
Lecture 18: Uncertainty 3

Victor R. Lesser
CMPSCI 683

Fall 2010

V. Lesser; CS683, F10

P(Burglary |JohnCalls) –
using joint probability distribution

  Diagnostic inferences (from effects to
causes).

  Given that JohnCalls, infer that P(Burglary |
JohnCalls) = 0.016

 P(B,J) = normalized Sum (E,A,M) P(B,e,a,J,m)

  The neighbors (John, Mary) promise to call you at work
when they hear the alarm
  John always calls when he hears the alarm, but confuses alarm

with phone ringing (and calls then also)
  Mary likes loud music and sometimes misses alarm!
  Assumption: John and Mary don’t perceive burglary directly;

they do not feel minor earthquakes

E B

A

J M

P(B,E,A,J,M)=
P(B)P(E)P(A|B,E)
P(J|A)P(M|A)

P(Burglary |JohnCalls) –
using inference

Rearranging conditional probability expression to exploit CPTs in belief network

  Bayes Rule k*P(J|B)*P(B)
  Marginalization k*SumA P(J,Alarm|B)*P(B)
  P(si,sj|d) = P(si| sj,d) P(sj|d) k*SumA P(J|A,B)*P(A|B) *P(B)
  Case 1: a node is conditionally independent of non-descendants given its

parents	

	

 	

 	

 	

k*SumA P(J|A)*P(A|B) *P(B)

  Marginalization k*SumA P(J|A)*SumEP(A,E|B) *P(B)
  P(si,sj|d)=P(si| sj,d) P(sj|d) k*SumA P(J|A)*SumEP(A|B,E)*P(E|B) *P(B)
  case 1 P(E|B)=P(E) k*SumA P(J|A)*SumEP(A|B,E)*P(E) *P(B)

Can read everything off the CPT’s
V. Lesser; CS683, F10

V. Lesser; CS683, F10

Topics for this Lecture

 Construction of Belief Network

 Inference in Belief Networks
  Variable Elimination

V. Lesser; CS683, F10

Benefits of belief networks
 Individual “design” decisions are

understandable: causal structure and
conditional probabilities.

 BNs encode conditional independence,
without which probabilistic reasoning is
hopeless.

 Can do inference even in the presence of
missing evidence.

V. Lesser; CS683, F10

Constructing belief networks

Loop:
  Pick a variable Xi to add to the graph.
  Find (minimal) set of parents (previous nodes

created) such that
P(Xi|Parents(Xi)) = P(Xi|Xi-1, Xi-2, ..., X1)
  Conditional Dependence vs Causality

  Draw arcs from Parents(Xi) to Xi.
  Specify the CPT: P(Xi|Parents(Xi)).

V. Lesser; CS683, F10

Constructing belief networks
cont.

Properties of the algorithm:
 Graph is always acyclic.

 No redundant information => consistency
with the axioms of probability.

 Network structure/compactness depends
on the ordering of the variables.

V. Lesser; CS683, F10

Example: Ordering M,J,A,B,E

Earthquake

Alarm

Burglary

JohnCalls
MaryCalls

Why is Burglary a parent
of Earthquake?

Why is MaryCalls
not a parent of
Burglary?

Conditional
Dependence vs
Causality

1 2

3

4

5

V. Lesser; CS683, F10

Example: Ordering M,J,E,B,A

MaryCalls

Alarm

Earthquake
JohnCalls

Burglary

Ordering
Affects Size of
CPTs?

Why is
Marycalls a
parent of
Burglary in
this ordering?

1

2

3

4 5

V. Lesser; CS683, F10

d-separation:
Direction-Dependent Separation

  Network construction
  Conditional independence of a node and its predecessors,

given its parents
  The absence of a link between two variables does not

guarantee their independence

  Effective inference needs to exploit all available
conditional independences
  Which set of nodes X are conditionally independent of

another set Y, given a set of evidence nodes E
  P(X,Y|E) = P(X|E) . P(Y|E); P(X|Y,E)= P(X|E); P(Y|X,E)= P(Y|E)

  Limits propagation of information
  Comes directly from structure of network

V. Lesser; CS683, F10

d-separation

Definition: If X, Y and E are three disjoint subsets
of nodes in a DAG, then E is said to d-separate X
from Y if every undirected path from X to Y is
blocked by E. A path is blocked if it contains a
node Z such that:

(1) Z has one incoming and one outgoing arrow; or
(2) Z has two outgoing arrows; or
(3) Z has two incoming arrows and neither Z nor any
 of its descendants is in E.

