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P(Burglary |JohnCalls) —
using joint probability distribution

+ Diagnostic inferences (from effects to
causes).

B

\ /"
A

7 \

J M

= Given that JohnCalls, infer that P(Burglary |
JohnCalls) = 0.016

P(B,J) = normalized Sum (E,A,M) P(B,e,a,J,m)

.

The neighbors (John, Mary) promise to call you at work P(B,E,A,J,M)=

when they hear the alarm P(B)P(E)P(A|B,E)

" Jo}ln always f:al!s when he hears the alarm, but confuses alarm PUIA)P(M|A)
with phone ringing (and calls then also)

Mary likes loud music and sometimes misses alarm!

Assumption: John and Mary don’t perceive burglary directly;

they do not feel minor earthquakes

V Lesier, CS683,F10

P(Burglary |JohnCalls) —
using inference

—

Rearranging conditional probability expression to exploit CPTs in belief network

k*P(J|B)*P(B)

Marginalization k*Sum  P(J,Alarm|B)*P(B)

P(s;sild) = P(sil 5;,d) P(sld) ~ k*Sum, P(J|4,B)*P(A|B) *P(B)

Case 1: a node is conditionally independent of non-descendants given its
parents

Bayes Rule

k*Sum  P(J|A)*P(A|B) *P(B)
Marginalization k*Sum  P(J|4)*SumzP(4,E|B) *P(B)
P(s;,s;|d)=P(s|| s;,d) P(s;/d)  k*Sum , P(J|4)*SumpP(A|B,E)*P(E|B) *P(B)
case | P(E|B)=P(E) k*Sum  P(J|4) *SumzP(A|B,E) *P(E) *P(B)

Can read everything off the CPT’s

Topics for this Lecture

+ Construction of Belief Network

* Inference in Belief Networks
» Variable Elimination

¥ Lesier, CS683,F10




U Benefits of belief networks

—

———————

¢ Individual “design” decisions are
understandable: causal structure and
conditional probabilities.

* BNs encode conditional independence,
without which probabilistic reasoning is
hopeless.

¢ Can do inference even in the presence of
missing evidence.

U Constructing belief networks

—
|

Loop:
¢ Pick a variable X; to add to the graph.

¢ Find (minimal) set of parents (previous nodes
created) such that
P(Xj|Parents(X;)) = P(X|IX_;, X5, ...y X))
» Conditional Dependence vs Causality

¢ Draw arcs from Parents(X;) to X.

¢ Specify the CPT: P(X;|Parents(X)).

Constructing belief networks
cont.

—
———————

Properties of the algorithm:
¢ Graph is always acyclic.

+ No redundant information => consistency
with the axioms of probability.

+ Network structure/compactness depends
on the ordering of the variables.

U Example: Ordering M,J,A,B.E

Call

Why is MaryCalls
not a parent of
Burglary?

Conditional

5
@rthquake
Dependence vs N
Causality rglary Why is Burglary a parent

of Earthquake?

¥ Lesier, CS683,F10




Example: Ordering M,J,E,B,A

—

Ordering
Affects Size of
CPTs?

Why is

Marycalls a
parent of
Burglary in 4
this ordering?

d-separation:
Direction-Dependent Separation

+ Network construction

= Conditional independence of a node and its predecessors,
given its parents

= The absence of a link between two variables does not
guarantee their independence

+ Effective inference needs to exploit a/l available
conditional independences

= Which set of nodes X are conditionally independent of
another set Y, given a set of evidence nodes E

o P(X,Y[E) = P(X|E) * P(Y|E); P(X|Y,E)= P(X|E); P(Y|X,E)= P(Y|E)
= Limits propagation of information
= Comes directly from structure of network

V Lesier, CS683,F10

d-separation

Definition: If X, Y and E are three disjoint subsets
of nodes in a DAG, then E is said to d-separate X
from Y if every undirected path from X to Y is
blocked by E. A path is blocked if it contains a
node Z such that:

(1) Z has one incoming and one outgoing arrow; or

(2) Z has two outgoing arrows; or

(3) Z has two incoming arrows and neither Z nor any
of its descendants is in E.

