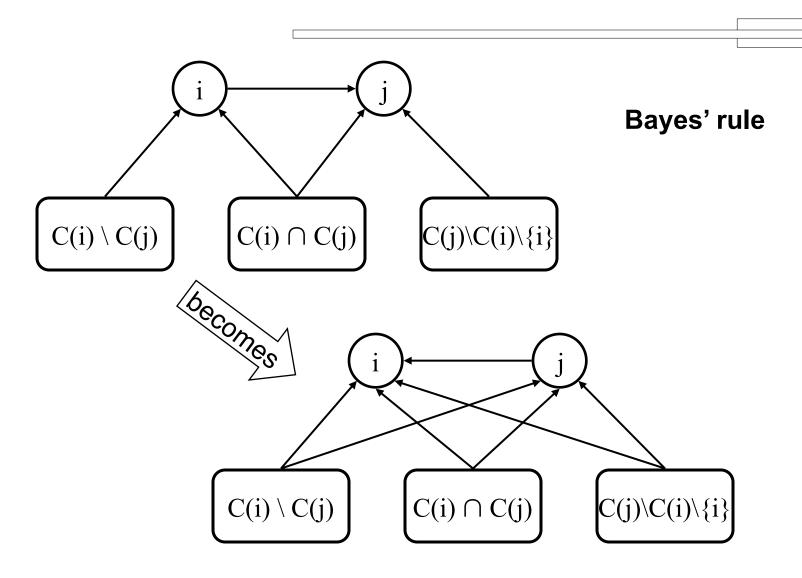
Decision node removal



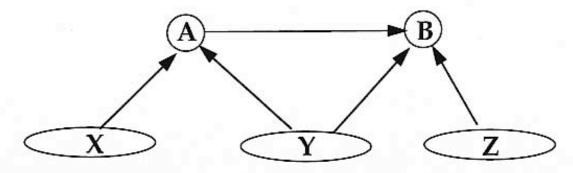
Arc reversal

• Given an influence diagram containing an arc from i to j, but no other directed path from i to j, it is possible to to transform the diagram to one with an arc from j to i. (If j is deterministic, then it becomes probabilistic.)

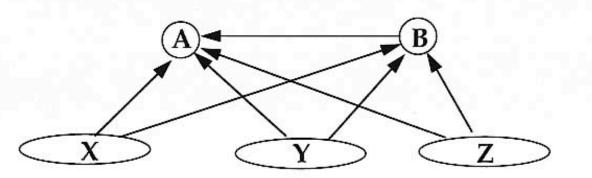
Arc Reversal



Arc Reversal



 $X = Pa(A) \setminus Pa(b)$ Y = Pa(A)vPa(b) $X = Pa(B) \setminus Pa(A)$

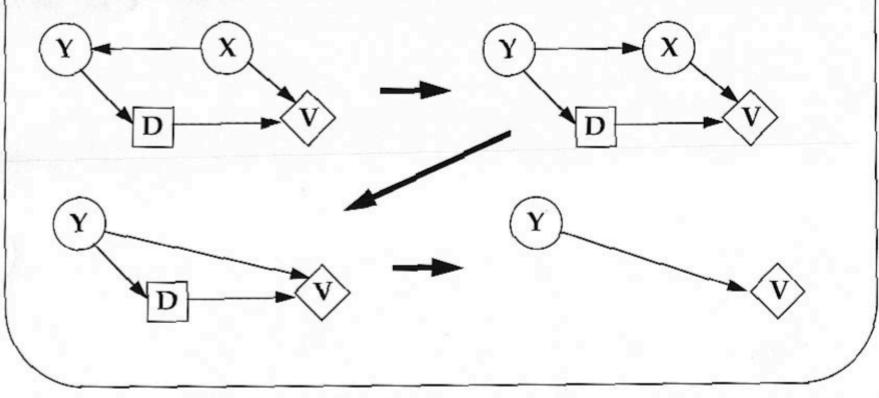


 $P(A \mid B, X, Y, Z) = P(B \mid A, Y, Z) * P(A \mid X, Y) / P(B \mid X, Y, Z)$

Pa=Parents Pa(A)\Pa(B) parents of A who are not parents of B

Decision Example

- 1 Reverse X-Y Arc
- 1 Removal of X by Expectation into V
- 1 Removal of D by maximization into V
 - 1 gives you the optimal policy for D given Y



Next Lecture

Introduction to Different Forms of Learning