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P(Burglary |JohnCalls) – 
using joint probability distribution 

  Diagnostic inferences (from effects to 
causes). 

  Given that JohnCalls, infer that P(Burglary |
JohnCalls) = 0.016 

    P(B,J) = normalized Sum (E,A,M) P(B,e,a,J,m) 

  The neighbors (John, Mary) promise to call you at work 
when they hear the alarm 
  John always calls when he hears the alarm, but confuses alarm 

with phone ringing (and calls then also) 
  Mary likes loud music and sometimes misses alarm! 
  Assumption: John and Mary don’t perceive burglary directly; 

they do not feel minor earthquakes 

E B 

A 

J M 

P(B,E,A,J,M)=    
P(B)P(E)P(A|B,E)
P(J|A)P(M|A) 

P(Burglary |JohnCalls) – 
using inference 

Rearranging conditional probability expression to exploit CPTs in belief network 

  Bayes Rule                     k*P(J|B)*P(B) 
  Marginalization           k*SumA P(J,Alarm|B)*P(B) 
  P(si,sj|d) = P(si| sj,d) P(sj|d)   k*SumA P(J|A,B)*P(A|B) *P(B) 
  Case 1: a node is conditionally independent of non-descendants given its 

parents	

	
 	
 	
 	
k*SumA P(J|A)*P(A|B) *P(B) 

  Marginalization   k*SumA P(J|A)*SumEP(A,E|B) *P(B) 
  P(si,sj|d)=P(si| sj,d) P(sj|d)      k*SumA P(J|A)*SumEP(A|B,E)*P(E|B) *P(B) 
  case 1 P(E|B)=P(E)   k*SumA P(J|A)*SumEP(A|B,E)*P(E) *P(B) 

Can read everything off the CPT’s 
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Topics for this Lecture 

 Construction of Belief Network 

 Inference in Belief Networks 
  Variable Elimination 



V. Lesser; CS683, F10 

Benefits of belief networks 
 Individual “design” decisions are 

understandable: causal structure and 
conditional probabilities. 

 BNs encode conditional independence, 
without which probabilistic reasoning is 
hopeless. 

 Can do inference even in the presence of 
missing evidence. 
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Constructing belief networks 

Loop: 
  Pick a variable Xi to add to the graph. 
  Find (minimal) set of parents (previous nodes 

created) such that 
P(Xi|Parents(Xi)) = P(Xi|Xi-1, Xi-2, ..., X1) 
  Conditional Dependence vs Causality  

  Draw arcs from Parents(Xi) to Xi. 
  Specify the CPT: P(Xi|Parents(Xi)). 
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Constructing belief networks 
cont. 

Properties of the algorithm: 
 Graph is always acyclic. 

 No redundant information => consistency 
with the axioms of probability. 

 Network structure/compactness depends 
on the ordering of the variables. 
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Example:  Ordering M,J,A,B,E 

Earthquake 

Alarm 

Burglary 

JohnCalls 
MaryCalls 

Why is Burglary a  parent  
of Earthquake? 

Why is MaryCalls 
not a parent of 
Burglary? 

Conditional 
Dependence vs 
Causality 

1 2 

3 

4 

5 
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Example:  Ordering M,J,E,B,A   

MaryCalls 

Alarm 

Earthquake 
JohnCalls 

Burglary 

Ordering 
Affects Size of 
CPTs? 

Why is 
Marycalls a 
parent of 
Burglary in 
this ordering? 

1 

2 

3 

4 5 
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d-separation: 
Direction-Dependent Separation 

  Network construction 
  Conditional independence of a node and its predecessors, 

given its parents 
  The absence of a link between two variables does not 

guarantee their independence 

  Effective inference needs to exploit all available 
conditional independences 
  Which set of nodes X are conditionally independent of 

another set Y, given a set of evidence nodes E 
  P(X,Y|E) = P(X|E) . P(Y|E); P(X|Y,E)= P(X|E); P(Y|X,E)= P(Y|E) 

  Limits propagation of information 
  Comes directly from structure of network 
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d-separation 

Definition:  If X, Y and E are three disjoint subsets 
of nodes in a DAG, then E is said to d-separate X 
from Y if every undirected path from X to Y is 
blocked by E.  A path is blocked if it contains a 
node Z such that: 

(1) Z has one incoming and one outgoing arrow; or 
(2) Z has two outgoing arrows; or    
(3) Z has two incoming arrows and neither Z nor any  
     of its descendants is in E. 
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d-separation cont. 

