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Today’s Lecture 

  Inference in Multiply Connected BNs 
  Clustering methods transform the network into a probabilistically 

equivalent polytree. 
  Also called Join tree algorithms 

  Conditioning methods instantiate certain variables and evaluate a 
polytree for each possible instantiation. 

  Stochastic simulation approximate the beliefs by generating a large 
number of concrete models that are consistent with the evidence and 
CPTs. 
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Example of Multiply Connected BN 

Cloudy 

Sprinkler Rain 

Wet Grass 

C     P(S=T) 
T  .10 
F  .50 

C     P(R=T) 
T  .80 
F  .20 

P(C=T)=.5 

S  R     P(W=T) 
T  T  .99 
T  F  .90 
F  T  .90 
F  F  .00 
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Clustering Methods 

 Creating meganodes until the network 
becomes a polytree. 

 Most effective approach for exact 
evaluation of multiply connected BNs. 

 The tricky part is choosing the right 
meganodes. 

 Q.  What happens to the NP-hardness of the 
inference problem? 
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Clustering Example* 

Cloudy 

Spr+Rain 

Wet Grass 

         P(S+R) 
C  TT   TF  FT   FF 
T  .08  .02  .72  .18 
F  .10  .40  .10  .40 

P(C)=.5 

S+R  P(W) 
T T  .99 
T F  .90 
F T  .90 
F F  .00 

Cloudy 

Sprinkler Rain 

Wet Grass 

How do you still answer 
P(Rain=True |  Wet Grass=False)  ? 
How do you create meganode? 
What are the disadvantages? 
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Cutset Conditioning Methods 

 Once a variable is instantiated it can be 
duplicated and thus “break” a cycle. 

 A cutset is a set of variables whose 
instantiation makes the graph a polytree. 

 Each polytree’s likelihood is used as a 
weight when combining the results. 
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Networks Created by Instantiation 
  Eliminate Cloudy from BN; Sum(%Cloudy+,%Cloud-)  

C  P(R) 
T  .80 
F  .20 

Cloudy+ 

Sprinkler Rain 

Wet Grass 

Cloudy+ 

Cloudy- 

Sprinkler Rain 

Wet Grass 

Cloudy- 

C  P(S) 
T  .10 
F  .50 

P(S)=.1 

P(S)=.5 

P(R)=.8 

P(R)=.2 
Cloudy 

Sprinkler Rain 

Wet Grass 
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Stochastic Simulation -- 
Direct Sampling 

  Assign each root node (without parents) a value based 
on prior probability. 

  Assign all other nodes a NULL “value”.  
  Pick a node X with no value, but whose parents have 

values, and randomly assign a value to X 
  using P(X|Parents(X)) as the distribution.   

Repeat until there is no such X. 
  After N trials, P(X|E) can be estimated by    

occurrences (X and E) / occurrences (E). 
  Approximate P(X,E)/P(E) 
  Does not focus on generating occurrences of E 



Example P(WetGrass|Cloudy) 
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Example cont. 
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Example cont. 
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Example cont. 
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Example cont. 
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Example cont. 
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Example cont. 
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Stochastic Simulation cont. 

 Problem with very unlikely events. 
 Likelihood weighting can be used to 

fix problem. 
 Likelihood weighting converges 

much faster than logic sampling and 
works well for very large networks. 
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Example of Likelihood Weighting 
P(WetGrass | Rain) 

  Choose a value for Cloudy with prior P(Cloudy) = 0.5. 
Assume we choose cloudy = false. 

  Choose a value for Sprinkler. We see that P(Sprinkler 
⏐¬ Cloudy) = 0.5, so we randomly choose a value given 
that distribution. Assume we choose Sprinkler =True. 

  Look at Rain. This is an evidence variable that has been 
set to True, so we look at the table to see that P(Rain ⏐¬ 
Cloudy) = 0.2. This run therefore counts as 0.2 of a 
complete run. 

Cloudy 

Sprinkler Rain 

Wet Grass 
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Example of Likelihood Weighty cont’d 

  Look at WetGrass. Choose randomly with P
(WetGrass⏐Sprinkler=T ∧Rain=T) =0.99; assume we choose 
WetGrass = True. 

  We now have completed a run with likelihood 0.2 that says 
WetGrass = True  given Rain = True. The next run will result in 
a different likelihood, and (possibly) a different value for 
WetGrass. We continue until we have accumulated enough runs, 
and then add up the evidence for each value, weighted by the 
likelihood score. 

Likelihood weighting usually converges much faster than logic 
sampling 

Still takes a long time to reach accurate probabilities for unlikely 
events  



Stochastic Simulation –  
Likelihood Weighting 
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; for all nodes in the network ordered by parents 

; if you are at the node that you have evidence for 
; adjust likelihood of this run based on the 
likelihood of evidence given parents 

;otherwise randomly choose based 
on value of parents chosen in 
previous steps 



Likelihood weighting example  

w = 1.0 

P(Rain| Sprinkler=T, 
WetGrass=T) 
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Example cont. 

w = 1.0 
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Example cont. 

w = 1.0 × 0.1 
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Example cont. 

w = 1.0 × 0.1 
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Example cont. 

W = 1.0 × 0.1 × 0.99 
= 0.099 
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Stochastic Simulation – 
 Markov Chain Monte Carlo 

A node is conditionally independent of all other nodes in the 
network given its parents, children, and children’s parents
—that is, given its Markov blanket.  
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The MCMC algorithm 

  MCMC generates each event by making a random 
change to the preceding event. 
  It is therefore helpful to think of the network being in a 

particular current state specifying a value for every variable. 

  The next state is generated by randomly sampling a 
value for one of the non-evidence variables Xi, 
conditioned on the current values of the variables in the 
Markov blanket of Xi. 
  Don’t need to look at any other variables 

  MCMC therefore wanders randomly around the state space—the 
space of possible complete assignments—flipping one variable at 
a time but keeping the evidence variables fixed. 
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The Markov chain 
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Markov blanket sampling 
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MCMC example cont. 
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Summary of a Belief Networks 
  Conditional independence information is a vital and 

robust way to structure information about an uncertain 
domain. 

  Belief networks are a natural way to represent 
conditional independence information.  
  The links between nodes represent the qualitative aspects of the 

domain, and the conditional probability tables represent the 
quantitative aspects. 

  A belief network is a complete representation for the joint 
probability distribution for the domain, but is often 
exponentially smaller in size. 
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Summary of a Belief Networks, cont’d 

  Inference in belief networks means computing the probability 
distribution of a set of query variables, given a set of evidence 
variables. 

  Belief networks can reason causally, diagnostically, in mixed 
mode, or intercausally. No other uncertain reasoning 
mechanism can handle all these modes. 

  The complexity of belief network inference depends on the 
network structure. In polytrees (singly connected networks), 
the computation time is linear in the size of the network. 
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Summary of a Belief Networks, cont’d 
  There are various inference techniques for general belief 

networks, all of which have exponential complexity in the 
worst case. 
   In real domains, the local structure tends to make things more 

feasible, but care is needed to construct a tractable network with 
more than a hundred nodes. 

  It is also possible to use approximation techniques, 
including stochastic simulation, to get an estimate of the 
true probabilities with less computation. 



Next Lecture 

 Introduction to Decision Theory 

  Making Single-Shot Decisions 

  Utility Theory 
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