
Lecture 17: Uncertainty 2 

Victor R. Lesser 
CMPSCI 683 

Fall 2010 



Today’s Lecture 

•  How belief networks can be a “Knowledge 
Base” for probabilistic knowledge. 

• How to construct a belief network. 

• How to answer probabilistic queries, such as P
( Hypothesis | Evidence ), using belief networks. 
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Review of Key Issues with respect to 
Probability Theory 

  Basic probability statements include prior probabilities and 
conditional probabilities over simple and complex 
propositions. 
  Product rule, Marginalization(summing out) and conditioning 

  The axioms of probability specify constraints on reasonable 
assignments of probabilities to propositions. 
  An agent that violates the axioms will behave irrationally in some 

circumstances. 

  The joint probability distribution specifies the probability of 
each complete assignment of values to random variables 
  It is usually far too large to create or use. 



Defining Things in Terms of Joint 
Probability Distribution 

  P(A ∧ B) = P(A,B) 
  P(A ∨ B) = P(A) + P(B) - P(A,B) 

   P(A|B) = P(A,B)/P(B)   when P(B) > 0, or 
   P(A,B) = P(A|B) P(B)  (the product rule) 

  P(A,B,C,D,..) = P(A|B,C, D,..) P(B,C, D,..) 

  P(A) = ∑iP(A,Bi) -- marginalization or summing out 

  P(A) = ∑iP(A | Bi) P(Bi) -- conditioning 
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Review of Key Issues with respect to 
Baye’ Rule 

 Bayes’ rule allows unknown probabilities to be 
computed from known, stable ones. 

  In the general case, combining many pieces of 
evidence may require assessing a large number 
of conditional probabilities. 

 Conditional independence brought about by 
direct causal relationships in the domain allows 
Bayesian updating to work effectively even with 
multiple pieces of evidence. 
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Bayes’ Rule 

 Conditional probability from its inverse. 

 Bayes’ rule is typically written as: P(B | A)=αP(A | B)P(B) 

  Condition on background knowledge E:   P(B|A,E) = (P(A|B,E) P(B|E)) / P(A|E) 

  Can also be expressed as :   P(B|E1,E2) = (P(E1, E1|B) P(B)) / P(E1, E1)  
  by seeing {E1, E2} as A         

  With conditional independence, Bayes’ rule becomes: P(B|E1, E2) = α P(B) P(E1|
B) P(E2|B) 
   P(E1, E2|B) = P(E1|B) P(E2|B) conditional independence 
  Incremental evidence accumulation “P(B) P(E1|B)” for P(B|E1)   
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Probabilistic reasoning 
  Can be performed using the joint probability 

distribution: 

  Problem:  How to represent the joint probability 
distribution compactly to facilitate inference. 

  We will use a belief network as a data structure to 
represent the conditional independence relationships 
between the variables in a given domain. 

Conditioning          Marginalization            
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Concatenate on to existing values list  

Holds value for every variable in Y 

Repeated 
Marginalization until 
all domain variables 
expanded so can 
read directly from 
joint distribution 
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Belief Networks 
 A major advance in making probabilistic reasoning systems practical for AI has 
been the development of belief networks (also called Bayesian/probabilistic 
networks). 

 The main purpose of the belief network is to encode the conditional 
independence relations in a domain. 
  - real domains have a lot of structure due to causality 

 This makes it possible to specify a complete probabilistic model using far fewer 
(and more  natural/available) probabilities while keeping probabilistic interference 
tractable. 