V. Lessers CS683. F10

d-separation cont.

et | O-H-O—4-@—O—+0"
Case 2 O_ ( )'__@__,( )__O
| O O—=R—010

O O

Directionality of links from X or Y to immediate predecessor or successor of Z
not important; In case 3, notice E is outside of Z

¥ Lesier, CS683,F10




U d-separation cont.

—

¢ Property of belief networks: if X and Y are d-
separated by E, then X and Y are conditionally
independent given E.

+ An “if-and-only-if” relationship between the
graph and the probabilistic model cannot always
be achieved.

» The graph may not represent all possible conditional
independent relations

d-separation example- case 1

(1) Z has one incoming and one outgoing arrow |
Battery>

Zin E has
one incoming
and one
outgoing
arrow

Whether there is Gas[G] in the car and whether the car
Radio [R] plays are independent given evidence about
whether the SparkPlugs fire [Ignition] (case 1).

P(R,GII) = P(RII) - P(GIT)
P(GILR) = P(GIT); P(RII, G) = P(RI)

d-separation example- case 2
(2) Z has two outgoing arrows

Battery>

ZinE
has two
outgoing
arrows

Gas and Radio are conditionally-independent if it
is known if the Battery [Blworks (case?).

P(RIB,G) = P(RIB); P(GIB,R)=P(GIB)

U d-separation example - case 3

(3) Z has two incoming arrows and neither Z nor any
of its descendants is in E.

—
|

Z has two

incoming

arrows and

neither Z nor Y

any of its STARTS&MOVES IN

descendants is ZBUTALSOINE

inE FOR CASE 3

Gas and Radio are independent given no evidence at all.
P(Gas|Radio)=P(Gas); P(Radio|Gas)=P(Radio);

But they are dependent given evidence about whether the car Starts.
P(Gas|Radio,Start) ~= P(Gas|Start)

For example, if the car does not start, then the radio playing is increased evidence
that we are out of gas. Gas and Radio are also dependent given evidence about
whether the car Moves, because that is enabled by the car starting {does not fit

into any of the 3 cases}.

i




U Inference in Belief Networks

—

¢ BNs are fairly expressive and easily engineered
representation for knowledge in probabilistic
domains.

¢ They facilitate the development of inference
algorithms.

¢ They are particularly suited for parallelization

¢ Current inference algorithms are efficient and
can solve large real-world problems.

Network Features‘ Affecting
Efficiency of Reasoning

—

* Topology (trees, singly-connected, sparsely-
connected, DAGs).

¢ Size (number of nodes).

* Type of variables (discrete, cont, functional,
noisy-logical, mixed).

* Network dynamics (static, dynamic).

Belief Propagation in Polytrees
lytree belief

network, where A /\L \Z\

nodes are singly A,

/ A \\ \

*Exact inference,
Linear in size of

}?—) [
A, A,
E, E, Ey

network

H,y Double Counting

Nhe effects pf H,
Es Eg

Multiconnected
belief network. This
is a DAG, but not a
polytree.

*Exact inference,
Worst case NP-hard

Reviewing Alternative
Reasoning in Belief Networks

of 4 patterns of  §
reasoning that can §
behandled by~ }
belief networks. £}
represents an H

evidence variable; | % @
Qs a query H
variable.

(Explaining Away) e

Intercausal
Diagnostic Causal Mixed

P(Q/E) =?




Reasoning Directly in Belief Networks:

Calculation in Polytree with Evidence Above

+ Whatis p(Y5IY1,Y4)
Define in terms of CPTs = p(Y5,Y4,Y3,Y2,Y1) Y2
P(Y5IY3,Y4)p(Y4)p(Y3IY1,Y2)p(Y2)p(Y1)
p(YSIYL,Y4)=p(Y5,Y1,Y4)/p(Y1,Y4)
Use cpt to sum over missing variables

Y3 /ﬁ,
+ p(Y51Y1,Y4) = p(Y5,Y3IY1, Y4) + P(Y5, ~Y3IY1,Y4) ‘

p(Y5,Y1,Y4)=Sum(Y2,Y3) p(Y5.Y4,Y3,Y2,Y])
assuming variables take on only truth or falsity.