Directionality of links from X or Y to immediate predecessor or successor of Z 
not important; In case 3, notice E is outside of Z 

X Y E 
Z 

Z 

Z 

Case 1 

Case 2 

Case 3 
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d-separation cont. 

 Property of belief networks: if X and Y are d-
separated by E, then X and Y are conditionally 
independent given E. 

 An “if-and-only-if” relationship between the 
graph and the probabilistic model cannot always 
be achieved. 
  The graph may not represent all possible conditional 

independent relations  
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d-separation example- case 1 
(1) Z has one incoming and one outgoing arrow 

 Whether there is Gas[G] in the car and whether the car 
Radio [R] plays are independent given evidence about 
whether the SparkPlugs fire [Ignition] (case 1). 
   
  P(R,G|I) = P(R|I) . P(G|I)	

	
 	
P(G|I,R) = P(G|I); P(R|I, G) = P(R|I) 	


Battery	


Radio	
 Ignition	
 Gas	


Starts	


Moves	


X Y Z 
Z in E has 
one incoming 
and one 
outgoing 
arrow 
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d-separation example- case 2 
(2) Z has two outgoing arrows 

    Gas and Radio are conditionally-independent if it 
is known if the Battery [B]works (case2). 

  P(R|B,G) = P(R|B); P(G|B,R)=P(G|B)	


Battery	


Radio	
 Ignition	
 Gas	


Starts	


Moves	


X Y 

Z 
Z in E 
has two 
outgoing 
arrows 
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d-separation example - case 3 
(3) Z has two incoming arrows and neither Z nor any  

     of its descendants is in E. 

Gas and Radio are independent given no evidence at all.   
P(Gas|Radio)=P(Gas); P(Radio|Gas)=P(Radio); 

But they are dependent given evidence about whether the car Starts.     
 P(Gas|Radio,Start) ~= P(Gas|Start) 

For example, if the car does not start, then the radio playing is increased evidence 
that we are out of gas.  Gas and Radio are also dependent given evidence about 
whether the car Moves, because that is enabled by the car starting {does not fit 
into any of the  3 cases}. 

Battery	


Radio	
 Ignition	
 Gas	


Starts	


Moves	


STARTS&MOVES IN 
Z BUT ALSO IN E 
FOR CASE 3 

X Y 

Z has two 
incoming 
arrows and 
neither Z nor 
any of its 
descendants is 
in E 

E&Z 
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Inference in Belief Networks 
 BNs are fairly expressive and easily engineered 

representation for knowledge in probabilistic 
domains. 

 They facilitate the development of inference 
algorithms. 

 They are particularly suited for parallelization 
 Current inference algorithms are efficient and 

can solve large real-world problems. 
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Network Features Affecting 
 Efficiency of Reasoning 

 Topology (trees, singly-connected, sparsely-
connected, DAGs). 

 Size (number of nodes). 

 Type of variables (discrete, cont, functional, 
noisy-logical, mixed). 

 Network dynamics (static, dynamic). 
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Belief Propagation in Polytrees 
Polytree belief 
network, where 
nodes are singly 
connected	

• Exact inference, 
Linear in size of 
network	


Multiconnected 
belief network. This 
is a DAG, but not a 
polytree.	

• Exact inference, 
Worst case NP-hard	


Double Counting 
of the effects of H1 
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Reviewing Alternative 
Reasoning in Belief Networks 

Q	


E	


Q	
 E	
 E	


E	


Q	


E	


Q	


Diagnostic	
 Causal	

(Explaining Away)	


Intercausal	

Mixed	


Simple examples 
of 4 patterns of 
reasoning that can 
be handled by 
belief networks. E  
represents an 
evidence variable; 
Q is a query 
variable.	