  Considered one of the major advances in AI 
  puts diagnostic and classification reasoning on a firm theoretical foundation 
  makes possible large applications 
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Belief (or Bayesian) networks 

 Set of nodes, one per variable 

 Directed acyclic graph (DAG):  
link represents “direct” influence 

 Conditional probability tables (CPTs):  P
(Child | Parent1, ..., Parentn) 



Bayesian network example 

X = {A=a, B=b, C=c, D=d, E=e, F=f, G=g) 

P(a,b,c,d,e,f,g)= P(c|a,b,c,d,e,f,g)P(a,b,d,e,f,g) 
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Productize 
order c,d,f,g 
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Conditional independence in BNs 

 Each node is conditionally 
independent of its non-descendants, 
given its parents. 
 Says nothing about other dependencies 

 Causality is intricately related to 
conditional independence. 

 Conditional independence is  
one type of knowledge that we use. 



V. Lesser; CS683, F10 

The semantics of belief networks 

 Any joint distribution can be decomposed into 
a product of conditionals:    

  P(X1, X2, ..., Xn) = P(Xn|Xn-1, ...,X1)P
(Xn-1, ...,X1) = Π P(Xi|Xi-1, ..., X1) 

 Value of belief networks is in “exposing” 
conditional independence relations that 

 make this product simpler:    
 P(X1, X2, ..., Xn) = Π P(Xi | Parents(Xi)) 



Earthquake example (Pearl) 
  You have a new burglar alarm installed. 
  It is reliable about detecting burglary, but responds 

to minor earthquakes. 
  The neighbors (John, Mary) promise to call you at 

work when they hear the alarm 
  John always calls when he hears the alarm, but confuses 

alarm with phone ringing (and calls then also) 
  Mary likes loud music and sometimes misses alarm! 
  Assumption: John and Mary don’t perceive burglary 

directly; they do not feel minor earthquakes 
  Given evidence about who has and hasn’t called, 

estimate the probability of burglary. 
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Conditional probability tables 

Burglary  Earthquake  P(A=True | B,E)  P(A=False | B,E) 

True   True   0.950   0.050 

True   False   0.940   0.060 

False   True   0.290   0.710 

False   False   0.001   0.999 

How much data is needed to represent a particular 
problem?  How can we minimize it? 

Probability Alarm goes off when burglary and earthquake 
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Earthquake Example, Cont’d 

Belief network with probability information: 

Burglary	


JohnCalls"

Earthquake	


MaryCalls	


Alarm"

P(B)	

.001	


P(E)	

.002	


P(M)	

.70	

.01	


A	

T	

F	


P(J)	

.90	

.05	


A	

T	

F	


P(A)	

.95	

.94	

.29	


.001	


B    E	

T 	
T	

T 	
F	

F 	
T	

F 	
F	
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Earthquake example cont. 

E B 

A 

J M 

Priors: P(B), P(E) 
CPTs:  P(A|B,E), P(J|A), P(M|A) 

10 parameters in Belief Network 
but 31 parameters in the  
5-variable Joint Distribution 

P(B,E,A,J,M)= P(B)P(E)P(A|B,E)P(J|A)P(M|A) 

P(X1, X2, ..., Xn) = Π P(Xi | Parents(Xi)) 
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Earthquake example cont 

•  Suppose you need:      
      P(J,E) = Σ P(J,m,a,b,E) 

•  P(J,m,a,b,E) = 
P(J|m,a,b,E) P(m|a,b,E) P(a|b,E) P(b|E) P(E) 

•  Conditional independence saves us: P(J,m,a,b,E) = 
P(J|a) P(m|a) P(a|b,E) P(b) P(E) 

E B 

A 

J M 
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Ignorance /Laziness in Example 

  Not included 
  Mary is currently listening to music 
  telephone ringing and confusing John 

  Factor summarized in 
  Alarm → John calls 
  Alarm → Mary calls 

  Approximating Situation 
  eliminating hard-to-get information 
  reducing computational complexity 

How would they 
be fit in to bel 
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Inference in Belief Networks 
 BNs are fairly expressive and easily engineered 

representation for knowledge in probabilistic 
domains. 

 They facilitate the development of inference 
algorithms. 