V. Lesser; CS683, F10

d-separation cont.

Directionality of links from X or Y to immediate predecessor or successor of Z
not important; In case 3, notice E is outside of Z

X Y E
Z

Z

Z

Case 1

Case 2

Case 3

V. Lesser; CS683, F10

d-separation cont.

 Property of belief networks: if X and Y are d-
separated by E, then X and Y are conditionally
independent given E.

 An “if-and-only-if” relationship between the
graph and the probabilistic model cannot always
be achieved.
  The graph may not represent all possible conditional

independent relations

V. Lesser; CS683, F10

d-separation example- case 1
(1) Z has one incoming and one outgoing arrow

 Whether there is Gas[G] in the car and whether the car
Radio [R] plays are independent given evidence about
whether the SparkPlugs fire [Ignition] (case 1).

 P(R,G|I) = P(R|I) . P(G|I)	

	

 	

P(G|I,R) = P(G|I); P(R|I, G) = P(R|I) 	

Battery	

Radio	

 Ignition	

 Gas	

Starts	

Moves	

X Y Z
Z in E has
one incoming
and one
outgoing
arrow

V. Lesser; CS683, F10

d-separation example- case 2
(2) Z has two outgoing arrows

 Gas and Radio are conditionally-independent if it
is known if the Battery [B]works (case2).

 P(R|B,G) = P(R|B); P(G|B,R)=P(G|B)	

Battery	

Radio	

 Ignition	

 Gas	

Starts	

Moves	

X Y

Z
Z in E
has two
outgoing
arrows

V. Lesser; CS683, F10

d-separation example - case 3
(3) Z has two incoming arrows and neither Z nor any

 of its descendants is in E.

Gas and Radio are independent given no evidence at all.
P(Gas|Radio)=P(Gas); P(Radio|Gas)=P(Radio);

But they are dependent given evidence about whether the car Starts.
 P(Gas|Radio,Start) ~= P(Gas|Start)

For example, if the car does not start, then the radio playing is increased evidence
that we are out of gas. Gas and Radio are also dependent given evidence about
whether the car Moves, because that is enabled by the car starting {does not fit
into any of the 3 cases}.

Battery	

Radio	

 Ignition	

 Gas	

Starts	

Moves	

STARTS&MOVES IN
Z BUT ALSO IN E
FOR CASE 3

X Y

Z has two
incoming
arrows and
neither Z nor
any of its
descendants is
in E

E&Z

V. Lesser; CS683, F10

Inference in Belief Networks
 BNs are fairly expressive and easily engineered

representation for knowledge in probabilistic
domains.

 They facilitate the development of inference
algorithms.

 They are particularly suited for parallelization
 Current inference algorithms are efficient and

can solve large real-world problems.

V. Lesser; CS683, F10

Network Features Affecting
 Efficiency of Reasoning

 Topology (trees, singly-connected, sparsely-
connected, DAGs).

 Size (number of nodes).

 Type of variables (discrete, cont, functional,
noisy-logical, mixed).

 Network dynamics (static, dynamic).

V. Lesser; CS683, F10

Belief Propagation in Polytrees
Polytree belief
network, where
nodes are singly
connected	

• Exact inference,
Linear in size of
network	

Multiconnected
belief network. This
is a DAG, but not a
polytree.	

• Exact inference,
Worst case NP-hard	

Double Counting
of the effects of H1

V. Lesser; CS683, F10

Reviewing Alternative
Reasoning in Belief Networks

Q	

E	

Q	

 E	

 E	

E	

Q	

E	

Q	

Diagnostic	

 Causal	

(Explaining Away)	

Intercausal	

Mixed	

Simple examples
of 4 patterns of
reasoning that can
be handled by
belief networks. E
represents an
evidence variable;
Q is a query
variable.	

P(Q/E) =?