P(Q/E) =? 
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Reasoning Directly in Belief Networks: 
Calculation in Polytree with Evidence Above 

   What is p(Y5|Y1,Y4)	

  Define in terms of CPTs = p(Y5,Y4,Y3,Y2,Y1)	

  p(Y5|Y3,Y4)p(Y4)p(Y3|Y1,Y2)p(Y2)p(Y1)	

  p(Y5|Y1,Y4)= p(Y5,Y1,Y4)/p(Y1,Y4)	

  Use cpt to sum over missing variables	

  p(Y5,Y1,Y4)= Sum(Y2,Y3) p(Y5,Y4,Y3,Y2,Y1) 	

  assuming variables take on only truth or falsity.	


  p(Y5|Y1,Y4) = p(Y5,Y3|Y1, Y4) + P(Y5, ~Y3|Y1,Y4)	

  Connect to  parents of Y5 not already part of expression, 

by marginalization	


  = SUM(Y3) p(Y5,Y3|Y1,Y4)	


y2	
y1	


y3	


y5	


y4	
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Continuation of Example Above	

  = SUM(Y3)(p(Y5|Y3, Y1, Y4) * p(Y3| Y1, Y4)) 	


  P(si,sj|d) = P(si| sj,d) P(sj|d)	


  = SUM(Y3) p(Y5|Y3, Y4) * p(Y3| Y1, Y4) 	

  Y1  conditionally independent of Y5 given Y3,	

  Y3 represents all the contributions of Y1 to Y5	

  Case 1: a node is conditionally independent of non-

descendants given its parents	


  = SUM(Y3) p(Y5|Y3, Y4) * p(Y3|Y1) 	

  Y4  conditionally independent of Y3 given Y1	

  Case 3: Y1 (E) not a descendant of Y5 (Z) which d-

separates Y3 (X)  and Y4 (Y); thus p(Y3| Y1, Y4) = 
p(Y3|Y1) 	


y2	
y1	


y3	


y5	


y4	
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Continuation of Example Above	

  = SUM(Y3) p(Y5|Y3, Y4) * ( Sum (Y2)p(Y3, 

Y2 |Y1))	

  Connect to  parents of Y3 not already part of 

expression 	
	


  = SUM(Y3) p(Y5|Y3, Y4) *( Sum (Y2) p(Y3|
Y1,Y2) * p(Y2|Y1))	

  p(si,sj|d) = p(si| sj,d) p(sj|d); product rule	


  = SUM(Y3) p(Y5|Y3, Y4) *(  SUM(Y2) p(Y3|
Y1,Y2)*p(Y2) )  	

  Y2 independent of Y1; p(Y2/Y1)=p(Y2)	

  Definition of Baysean network	


y2	
y1	


y3	


y5	


y4	


What is p(Y5|Y1,Y4) 
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Reasoning Directly in Belief Networks: 
Calculation in Polytree with Evidence Below 

   What is p(Y1|Y5)	

  p(Y1|Y5)=p(Y1,Y5)/p(Y5)	

  p(Y1,Y2,Y3,Y4,Y5) = in terms of cpt	

  p(Y5|Y3,Y4)p(Y3|Y1,Y2)p(Y1)p(Y2)p(Y4)	


  p(Y1|Y5) = p(Y5|Y1)p(Y1)/p(Y5)	

  Bayes Rule	


    =K * p(Y5|Y1)p(Y1)	


y2	
y1	


y3	


y5	


y4	
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Continuation of Example Below	

   =K * p(Y5|Y1)p(Y1)	


  = K * (SUM(Y3) p(Y5|Y3)p(Y3lY1)) p(Y1)	

  Connect to  Y3 parent of Y5 not already part of expression	

  P(si l sj) = SUM(d)P(si | sj , d) P(d | sj)	

  Y1 conditionally independent of Y5 given Y3; case 1	

  p(Y5|Y3,Y1)= p(Y5|Y3)	


  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p(Y4lY3))p(Y3lY1)) p
(Y1)	


  Connect to  Y4 parent of Y5 not already part of expression	

  P(si l sj) = SUM(d)P(si | sj , d) P(d | sj)	


  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p(Y4))p(Y3lY1)) p
(Y1)	


  Y4 independent of Y3; p(Y4lY3)= p(Y4)	


y2	
y1	


y3	


y5	


y4	
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Continuation of Example Below	

  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p

(Y4))p(Y3|Y1)) p(Y1)	


  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p
(Y4))(SUM(Y2)p(Y3|Y1,Y2)p(Y2lY1))) p(Y1)	