 They are particularly suited for parallelization 
 Current inference algorithms are efficient and 

can solve large real-world problems. 
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Reasoning in Belief Networks 

Q	


E	


Q	
 E	
 E1	


E2	


Q	


E	


Q	


Diagnostic	
 Causal	

(Explaining Away)	


Intercausal	

Mixed	


Simple examples 
of 4 patterns of 
reasoning that can 
be handled by 
belief networks. E  
represents an 
evidence variable; 
Q is a query 
variable.	


P(Q|E) =? 
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Types of tasks and queries 

  Diagnostic inferences (from effects to 
causes). 

  Given that JohnCalls, infer that P(Burglary |
JohnCalls) = 0.016 

              normalized Sum (E,A,M) P(B,e,a,J,m) 
  Causal inferences (from causes to effects). 

  Given that Burglary, infer that P(JohnCalls |
Burglary) = 0.86 and P(MaryCalls |Burglary)= 
0.67. 

E B 

A 

J M 
P(B,E,A,J,M)=    
P(B)P(E)P(A|B,E)
P(J|A)P(M|A) 



How to do  P(Burglary |JohnCalls) 
  Bayes Rule                     k*P(J|B)*P(B) 
  Marginalization           k*SumA P(J,Alarm|B)*P(B) 
  P(si,sj|d) = P(si| sj,d) P(sj|d)   k*SumA P(J|A,B)*P(A|B) *P(B) 
  Case 1: a node is conditionally independent of non-descendants given its 

parents	

	
 	
 	
 	
k*SumA P(J|A)*P(A|B) *P(B) 

  Marginalization   k*SumA P(J|A)*SumEP(A,E|B) *P(B) 
  P(si,sj|d)=P(si| sj,d) P(sj|d)      k*SumA P(J|A)*SumEP(A|B,E)*P(B|E) *P(B) 
  case 1 P(B|E)=P(B)   k*SumA P(J|A)*SumEP(A|B,E)*P(B) *P(B) 
  Can read everything off the CPT’s 
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Types of tasks and queries cont. 
  Intercausal inferences (between causes of a 

common effect). 
  Given Alarm, we have P(Burglary |Alarm) = 0.376.  

But if we add the evidence that Earthquake is true, 
then P(Burglary |Alarm ∧ Earthquake) goes down to 
0.003.   

  Even though burglaries and earthquakes are 
independent, the presence of one makes the other 
less likely.  This pattern of reasoning is also known 
as explaining away.  

  Mixed inferences (combining two or more of 
the above). 
  Setting the effect JohnCalls to true and the cause 

Earthquake to false gives P(Alarm |JohnCalls ∧ 
¬Earthquake) = 0.03 

E B 

A 

J M 
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Chest clinic example 
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Example: 
Car Diagnosis  
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Other types of queries 
  Most probable explanation (MPE) or most likely hypothesis:	

	
The instantiation of all the remaining variables U with the highest 
probability given the evidence	


MPE(U | e) = argmaxu P(u,e)	

  Maximum a posteriori (MAP):	

	
The instantiation of some variables V with the highest probability 
given the evidence	


MAP(V | e) = argmaxv P(v,e)	

	
Note that the assignment to A in MAP(A|e) might be completely 
different from the assignment to A in MAP({A,B} | e) because of 
summing over non-specified variables, e.g., B.	


  Other queries: probability of an arbitrary logical expression over 
query variables, decision policies, information value, seeking 
evidence, information gathering planning, etc. 
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Representation of Conditional Probability 
Tables 

  Canonical distributions 
  Deterministic nodes 

  No uncertainty in decision 
If x1=a and x2=b ⇒ x3=c	


  Noisy - OR 
  Generalization of logical/OR 
  Each cause (parent) has an independent chance of causing the effect 
  All possible causes are listed 

  Otherwise add “miscellaneous cause” 