« Connect to parents of Y5 not already part of expression, _Y5

by marginalization

+ =SUM(Y3) p(Y5,Y3IY1,Y4)

Continuation of Example Above

*

= SUM(Y3)(p(Y51Y3, Y1, Y4) * p(Y3I Y1, Y4))
. P(si,sjld) =P(s| sj,d) P(sjld)

1 y

S

*

y
= SUM(Y3) p(Y5IY3, Y4) * p(Y3LY1, Y4) Hl /
= Y1 conditionally independent of Y5 given Y3,
= Y3 represents all the contributions of Y1 to Y5 [ﬂ
Ys

~

= Case 1: a node is conditionally independent of non-
descendants given its parents

N\

+ =SUM(Y3) p(Y51Y3, Y4) * p(Y3IY1)
= Y4 conditionally independent of Y3 given Y1
s Case 3: Y1 (E) not a descendant of Y5 (Z) which d-

separates Y3 (X) and Y4 (Y); thus p(Y3l Y1, Y4) =
p(Y3IY1)

V Lesier, CS683,F10

U Continuation of Example Above

*

= SUM(Y3) p(Y5IY3, Y4) * (Sum (Y2)p(Y3, y, v
Y21Y1))

= Connect to parents of Y3 not already part of
expression

Y3 Y4
= SUM(Y3) p(Y51Y3, Y4) *( Sum (Y2) p(Y3I /

*

Y1,Y2) * p(Y2IYD))

. p(si,sjld) =p(sil sj,d) p(sjld); product rule v

*

= SUM(Y3) p(Y51Y3, Y4) *( SUM(Y2) p(Y3I
Y1,Y2)*p(Y2))
« Y2 independent of Y1; p(Y2/Y1)=p(Y2)

What is p(Y5IY1,Y4
= Definition of Baysean network P Y4

V. Lessers CS683. F10

Reasoning Directly in Belief Networks:
Calculation in Polytree with Evidence Below

B V|

« What is p(Y1lY5)
« p(Y1IYS)=p(Y1,Y5)/p(Y5)
= p(YL,Y2,Y3,Y4,Y5) = in terms of cpt y3 Y4

« p(Y5Y3,Y4)p(Y3IYLY2)p(YD)p(Y2)p(Y4)

Ve

+ p(Y1Y5) = p(YSIYD)p(Y1)/p(Y5) Ys

= Bayes Rule

+ =K *p(Y5IYD)p(Y1)




U Continuation of Example Below

=K * p(Y5IYDp(Y1)
Yi Y2
¢ =K *(SUM(Y3) p(Y51Y3)p(Y3IY1)) p(Y1)
Connect to Y3 parent of Y5 not already part of expression
P(s;1s) = SUM(d)P(s;| s, d) P(d | s)
Y1 conditionally independent of Y5 given Y3; case 1 Vs Ya

P(YSIY3,Y1)= p(Y51Y3) ’
o =K * (SUM(Y3) (SUM(Y4)p(Y5Y3,Y4)p(Y4IY3))p(Y3IY1)) p ‘

(Y1)
= Connect to Y4 parent of Y5 not already part of expression Ys
= P(s;1s) = SUM(d)P(s;1 s, d) P(d | s)

il Sjs

¢+ =K* (SUM(Y3) (SUM(Y4)p(Y5IY3,Y4)p(Y4))p(Y3IYD) p
(YD)
= Y4 independent of Y3; p(Y41Y3)= p(Y4)

V. Lessers CS683. F10

U Continuation of Example Below

+ =K * (SUM(Y3) (SUM(Y4)p(Y51Y3,Y4)p
(Y&)p(Y31Y1)) p(Y1) Y Y2

+ =K * (SUM(Y3) (SUM(Y4)p(Y5IY3,Y4)p
(YA)(SUM(Y2)p(Y3IY1,Y2)p(Y21Y1))) p(Y1)

= Connect to_Y2 parent of Y3 not already part of T /

Y4
expression
= P(s5;1s) = SUM@P(s;ls;, d) P(d | s))
Ys
¢ =K * (SUM(Y3) (SUM(Y4)p(Y5!Y3,Y4)p
(Y4))(SUM(Y2)p(Y3I Y1,Y2)p(Y2))) p(Y1)
= Y2 independent of Y1
= Expression that can be calculated from cpt

Evidence Above and Below

for Polytrees

If there is evidence both above and below P(Y31Y5,Y2)

we separate the evidence into above, € , and below, €, portions and use a version of Bayes’ rule to write

e 106" )p(Qle”)

POl ey = PENEIPIO

ple1e) Y £
l Y2 £

we treat =k, as a normalizing factor and write

1
ple let)

Q YS‘/
POle )=k ple- 1Q.e)p(Qle) - J /y4

Q d-separates £ from £ . so .
YsE.

