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Today’s Lecture 

 Decision Trees and Networks 
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Decision Trees 
 A decision tree is an explicit 

representation of all the possible scenarios 
from a given state. 

 Each path corresponds to decisions made 
by the agent, actions taken, possible 
observations, state changes, and a final 
outcome node. 

 Similar to a game played against “nature” 
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Example 1: Software 
Development 

  EU(make) = 0.3 * $380K + 0.7 * $450K = $429K 
  EU(reuse) = 0.4 * $275K + 0.6 * [0.2 * $310K + 0.8 * $490K] = $382.4K  
  EU(buy) = 0.7 * $210K + 0.3 * $400K = $267K ; best choice  

$380K 
$450K 

$275K 

$310K 
$490K 

$210K 
$400K 

make!
reuse 

simple P=0.3 

difficult P=0.7 

buy 
minor changes P=0.7 

major changes P=0.3 

major changes P=0.6 

minor changes P=0.4 

simple P=0.2 

complex P=0.8 

Display!
Software 

- Decision node 

- Chance node 
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Example 2: Buying a car 
  There are two candidate cars C1 and C2, each can be of good 

quality (+) or bad quality (-). 
  There are two possible tests, T1 on C1 (costs $50) and T2 on C2 

(costs $20). 
  C1 costs $1500 ($500 below market value) but if it is of bad 

quality repair cost is $700. 
  500 gain or 200 lost 

  C2 costs $1150 ($250 below market value) but if it is of bad 
quality repair cost is $150. 
  250 gain or 100 gain 

  Buyer must buy one of the cars and can perform at most one 
test. -- What other information? 
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Example 2: Buying a car cont. 

  The chances that the cars are of good quality are 
0.70 for C1 and 0.80 for C2. 

  Test T1 on C1 will confirm good quality with 
probability 0.80 if C1=good and will confirm 
bad quality with probability 0.65 if C1= bad. 
  Imperfect information 

  Test T2 on C2 will confirm good quality with 
probability 0.75 and will confirm bad quality 
with probability 0.70. 
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Example 2: Buying a car cont. 

T2 on C2 
T1 on C1 

T0 - no test 

pass fail pass fail 

C1 C2 C1 C2 C1 C2 C1 C2 

C1 C2 

+	

 -	

 +	

 -	

 +	

 -	

 +	

 -	

 +	

 -	

 +	

 -	

 +	

 -	



+	

 -	

 +	

 -	



+	

 -	



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

17 18 19 20 

Decision 

Decision 

Chance 

Chance 

What are the decisions and how can you judge their outcomes?  
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Evaluating decision trees 
1.  Traverse the tree in a depth-first manner: 

(a) Assign a value to each leaf node based on the 
outcome, then back-up outcome values 

(b) Calculate the average utility at each chance 
node based on the likelihood of each outcome 

(c) Calculate the maximum utility at each decision 
node, while marking the maximum branch 

2. Trace back the marked branches, from the 
root node down to find the desired optimal 
(conditional) plan. 

Finding the value of (perfect or imperfect ) 
information in a decision tree. 

T2-fail 

C1 C2 

+	

 -	

 +	



1 2 3 4 
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Additional Information 
Buyer knows car c1 is good quality 

  70%  P(c1=good)  =  .7 

Buyer knows car c2 is good quality 
  80%  P(c2=good)  =  .8 

Test t1 check quality of car c1 
  P(t1=pass|c1=good)  =  .8 
  P(t1=pass|c1=bad)  =  .35 

Test of t2 check quality of car c2 
  P(t2=pass|c2=good)  =  .75 
  P(t2=pass|c2=bad)  =  .3 
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Details of Example 
  Case 1 

  P(c1=good|t2=fail)=p(c1=good)=.7;  
      test t2 does not say anything about c1 
  Utility = 2000(value of car)-1500(cost 

of car)-20(cost of test) =480 
  Case 2 

  P(c1=bad|t2=fail) = p(c1=bad) = 
   1- p(c1=good) = .3 

  Utility = 2000-1500-700(cost of 
repair)-20 = -220 

  Expected Utility of Chance Node 
of 1&2 
  .7 x480 +.3x-220 = 270 

T2-fail 

C1 C2 

+	

 -	

 +	



1 2 3 4 
480 -220 

 270 
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Details of Example cont 
  Case 3 

  P(c2=good|t2=fail) =  
  P(t2=fail|c2=good) P(c2=good)/P(t2=fail) = 
  (.25x.8=.2)/ P(t2=fail) = 
  Normalize .2/.34 (=.2+.14), .14/.34 (over c2=bad 

case 4) 
  .59 
  Utility = 1400-1150-20= 230   

  Case 4 
  P(c2=bad/t2=fail) = 
   P(t2=fail/c2=bad) P(c2=bad)/P(t2=fail) = 
   (.7x.2=.14) / P(t2=fail) = 
  .41 
  Utility = 1400-1150-20-150= 80 

  Expected Utility of Chance Node of 3&4 
  .59 x230 +.41x80 =168.5 

168.5 

T2-fail 

C1 C2 

+	

 -	

 +	



1 2 3 4 
230 80 

_ 
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Details of Example cont 
 What is the decision if 

  Decide to do test t2 
  It comes out false 
  Do you buy c1 or c2? 