  Inhibition of causality independent among causes 
  O(k) vs O(2k) parameters need to specify P(H/Ci) 
  P(~H|C1, … Cn) = product of (1-P(H|Ci)) for all Ci=T 
  Reduce CPT significantly 



V. Lesser; CMPSCI 683, Fall 06 30 

Example of Noisy-OR 

P(Fever=T/Cold=T) = .4 
P(Fever=T/Flu=T) = .8 
P(Fever=T/Malaria=T) = .9 

P(~H/C1, … Cn) = product of (1-P(H/Ci)) 
for all Ci=T; if all false (Ci=F) then 0 
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Next Lecture 
 Construction of Belief Network 

 Inference in Belief Networks  

 Belief propagation 



Overall Grades 

 A (86-91) 5 

 A- (84-79) 9 

 B+ (75-64) 13 

 Below B+  9 
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Review of Long Questions on 
Exam –A 

  A (22 points) Sketch out an algorithm for bi-directional A*. As part of the sketch you should 
discuss why your algorithm will always find the minimal cost solution. 

  In order to do this problem, I would need to have both a heuristic admissible function that worked 
for both directions and obviously a well defined goal and start state (for example in route finding 
problem the city I am starting at the and city that I am going to) and appropriate operators for going 
in both directions. Obviously if you were doing the route finding you could do the search in both 
directions using the same operators and heuristic function. Additionally the cost g between two 
directly connected nodes should be the same no matter what direction you are coming from. There 
are two issues that must be resolved. First is how do I make a decision about which direction to 
next proceed. I would have two open lists one for each direction. I would choose for the node to 
next expand which has the smallest f value on either list. This way if I expand a node on backward 
search which is the smallest f and it is the initial state I have found the lowest cost solution and 
vice versa. I also have to understand how to handle the situation where in expanding a node one or 
more of its successors is on the other direction’s open list. In that case you can combine the two 
paths and generate a new node on the open list of the node that was a complete path with 
appropriate cost. Like A* generating a complete solution does not mean you can immediately 
terminate the search, you need to wait until this solution is taken off the open list to make the 
decision that this is the minimal cost path. However, if the node was on the other agent’s closed list 
then you could immediately stop. 
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Review of Long Questions on 
Exam –B.1 

  B.1 (8 points) Sketch out very briefly how this problem can be 
translated into an N-SAT problem in order to perform a stochastic 
search. You do not need to do the full translation! 

  For each node (state) in the graph there would be three literals. 
For example CT-red, CT-blue and CT-yellow. You would then 
have clauses indicating the one and only one of those literals is 
true. Similar to the mapping of the n-queens problem. You would 
then have clauses indicating the constraints among nodes. For 
instance there would be clauses indicating that if CT-red is true 
then MA-red needs to be false and RI red needs to be false; this 
would require multiple 2-literal clauses to express this ((not CT-
red) OR  (not MA-red)) AND ((not CT-red) OR  (not RI-red))     
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Review of Long Questions on 
Exam –B.2 

  B.2 (8 points) How would you formulate it as a systematic 
constraint satisfaction search? Give representative examples of 
the different types of constraints. 

  I would have a variable associated with each node (e.g, CT) in 
the map whose domain of values include red, blue and yellow. I 
would then have a set of pairwise constraints (such as CT not 
equal to MA) for each node in the map that is directly connected 
with another node. I would use min-conflict heuristic search 
paradigm.  
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Review of Long Questions on 
Exam –B3.3 

  B.3 (8 points) If you had a larger graph, coloring problem, let us 
say the entire map of the US which has 50 states, which search 
approach (systematic or stochastic) would you use. Briefly 
explain your reasoning! 

  I don’t think there is an obvious answer since using the mini-
conflict heuristic search at least for the N-queens problems is in 
the same ballpark as a stochastic search. I would see first 
whether I could find a good and cheap way to generate a 
heuristic starting solution. Probably, if that was the case, I would 
go with the systematic search otherwise stochastic search.  
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