  Connect to  Y2 parent of Y3 not already part of 

expression	

  P(si l sj) = SUM(d)P(si | sj , d) P(d | sj)	


  = K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p
(Y4))(SUM(Y2)p(Y3| Y1,Y2)p(Y2))) p(Y1)	

  Y2 independent of Y1	

  Expression that can be  calculated from cpt	


y2	
y1	


y3	


y5	


y4	
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Evidence Above and Below 
for Polytrees 

If there is evidence both above and below P(Y3lY5,Y2) 

we separate the evidence into above,     , and below,     , portions and use a version of Bayes’ rule to write 

we treat                              as a normalizing factor and write 

Q d-separates       from     , so 

We calculate the first probability in this product as part of the top-down procedure for 
calculating                  . The second probability is calculated directly by the bottom-up procedure. 

y1	


y5	


y4	


y2	


y3	
Q 

P(Y3lY5,Y2)=P(Y5|Y3)P(Y3|Y2) 

--- 

--- 

--- 

Announcement 

 Material on Variable Elimination was not 
covered in class and will not be on final 
examination 

V. Lesser; CS683, F10 



V. Lesser; CS683, F10 

Variable Elimination 

  Can remove a lot of re-calculation/multiplications in expression 

  K * (SUM(Y3) (SUM(Y4)p(Y5|Y3,Y4)p(Y4))(SUM(Y2)p(Y3lY1,Y2)p(Y2))) 
p(Y1)	


  Summations over each variable are done only for those portions of the 
expression that depend on variable	


  Save results of inner summing to avoid repeated calculation	

  Create Intermediate Functions	

  F-Y2(Y3,Y1)= (SUM(Y2)p(Y3lY1,Y2)p(Y2)) 	


Variable elimination 

General idea: 
 Write query in the form 

 Iteratively 
  Move all irrelevant terms outside of innermost sum 
  Perform innermost sum, getting a new term 
  Insert the new term into the product 
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Variable elimination in chains* 

 Consider the following chain: 

 We know that 

 By chain decomposition, we get 

A B C E D 

Product Rule in 
Reverse order 

Marginalization 
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Elimination in chains 

 Rearranging terms ... 

A B C E D 
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Elimination in chains 

 Now we can perform innermost summation 

A B C E D X 
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Elimination in chains* 

 Rearranging and then summing again, we get 

A B C E D X X 
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Elimination in chains with evidence 

 Similarly, we understand the backward pass 

 We write the query in explicit form 

A B C E D 
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Elimination in chains with evidence 

 Eliminating d, we get 

A B C E D X 
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P(e|c) = Sum(d) P(e,d|c),     P(e,d|c)=P(e|c,d)P(e|d),     P(e|c,d)=P(e|c) d-sep 



Elimination in chains with evidence 

 Eliminating c, we get 

A B C E D X X 
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Elimination in chains with evidence 

 Finally, we eliminate b 

A B C E D X X X 

sj=e, si=b, d=a 
P(si|d) = Sum(j) P(si,sj|d) 
P(si,sj|d)=P(si|sj,d)P(sj|d) 
P(e|b,a)=P(e|b) d-sep 
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A more complex example 

Visit to  
Asia Smoking 

Lung Cancer Tuberculosis 

Abnormality 
in Chest Bronchitis 

X-Ray Dyspnea 

 “Asia” network: 
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V S 

L T 

A B 

X D 

  We want to compute P(d) 
  Need to eliminate: v,s,x,t,l,a,b 

Initial factors 
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V S 

L T 

A B 

X D 

  We want to compute P(d) 
  Need to eliminate: v,s,x,t,l,a,b 

Initial factors 

Eliminate: v 

Note: fv(t) = P(t) 
In general, result of elimination is not necessarily a probability term 

Compute: 
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V S 

L T 

A B 

X D 

  We want to compute P(d) 
  Need to eliminate: s,x,t,l,a,b 

  Initial factors 

Eliminate: s 

Summing on s results in a factor with two arguments fs(b,l) 
In general, result of elimination may be a function of several variables 