  E(c1|test t2=fail) = Expected Utility of 
Chance Node of 1&2 = 270 

  E(c2|test t2=fail) = Expected Utility of 
Chance Node of 3&4 = 168.5 

T2-fail 

C1 C2 

+	

 -	

 +	



1 2 3 4 

-	



270 168.5 

270 
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Example 2: Buying a car cont. 

T2 

pass fail 

C1 C2 C1 C2 

+	

 -	

 +	

 -	

 +	

 -	

 +	



230 80 480 -220 230 80 480 -220 

C1 

-	

 +	



200 

T1 
T0 

pass fail 

C2 C1 C2 

C1 C2 

-	

 +	

 -	

 +	

 -	



+	

 -	

 +	

 -	



+	

 -	



50 450 -250 200 50 450 -250 
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Decision Networks/Influence Diagrams 

 Decision networks or influence diagrams are an 
extension of belief networks that allow for 
reasoning about actions and utility. 

 The network represents information about the 
agent’s current state, its possible actions, the 
possible outcome of those actions, and their 
utility. 
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Nodes in a Decision Network 

  Chance nodes (ovals) have CPTs (conditional 
probability tables) that depend on the states of the 
parent nodes (chance or decision). 

  Decision nodes (squares) represent options available 
to the decision maker. 

  Utility nodes (Diamonds) or value nodes represent the 
overall utility based on the states of the parent nodes. 
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Example 3: Taking an Umbrella   

Utility 
Bring Umbrella? 

Rain (hidden variable) 

Does WeatherReport 
Indicate Rain? 

Parameters: P(Rain), P(WeatherReport|Rain), 
P(WeatherReport|¬Rain), Utility(Rain,Umbrella) 
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Not  
Umbrella 

Not  
Umbrella 

“Taking an Umbrella” as Decision Tree  

Weather Report 

Rain Not Rain 

Yes (take 
umbrella) 

No (don’t take 
umbrella) Yes No 

Umbrella Umbrella 

1 

Rain 
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Knowledge in an Influence Diagram 

  Causal knowledge about how events influence 
each other in the domain 

  Knowledge about what action sequences are 
feasible in any given set of circumstances 
  Lays out possible temporal ordering of decisions   

  Normative (Utility) knowledge about how 
desirable the consequences are 
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Example 2 as an Influence Diagram 

T2 

pass fail 

C1 C2 C1 C2 

+-	

+-	

+-	

+

230 80 480 -220 230 80 480 -220 

C1 

-	

+

200 

T1 
T0 

pass fail 

C2 C1 C2 

C1 C2 

-	

+-	

+-	



+-	

+-	



+-	



50 450 -250 200 50 450 -250 

T is decision whether to do a Test or 
not and which one 

D is the decision of which car to buy 

C1 T 

D 

T1 

C2 

T2 

r(T) 

r(C2,D) r(C1,D) 

Cost of test 
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Decision Trees vs Influence Diagrams 

 Decision trees are not convenient for 
representing domain knowledge 

  Requires tremendous amount of storage 
  Multiple decisions nodes -- expands tree 
  Duplication of knowledge along different paths 

  Joint Probability Distribution vs Bayes Net 

 Generate decision tree on the fly from more 
economical forms of knowledge 
  Depth-first expansion of tree for computing optimal 

decision 
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Topology of decision networks 

1.  The directed graph has no cycles. 
2.  The utility nodes have no children. 
3.  There is a directed path that contains 

all of the decision nodes. 
4.  A CPT is attached to each chance node 

specifying P(A|parents(A)). 
5.  A real valued function over parents(U) 

is attached to each utility node. 
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Semantics 
  Links into decision nodes are called “information links,” and they 

indicate that the state of the parent is known prior to the decision. 

  The directed path that goes through all the decision nodes defines a 
temporal sequence of decisions. 

  It also partitions the chance variables into sets: I0 is the vars 
observed before any decision is made, I1 is the vars observed after 
the first and before the second decision, etc.  In is the set of 
unobserved vars. 

  The “no-forgetting” assumption is that the decision maker 
remembers all past observations and decisions. -- Non Markov 
Assumption 
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Example 4: Airport Siting Problem 

  P(cost=high|airportsite=Darien, airtraffic=low, litigation=high, 
construction=high) 

Utility (deaths,noise,cost) 

Airport Site 

Air Traffic!