V. Lesser; CS683, F10

Reasoning Directly in Belief Networks:
Calculation in Polytree with Evidence Above

  What is p(Y5|Y1,Y4)	

  Define in terms of CPTs = p(Y5,Y4,Y3,Y2,Y1)	

  p(Y5|Y3,Y4)p(Y4)p(Y3|Y1,Y2)p(Y2)p(Y1)	

  p(Y5|Y1,Y4)= p(Y5,Y1,Y4)/p(Y1,Y4)	

  Use cpt to sum over missing variables	

  p(Y5,Y1,Y4)= Sum(Y2,Y3) p(Y5,Y4,Y3,Y2,Y1) 	

  assuming variables take on only truth or falsity.	

  p(Y5|Y1,Y4) = p(Y5,Y3|Y1, Y4) + P(Y5, ~Y3|Y1,Y4)	

  Connect to parents of Y5 not already part of expression,

by marginalization	

  = SUM(Y3) p(Y5,Y3|Y1,Y4)	

y2	

y1	

y3	

y5	

y4	

V. Lesser; CS683, F10

Continuation of Example Above	

  = SUM(Y3)(p(Y5|Y3, Y1, Y4) * p(Y3| Y1, Y4)) 	

  P(si,sj|d) = P(si| sj,d) P(sj|d)	

  = SUM(Y3) p(Y5|Y3, Y4) * p(Y3| Y1, Y4) 	

  Y1 conditionally independent of Y5 given Y3,	

  Y3 represents all the contributions of Y1 to Y5	

  Case 1: a node is conditionally independent of non-

descendants given its parents	

  = SUM(Y3) p(Y5|Y3, Y4) * p(Y3|Y1) 	

  Y4 conditionally independent of Y3 given Y1	

  Case 3: Y1 (E) not a descendant of Y5 (Z) which d-

separates Y3 (X) and Y4 (Y); thus p(Y3| Y1, Y4) =
p(Y3|Y1) 	

y2	

y1	

y3	

y5	

y4	

V. Lesser; CS683, F10

Continuation of Example Above	

  = SUM(Y3) p(Y5|Y3, Y4) * (Sum (Y2)p(Y3,

Y2 |Y1))	

  Connect to parents of Y3 not already part of

expression 	

	

  = SUM(Y3) p(Y5|Y3, Y4) *(Sum (Y2) p(Y3|
Y1,Y2) * p(Y2|Y1))	

  p(si,sj|d) = p(si| sj,d) p(sj|d); product rule	

  = SUM(Y3) p(Y5|Y3, Y4) *(SUM(Y2) p(Y3|
Y1,Y2)*p(Y2)) 	

  Y2 independent of Y1; p(Y2/Y1)=p(Y2)	

  Definition of Baysean network	

y2	

y1	

y3	

y5	

y4	

What is p(Y5|Y1,Y4)

V. Lesser; CS683, F10

Reasoning Directly in Belief Networks:
Calculation in Polytree with Evidence Below

  What is p(Y1|Y5)	

  p(Y1|Y5)=p(Y1,Y5)/p(Y5)	

  p(Y1,Y2,Y3,Y4,Y5) = in terms of cpt	

  p(Y5|Y3,Y4)p(Y3|Y1,Y2)p(Y1)p(Y2)p(Y4)	

  p(Y1|Y5) = p(Y5|Y1)p(Y1)/p(Y5)	

  Bayes Rule	

  =K * p(Y5|Y1)p(Y1)	

y2	

y1	

y3	

y5	

y4	

V. Lesser; CS683, F10

Continuation of Example Below	

  =K * p(Y5|Y1)p(Y1)	

  = K * (SUM(Y3) p(Y5|Y3)p(Y3lY1)) p(Y1)	

  Connect to Y3 parent of Y5 not already part of expression	

  P(si l sj) = SUM(d)P(si | sj , d) P(d | sj)	

  Y1 conditionally independent of Y5 given Y3; case 1	

  p(Y5|Y3,Y1)= p(Y5|Y3)	

  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p(Y4lY3))p(Y3lY1)) p
(Y1)	

  Connect to Y4 parent of Y5 not already part of expression	

  P(si l sj) = SUM(d)P(si | sj , d) P(d | sj)	

  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p(Y4))p(Y3lY1)) p
(Y1)	

  Y4 independent of Y3; p(Y4lY3)= p(Y4)	

y2	

y1	

y3	

y5	

y4	

V. Lesser; CS683, F10

Continuation of Example Below	

  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p

(Y4))p(Y3|Y1)) p(Y1)	

  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p
(Y4))(SUM(Y2)p(Y3|Y1,Y2)p(Y2lY1))) p(Y1)	