P(Y31Y5,Y2)=P(Y5|Y3)P(Y3|Y2)

PQle e ) =k,ple- 1Q)p(Qle)

We calculate the first probability in this product as part of the top-down procedure for
calculating p(Q1&-) . The second probability is calculated directly by the bottom-up procedure

Announcement

* Material on Variable Elimination was not
covered in class and will not be on final
examination

—
|




U Variable Elimination

—

———————

¢ Can remove a lot of re-calculation/multiplications in expression

o K * (SUM(Y3) (SUM(Y4)p(Y5IY3,Y4)p(Y4))(SUM(Y2)p(Y3IY1,Y2)p(Y2)))
p(YD

+ Summations over each variable are done only for those portions of the
expression that depend on variable

+ Save results of inner to avoid rep d calculation
= Create Intermediate Functions
« F-Y2(Y3,Y1)= (SUM(Y2)p(Y3IY1,Y2)p(Y2))

U Variable elimination

General idea:
¢ Write query in the form

P(X,.e)= 22 lell’(.\, | pa,)

¢ [teratively
= Move all irrelevant terms outside of innermost sum
= Perform innermost sum, getting a new term
= Insert the new term into the product

| |
U Variable elimination in chains*

¢ Consider the following chain:
O~~~ o—CeD
+ We know that
P(e) - Z Z Z ZP(a,b,c,d,e) Marginalization
+ By chain decomposition, we get
P(e) = ZZ Z ZP(a,b,c,d,e)

- 333 TP@PEIPCIBPE )Pl d)

Product Rule in
Reverse order

U Elimination in chains

ChodPbo o TP &

¢ Rearranging terms ...

Pe)- 333 SP@P| a)P(c |)P(d |c)P(e | d)
- 33 3PelbP Pl )T P@PB o)




U Elimination in chains

RO~~~

+ Now we can perform innermost summation

Ple) - ZZZP(C [B)P(d | c)P(eld) Z P(a)P(b|a)

- 33 P16 Pl dp(b)

U Elimination in chains*

—
|

KXo~ Ceo—Coo—CE>

¢ Rearranging and then summing again, we get

Ple) - ZZZP(CIb;P(d |c)P(e|d)p(b)
- ZEP(d lc)Pe Id)z P(c1b)p(b)

- 3P el ple)

U Elimination in chains with evidence

¢ Similarly, we understand the backward pass
CO—C O~~~

¢ We write the query in explicit form

P(a,e) = 2 2 ZP(a,b,c,d,e)

- 2 > EP(G)P(b la)P(c|b)P(d | c)P(eld)

U Elimination in chains with evidence

CO—CEO—Co—Po—C>

+ Eliminating d, we get

P(a.e) - ZEZE(G)P(b la)P(c |b)P(d [c)Ple|d)
- ZZP(G)P(bla)P(CIb)Z P(d |c)P(eld)

- Z 2P@Pbla)(clb)Plelc)”

P(e|c) = Sum(d) P(e,d|c), P(e,d|c)=P(e|c,d)P(e|d), P(e|c,d)=P(e|c) d-sep




U Elimination in chains with evidence

GG CXO—~CRO—CE>

¢ Eliminating ¢, we get

Pla.e)= 3 SP@PBIaP(cIb)(elc)
-2waw|ﬂZPu|mmen)

-mewwlﬂﬂﬂbf

U Elimination in chains with evidence

EBLS Coe o s b

* Finally, we eliminate b

sie, s=b, d=a
P(sd) = Sum()) P(s,s/d)
P(s,[d)=P(s|ls;,d)P(s)ld)
P(elb,a)=P(e|b) d-sep

2\

P(a,e) = ZP(a)P(b |a)p(e|b)
= P(a)y P(bla)p(e]|b)
- P(a)P(ela)”

U A more complex example

—

* “Asia” network:

Visit to
Asia

+ We want to compute P(d)
+ Need to eliminate: v,s,x,t,/,a,b

Initial factors

O,

v

A O
& 5

P)P(s)P(t |v)P(I | s)P(bls)P(alt./)P(x |a)P(d|a,b)