Litigation 

Construction!

Deaths 

Noise!

Cost 

U 
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Evaluating Decision Networks 

1.  Set the evidence variables for the current state. 

2.  For each possible value of the decision node(s): 
 (a)  Set the decision node to that value. 
 (b)  Calculate the posterior probabilities for the parent nodes of 
the utility node. 
 (c)  Calculate the expected utility for the action. 

3.  Return the action/decision with the highest utility. 
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Imperfect Information 
Example 5: Mildew 

Two months before the harvest of a wheat field, the farmer 
observes the state Q of the crop, and he observes whether it 
has been attacked by mildew, M.  If there is an attack, he will 
decide on a treatment with fungicides. 

There are five variables: 
-  Q: fair (f), not too bad (n), average (a), good (g) 
-  M: no (no), little (l), moderate (m), severe (s) 
-  H: state of Q plus M: rotten (r),bad (b), poor (p) 

-  OQ: observation of Q; imperfect information on Q 
-  OM: observation of M; imperfect information on M 
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Mildew decision model 

Cost of action 

Value of crop 

Maximize (‘value of crop” - “cost of action”)  

Q H 

OQ 

M 

OM 

M* 

A 

U 

V 

State of Mildew after 
Treatment 
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One action in general 

  A single decision node D may have links to some 
chance nodes. 

  A set of utility functions U1,…,Un over domains X1,
…,Xn. 

  Goal: find the decision d that maximizes EU(D=d | e):	



  How to solve such problems using a standard 
Bayesian network package? 
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Multiple decisions -- Policy Generation 

T 

D 

C1 C2 

T1 T2 

V 

Need a more complex evaluation technique since 
 generating a policy (sequence of decisions) 
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The Domain of Decision Nodes: 
 Options At Decision Node D 

  T: t0, t1, t2 
  D:   

 If T = t0 then { Buy 1, Buy 2 } 
 If T = t1 then { 
  Buy 1 if t1=pass else Buy 2, 

    Buy 2 if t1=pass else Buy 1,  
  always Buy 1,  
  always Buy 2 } 
 If T = t2 then { 
  Buy 1 if t2=pass else Buy 2, 

    Buy 2 if t2=pass else Buy 1,  
  always Buy 1, always Buy 2 } 



The Next Set of Slides were not covered 
in detail in  class and thus will not be 

tested on the final exam 
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Evaluation by Graph Reduction  
Basic idea: (Ross Shachter) Perform a sequence of transformations 

to the diagram that preserve the optimal policy and its value, until 
only the UTILITY node remains. 
  Similar to ideas of transformation into polytree 

Four basic value/utility-preserving reductions: 

  Barren node removal 

  Chance node removal (marginalization) 

  Decision node removal (maximization) 

  Arc reversal (Bayes’ rule) 
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Barren node reduction 

 Let Xj represent a subset of nodes of 
interest in an influence diagram. 

 Let Xk represent a subset of evidence 
nodes. 

 We are interested in P(f(Xj) | Xk)  
 A node is “barren” if it has no successors 

and it is not a member of Xj or Xk. 
 The elimination of barren nodes does not 

affect the value of P(f(Xj) | Xk)  
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Barren Node Removal 
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Notation for Shachter’s algorithm 

For chance nodes: 
 S(i) = direct successors = children 
 C(i) = conditional predecessors = parents 
For decision nodes 
  I(i) = information predecessors = parents  



V. Lesser; CS683, F10 

Chance Node Removal 

i 

C(i) \ C(v) C(i) ∩ C(v) C(v)\C(i)\{i} 

v 

C(i) \ C(v) C(i) ∩ C(v) C(v)\C(i)\{i} 

v 

nodes connected 
to i but not to v 

nodes connected to 
v but not to i  and 
not i 

Node i directly linked to 
utility node v 

marginalization 
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Decision node removal 

I(i) \ C(v) I(i) ∩ C(v) 

v 
i 

I(i) ∩ C(v) 

v 

maximization 
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Arc reversal 

 Given an influence diagram containing 
an arc from i to j, but no other directed 
path from i to j, it is possible to to 
transform the diagram to one with an 
arc from j to i.  (If j is deterministic, 
then it becomes probabilistic.) 
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Arc Reversal 

i j 

C(i) \ C(j) C(i) ∩ C(j) C(j)\C(i)\{i} 

i j 

C(i) \ C(j) C(i) ∩ C(j) C(j)\C(i)\{i} 

Bayes’ rule 
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Pa=Parents  Pa(A)\Pa(B) parents of A who are not parents of B 
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Next Lecture 

  Introduction to Different Forms of Learning 