  Connect to Y2 parent of Y3 not already part of

expression	

  P(si l sj) = SUM(d)P(si | sj , d) P(d | sj)	

  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p
(Y4))(SUM(Y2)p(Y3| Y1,Y2)p(Y2))) p(Y1)	

  Y2 independent of Y1	

  Expression that can be calculated from cpt	

y2	

y1	

y3	

y5	

y4	

V. Lesser; CS683, F10

Evidence Above and Below
for Polytrees

If there is evidence both above and below P(Y3lY5,Y2)

we separate the evidence into above, , and below, , portions and use a version of Bayes’ rule to write

we treat as a normalizing factor and write

Q d-separates from , so

We calculate the first probability in this product as part of the top-down procedure for
calculating . The second probability is calculated directly by the bottom-up procedure.

y1	

y5	

y4	

y2	

y3	

Q

P(Y3lY5,Y2)=P(Y5|Y3)P(Y3|Y2)

Announcement

 Material on Variable Elimination was not
covered in class and will not be on final
examination

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Variable Elimination

  Can remove a lot of re-calculation/multiplications in expression

  K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p(Y4))(SUM(Y2)p(Y3lY1,Y2)p(Y2)))
p(Y1)	

  Summations over each variable are done only for those portions of the
expression that depend on variable	

  Save results of inner summing to avoid repeated calculation	

  Create Intermediate Functions	

  F-Y2(Y3,Y1)= (SUM(Y2)p(Y3lY1,Y2)p(Y2)) 	

Variable elimination

General idea:
 Write query in the form

 Iteratively
  Move all irrelevant terms outside of innermost sum
  Perform innermost sum, getting a new term
  Insert the new term into the product

V. Lesser; CS683, F10

Variable elimination in chains*

 Consider the following chain:

 We know that

 By chain decomposition, we get

A B C E D

Product Rule in
Reverse order

Marginalization

V. Lesser; CS683, F10

Elimination in chains

 Rearranging terms ...

A B C E D

V. Lesser; CS683, F10

Elimination in chains

 Now we can perform innermost summation

A B C E D X

V. Lesser; CS683, F10

Elimination in chains*

 Rearranging and then summing again, we get

A B C E D X X

V. Lesser; CS683, F10

Elimination in chains with evidence

 Similarly, we understand the backward pass

 We write the query in explicit form

A B C E D

V. Lesser; CS683, F10

Elimination in chains with evidence

 Eliminating d, we get

A B C E D X

V. Lesser; CS683, F10

P(e|c) = Sum(d) P(e,d|c), P(e,d|c)=P(e|c,d)P(e|d), P(e|c,d)=P(e|c) d-sep

Elimination in chains with evidence

 Eliminating c, we get

A B C E D X X

V. Lesser; CS683, F10

Elimination in chains with evidence

 Finally, we eliminate b

A B C E D X X X

sj=e, si=b, d=a
P(si|d) = Sum(j) P(si,sj|d)
P(si,sj|d)=P(si|sj,d)P(sj|d)
P(e|b,a)=P(e|b) d-sep

V. Lesser; CS683, F10

A more complex example

Visit to
Asia Smoking

Lung Cancer Tuberculosis

Abnormality
in Chest Bronchitis

X-Ray Dyspnea

 “Asia” network:

V. Lesser; CS683, F10

V S

L T

A B

X D

  We want to compute P(d)
  Need to eliminate: v,s,x,t,l,a,b

Initial factors

V. Lesser; CS683, F10

V S

L T

A B

X D

  We want to compute P(d)
  Need to eliminate: v,s,x,t,l,a,b

Initial factors

Eliminate: v

Note: fv(t) = P(t)
In general, result of elimination is not necessarily a probability term

Compute:

V. Lesser; CS683, F10

V S

L T

A B

X D

  We want to compute P(d)
  Need to eliminate: s,x,t,l,a,b

  Initial factors

Eliminate: s

Summing on s results in a factor with two arguments fs(b,l)
In general, result of elimination may be a function of several variables

Compute:

V. Lesser; CS683, F10

V S

L T

A B

X D

  We want to compute P(d)
  Need to eliminate: x,t,l,a,b

  Initial factors

Eliminate: x

Note: fx(a) = 1 for all values of a !! {P(x|a) + P(not x|a) =1}

Compute:

V. Lesser; CS683, F10

V S

L T

A B

X D

  We want to compute P(d)
  Need to eliminate: t,l,a,b

  Initial factors

Eliminate: t

Compute:

V. Lesser; CS683, F10

V S

L T

A B

X D

  We want to compute P(d)
  Need to eliminate: l,a,b

  Initial factors

Eliminate: l
Compute:

V. Lesser; CS683, F10

V S

L T

A B

X D

  We want to compute P(d)
  Need to eliminate: a,b

  Initial factors

Eliminate: a and b:

V. Lesser; CS683, F10

Variable elimination

 To summarize, variable elimination can be
represented as a sequence of rewriting
operations

 Actual computations are done in elimination
steps

 The overall amount of computation depends on
order of elimination

V. Lesser; CS683, F10

Dealing with evidence

  We start by writing the factors:

  Since we know that V = t, we don’t need to eliminate V
  Instead, we can replace the factors P(V) and P(T|V) with

  These “select” the appropriate parts of the original factors given the
evidence

  Note that fp(V) is a constant, and thus does not appear in elimination of
other variables

V S

L T

A B

X D

V. Lesser; CS683, F10

Dealing with evidence
  Given evidence V = t, S = f, D = t
  Compute P(L, V = t, S = f, D = t)

  Initial factors, after setting evidence:

  Eliminating x, we get

  Eliminating t, we get

  Eliminating a, we get

  Eliminating b, we get

V S
L T

A B
X D

V. Lesser; CS683, F10

V. Lesser; CS683, F10

e+ T U X Y e-

Incremental Updating of BN: Pearl’s
message passing algorithm – Simple Chains

e = {e+,e-}
e+ Represents the “causal” evidence
e- Represents the “evidential” evidence

Need to compute Bel(x)

V. Lesser; CS683, F10

Simple Chains cont.

Case 1 e+ ..-->x---> …e-

V. Lesser; CS683, F10

The λ(x) and π(x) Messages

λ(x) represents the degree to which x might
explain the evidential support. -- P(e-|X)

π(x) represents the direct causal support for x.
-- P(X|e+)

Both λ(x) and π(x) can be calculated in terms
of the λ and π values of the neighbors of x.
e+ T U X Y e-

λ	

π	

V. Lesser; CS683, F10

Computing λ(x) based on λ(y)

e+ T U X Y e-

V. Lesser; CS683, F10

Computing π(x) based on π(u)
e+ T U X Y e-

V. Lesser; CS683, F10

Update scheme for chains

Bel(x)

λ(x)

π(u)

λ(y)

π(x) Mx|u

My|x

e+ T U X Y e-

V. Lesser; CS683, F10

Belief Propagation in Trees

  Each node must
combine the impact of
λ-messages from several
children.

  Each node must
distribute a separate π-
message to each child.

Y

ex
+

ez
- ey

-

ex
-

X

U

Z

λ	

π	

V. Lesser; CS683, F10

Propagation in Polytrees

Xi

U1 Up

Yc Y1

EU1Xi EUpXi

EXiYc

EXi

EXi

EXiY1

+ +

+

-

- -

. . .

. . .

V. Lesser; CS683, F10

Polytrees

  In a polytree, there is just one (undirected path) between any two
nodes. (avoids issue of double counting of evidence)

  A typical node D divides a polytree in two disconnected
polytrees.

  Need to consider only evidence at the boundary of the graph.
  A does not affect B so no messages need to go from A to B through D
  F does not affect E so no messages need to go from F to E through G

Polytrees

  Theorem: Inference in a polytree is linear in the
 size of the network

A

C B

D E

F G

H Recall that a polytree is a network
where there is at most one path from
one variable to another

V. Lesser; CS683, F10

Heuristics for node ordering

  Maximum cardinality search: number the nodes from 1 to n,
in increasing order, always assigning the next number to the
vertex having the largest set of previously numbered neighbors.
The elimination order is from n to 1.

  Minimum discrepancy search: at each point, eliminate the
node that causes the fewest edges to be added to the induced
graph.

  Minimum size/weight search: at each point, eliminate the node
that causes the smallest clique to be created, where “small” is
measured either in terms of number of nodes or number of
entries in the factor.

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Next Lecture

  Inference in Multiply Connected BNs