* We want to compute P(d)
+ Need to eliminate: v,s,x,t,/,a,b

Initial factors

O,
v
A O
& 5
Pv)P(s)P(t [v)P(I | s)P(b|s)P(alt.l)P(x|a)P(d|a,b)

Eliminate: v

Compute:

£(t) = 3 POIP(E V)

= £ (H)P(s)P(/ |s)P(b|s)P(alt.)P(x |a)P(d |a,b)

Note: £,(t) = P(t)
In general, result of elimination is not necessarily a probability term

U* We want to compute P(d)

+ Need to eliminate: s,x,t,/a,b

©,
7,
.. A 8
+ Initial factors N
@O @
P(v)P(s)P(t Iv)P(I | s)P(b|s)P(alt.l)P(x|a)P(d|a,b)
= f,(1)P(s)P( | s)P(b|s)P(alt,1)P(x |a)P(d | a,b)

Eliminate: s

Compute:

£(b.))= SP(s)P(b]5)PU | 5)
= £(E(B.)P(al1.1)P(x | a)P(d | a,b)

Summing on s results in a factor with two arguments f,(b,/)
In general, result of elimination may be a function of several variables

* We want to compute P(d)
+ Need to eliminate: x,t,/,a,b

+ Initial factors

O,
v
A O
& 5
PW)P(s)P(t |v)P(I | s)P(b|s)P(alt l)P(x|a)P(d|a,b)
= (H)P(s)P(/ | s)P(b|s)P(alt,l)P(x |a)P(d |a,b)

= f,(F)f.(b./)P(a|t,)P(x | a)P(d | a,b)

Eliminate: x

Compute:

f.(a)= 3 P(x|a)

= (").(b.1)f (a)P(alt./)P(d | a,b)
Note: 7,(a) = Ifor all values of a /  {P(x|a) + P(not x|a) =1}

+ We want to compute P(d)
+ Need to eliminate: t,/,a,b

+ Initial factors

O,
v
A O
& 5
PW)P(s)P(t |v)P(I |s)P(bls)P(alt.l)P(x|a)P(d|a,b)
= f,(t)P(s)P(I | s)P(b|s)P(alt,/)P(x |a)P(d | a,b)

= f,(1),(b.1)P(a|t.1)P(x | a)P(d | a,b)
= L) (b.1)f (a)P(alt./)P(d | a,b)

Eliminate:
Compute:

f(al)- zf,(f)P(alf,/)
= f,(b.1)f (a)f.(a.])P(d | a,b)




U‘ We want to compute P(d)

* Need to eliminate: /,a,b

€
2
.. A O,
+ Initial factors
N
o @
PW)P(s)P(t |v)P(l | s)P(b|s)P(alt I)P(x|a)P(d |a,b)
= f,(1)P(s)P(/ | s)P(b|s)P(alt.l)P(x |a)P(d |a,b)
= £, (t).(b,/)P(a|t,)P(x | a)P(d | a,b)
= f,(t)f.(b.1)f,(a)P(alt.1)P(d | a,b)
= f,(b.1)f (a) (a./)P(d | a,b)

Eliminate: /

Compute: fi(a,b) - Zf,(b,l)f,(a,l)

+ Need to eliminate: a,b

U* We want to compute P(d)

©,
7,
.. A 8
+ Initial factors
N
@O @
PW)P(s)P(tIv)P(I |s)P(b|s)P(alt.l)P(x|a)P(d|a,b)
=f,(t)P(s)P(/ | s)P(b|s)P(alt,l)P(x |a)P(d |a,b)
= £, (t).(b,/)P(a|t,1)P(x | a)P(d | a,b)
= f,(t)f.(b,/)f,(a)P(alt./)P(d | a,b)
= f,(b,/)f.(a),(a.l)P(d | a,b)
= f(a.b)f.(a)P(d |a,b) = £,(b,d) = f,(d)

Eliminate: aand b:

5(d) - zﬂ(b,d)

U Variable elimination

—

=

+ To summarize, variable elimination can be
represented as a sequence of rewriting
operations

¢ Actual computations are done in elimination
steps

+ The overall amount of computation depends on
order of elimination

U Dealing with evidence

+ We start by writing the factors:

Pw)P(s)P(t [v)P( | s)P(b|s)P(alt.l)P(x |a)P(d |a,b)

+ Since we know that V = 1, we don’t need to eliminate V/
+ Instead, we can replace the factors P(V)and P(T/V)with
fowy =PV =1) £,,T)=PT IV =1)

+ These “select” the appropriate parts of the original factors given the
evidence

¢ Note that 7, y)is a constant, and thus does not appear in elimination of
other varial fes




Given evidence V=t,S=f, D=t
e Compute P(L, V=t 5=£f D=t)

Ui)ealing with evidence

3

e |Initial factors, after setting evidence:

f":vi‘fﬁ‘iﬂf;‘rr v I(f )f

e Eliminating x, we get
fv;.- :-fp'.:s:f*'
e Eliminating 1, we get

oo Forn (F

Pis) P(ils) Pltis)

(D ey (B)P(@ | £.1)P(x | a)f

(a.b)

Pldlab)

() (D sy (BYPLa | 1.1)F, ;a)f,.l,,u ,,(a.b)

(b)Y (@.0)f (a)f; u, y(a.b)

o Eliminating a, we get
fv:.v;f/»'-;;:fFu‘|;:-(I)fr‘r:-;](b)fu(b'l)
e Eliminating b, we get

oo fors ot (DF (5

Pis)P(lls)

Incremental Updating df BN: Pearl’s
message passing algorithm — Simple Chains

OO ~O-O-O O

e={e"e}
€' Represents the “causal” evidence
€ Represents the “evidential” evidence

Need to compute Bel(x)

U Simple Chains cont.

—

Bel(x) = P(xle*e™)
Pl lxe")P(xle")
P(e" le")
=aP(e lxe")P(xle")
=aP(e 1 x)P(xle")
=a-A(x) m(x)

———————

Bayes rule

Normalization
xd-sepe‘e”

Case 1e*..-->x-—> ...e”

U The M(x) and m(x) Messages

—

M(x) represents the degree to which x might
explain the evidential support. -- P(eX)

m(x) represents the direct causal support for x.
- P(Xle")

Both A(x) and nt(x) can be calculated in terms
of the A and = values of the neighbors of x.

_.®_ _@_@)_@_, _.
m A




U Computing A(x) based on A(y)

OO - ~O-@O- - -©

Ax) =P(e” 1 x)
= EP(e_ I x,y)P(y1x)
= EP(e_ Iy)P(ylx) yd-sepx,e”

= > APy x)

=AM,

U Computing mt(x) based on mt(u)
@O -~OO-0--—©

a(x) = P(xle™)

=SPxluet)Pule™)
u

=S Pxlu)Pule®)
u

=Y P(xlu)m(u)

u
=]T(Ll)‘Mx|

+
ud-sepx,e

u

U Update scheme for chains

—
———————

(u) My, | (x)
Bel(x)
Mx) M, My)

- ‘
U Belief Propagation in Trees
:

+ Each node must U ex+
combine the impact of N
A-messages from several PN T
children. A

T

¢ Each node must @ l
distribute a separate - A A
message to each child. / \ / \

e e,
e




—

Propagation in Polytrees

V. Lessers CS683. F10

*

*

s, CS683,F10

Polytrees
o e
© ONO (£)
() ©

In a polytree, there is just one (undirected path) between any two
nodes. (avoids issue of double counting of evidence)

A typical node D divides a polytree in two disconnected
polytrees.

Need to consider only evidence at the boundary of the graph.

= A does not affect B so no messages need to go from A to B through D

= F does not affect E so no messages need to go from F to E through G

Polytrees

Recall that a polytree is a network
where there is at most one path from
one variable to another
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+ Theorem: Inference in a polytree is linear in the
size of the network
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Heuristics for node ordering

Maximum cardinality search: number the nodes from 1 to n,
in increasing order, always assigning the next number to the
vertex having the largest set of previously numbered neighbors.
The elimination order is from n to 1.

Minimum discrepancy search: at each point, eliminate the
node that causes the fewest edges to be added to the induced
graph.

Minimum size/weight search: at each point, eliminate the node
that causes the smallest clique to be created, where “small” is
measured either in terms of number of nodes or number of
entries in the factor.




U Next Lecture

¢ Inference in Multiply Connected BNs