Compute: 
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V S 

L T 

A B 

X D 

  We want to compute P(d) 
  Need to eliminate: x,t,l,a,b 

  Initial factors 

Eliminate: x 

Note: fx(a) = 1 for all values of a !!      {P(x|a) + P(not x|a) =1} 

Compute: 
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V S 

L T 

A B 

X D 

  We want to compute P(d) 
  Need to eliminate: t,l,a,b 

  Initial factors 

Eliminate: t 

Compute: 
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V S 

L T 

A B 

X D 

  We want to compute P(d) 
  Need to eliminate: l,a,b 

  Initial factors 

Eliminate: l 
Compute: 
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V S 

L T 

A B 

X D 

  We want to compute P(d) 
  Need to eliminate: a,b 

  Initial factors 

Eliminate: a and b:  
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Variable elimination 

 To summarize, variable elimination can be 
represented as a sequence of rewriting 
operations 

 Actual computations are done in elimination 
steps 

 The overall amount of computation depends on 
order of elimination 
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Dealing with evidence  

  We start by writing the factors: 

  Since we know that V = t, we don’t need to eliminate V 
  Instead, we can replace the factors P(V) and P(T|V) with 

  These “select” the appropriate parts of the original factors given the 
evidence 

  Note that fp(V) is a constant, and thus does not appear in elimination of 
other variables 

V S 

L T 

A B 

X D 
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Dealing with evidence 
  Given evidence V = t, S = f, D = t 
  Compute P(L, V = t, S = f, D = t ) 

  Initial factors, after setting evidence: 

  Eliminating x, we get 

  Eliminating t, we get 

  Eliminating a, we get 

  Eliminating b, we get 

V S 
L T 

A B 
X D 
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e+ T U X Y ... ... e- 

Incremental Updating of BN: Pearl’s 
message passing algorithm – Simple Chains 

e = {e+,e-}  
e+   Represents the “causal” evidence 
e-   Represents the “evidential” evidence 

Need to compute Bel(x) 
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Simple Chains cont. 

Case 1 e+ ..-->x---> …e- 
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The λ(x) and π(x) Messages 

λ(x) represents the degree to which x might 
explain the evidential support. -- P(e-|X)  

π(x) represents the direct causal support for x. 
-- P(X|e+) 

Both λ(x) and π(x) can be calculated in terms 
of the λ and π values of the neighbors of x. 
e+ T U X Y ... ... e- 

λ	
π	
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Computing λ(x) based on λ(y)  

e+ T U X Y ... ... e- 
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Computing π(x) based on π(u) 
e+ T U X Y ... ... e- 
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Update scheme for chains 

Bel(x) 

λ(x) 

π(u) 

λ(y) 

π(x) Mx|u 

My|x 

e+ T U X Y e- ... ... 
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Belief Propagation in Trees 

  Each node must 
combine the impact of 
λ-messages from several 
children. 

  Each node must 
distribute a separate π-
message to each child. 

Y 

ex
+ 

ez
- ey

- 

ex
- 

X 

U 

Z 

λ	

π	




V. Lesser; CS683, F10 

Propagation in Polytrees 

Xi 

U1 Up 

Yc Y1 

EU1Xi EUpXi 

EXiYc 

EXi 

EXi 

EXiY1 

+ + 

+ 

- 

- - 

. . . 

. . . 
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Polytrees 

  In a polytree, there is just one (undirected path) between any two 
nodes. (avoids issue of double counting of evidence) 

  A typical node D divides a polytree in two disconnected 
polytrees. 

  Need to consider only evidence at the boundary of the graph.  
  A does not affect B so no messages need to go from A to B through D 
  F does not affect E so no messages need to go from F to E through G  

Polytrees 

  Theorem: Inference in a polytree is linear in the  
 size of the network 

A 

C B 

D E 

F G 

H Recall that a polytree is a network 
where there is at most one path from 
one variable to another 
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Heuristics for node ordering 

  Maximum cardinality search: number the nodes from 1 to n, 
in increasing order, always assigning the next number to the 
vertex having the largest set of previously numbered neighbors.  
The elimination order is from n to 1. 

  Minimum discrepancy search: at each point, eliminate the 
node that causes the fewest edges to be added to the induced 
graph. 

  Minimum size/weight search: at each point, eliminate the node 
that causes the smallest clique to be created, where “small” is 
measured either in terms of number of nodes or number of 
entries in the factor. 
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Next Lecture 

  Inference in Multiply Connected BNs 


