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Announcements 

 3 more Homeworks 
  MDP Module (due Monday Nov 15, to be posted by 

Friday Nov 5) 
  Reasonging Under Uncertainty Module ( due Wed 

Dec 1, posted around Nov 15) 
  Learning Module ( due ? Friday Dec 10, posted 

around Wed Dec 1) 
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Today’s Lecture 

•  Review of sources of uncertainty in intelligent 
systems. 

•  Bayesian reasoning. 
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Ubiquity of Uncertainty 
  Most real domains are inaccessible, dynamic, and non-deterministic (at least 

from the agent’s perspective). 

  In these domains, it is impossible for an agent to know the exact state of its 
environment. 
  Also, agents can rarely be assumed to have complete, correct knowledge of a 

domain. 

  The qualification problem: many rules/models about a domain will be 
incomplete/incorrect because there are too many conditions to explicitly 
enumerate them all. 
  E.g., birds fly (unless they are dead, non-flying types, have broken a wing, 

are caged, etc.). 

  Finally, even where exact reasoning may be possible, it will typically be 
impractical computationally. 
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Sources of uncertainty 

  Imprecise model of the environment 
  weather forecasting -- Theoretical Ignorance 

 Stochastic environment 
  random processes, moving obstacles -- Theoretical 

Ignorance 

 Noisy sensory data   
  object identification and tracking -- Theoretical Ignorance 

  Imprecise model of the system 
  Medical science -- Theoretical Ignorance 
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Sources of uncertainty cont. 

 Limited computational resources 
  chess, planning with partial information -- Practical 

Ignorance 

 Limited communication resources 
  distributed systems, MAS without global view -- Practical 

Ignorance 

 Exceptions to our knowledge can never be fully 
enumerated 
  All birds fly -- Laziness 

Probability provides a way of numerically 
summarizing this uncertainty 
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Reasoning About Uncertainty 
  Making decisions without knowing everything relevant but using the best 

of what we do know 
  Crucial to the architecture of an agent that is interacting with the “real” world 

  Exploiting background and commonsense knowledge, which is knowledge 
about what is generally true 
  Difficult to easily represent in classical logic 

  Introduce requirements for vagueness, uncertainty, incomplete and 
contradictory information 

  Very different approaches based on type of reasoning required and 
assumptions about independence of evidence 

The challenge is how to acquire the necessary qualitative and 
quantitative relationships and to devise efficient methods for 
computing useful answers from uncertain knowledge 
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Acting Under Uncertainty 
  Because uncertainty is a fact of life in most domains, 

agents must be able to act in spite of uncertainty. 
  How should agents behave—What is the “right” thing to 

do? 

  The rational agent model: agents should do what is 
expected to maximize their performance measure, given 
the information they have -- Decision Theory. 

  Thus, a rational decision involves knowing: 
  The relative likelihood of achieving different states/goals -- 

Probability Theory. 
  The relative importance (pay-off) for various states/goals  -- 

Utility Theory. 
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Uncertainty in First-Order Logic 
(FOL)  

  First-Order Logic (FOL) makes the epistemological 
commitment that facts are either true, false, or unknown. 
 Contrast with Probability Theory: Degree of Belief in Proposition, same 
epistemological commitment as FOL 
 Contrast with Fuzzy Logic: Degree of Truth in Proposition 

  Deductive inference can be done only with categorical facts 
(definitely true statements). 
Thus, FOL (and logical agents) cannot deal with uncertainty. 
This is a major limitation since virtually all real-world domains involve 
uncertainty. 

  Eliminating uncertainty would require that: 
 the world be accessible, static, and deterministic; 
 the agent has complete and correct knowledge; 
 it is practical to do complete, sound inference. 
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Cons (probabilities) 
  McCarthy and Hayes claimed that probabilities are 

“epistemologically inadequate,” leading AI researchers to 
stay away from it for awhile!!. [“Some philosophical problems 
from the standpoint of artificial intelligence,” Machine Intelligence, 
4:463-502, 1969.] 

  Arguments against a probabilistic approach (no longer 
valid?) 
  Use of probability requires a massive amount of data 
  Use of probability requires the enumeration of all possibilities 
  Hides details of character of uncertainty 
  People are bad probability estimators 
  We do not have those numbers 
  We find their use inconvenient 
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Pros (probabilities) 
“The only satisfactory description of uncertainty is probability.  By 

this it is meant that every uncertainty statement must be in the form 
of a probability; that several uncertainties must be combined using 
the rules of probability, and that the calculation of probabilities is 
adequate to handle all situations involving uncertainty.  In 
particular, alternative descriptions of uncertainty are unnecessary.”

   
-- D.V. Lindey, Statistical Science 2:17-24, 1987. 

“Probability theory is really about the structure of reasoning.”  
  -- Glen Shafer 
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Probability versus Causality 
“When I began writing Probabilistic Reasoning in Intelligent 

Systems (1988), I was working within the empiricist tradition. 
In this tradition, probabilistic relationships constitute the 
foundations of human knowledge, whereas causality simply 
provides useful ways of abbreviating and organizing intricate 
patterns of probabilistic relationships. Today, my view is quite 
different. I now take causal relationships to be the fundamental 
building blocks both of physical reality and of human 
understanding of that reality, and I regard probabilistic 
relationships as but the surface phenomena of the causal 
machinery that underlies and propels our understanding of the 
world.” 
   

-- Judea Pearl.  CAUSALITY: Models, Reasoning, and Inference.  
Cambridge University Press, January 2000. 



Review of Key Ideas in Probability 
Theory as applied to AI reasoning 
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Axioms of probability theory 

0 ≤ P(A) ≤ 1 
P(True) = 1,   P(False) = 0 

P(A ∨ B) = P(A) + P(B) - P(A ∧ B) 
Other properties can be derived: 
1  = P(True)       

 = P(A v ¬A)  =  P(A) + P(¬A) - P(A ∧ ¬A)  
 = P(A) + P(¬A)        So:  P(¬A) = 1 - P(A) 
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Probability theory 

  Random experiments and uncertain outcomes. 
  Events - refer to possible outcomes of a random 

experiment. 
  Collections of Elementary Events 

  Elementary events - the most detailed events of 
interest. 

  The number of distinct events and their definitions 
are totally subjective and depend on the decision-
maker.   
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Random variables 

  Value of a Random Variable -- represent the result 
of a random experiment. 

  Notation: x, y, z   represent particular values of the 
variables X, Y, Z. 

  Sample space - the domain of a random variable 
(set of all elementary events). 
  Sample space = graduating students. 
  Elementary events = {John, Mary, ...} 
  Event set = Females graduating in civil  

 engineering 
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Probability distributions 

 An assignment of probability to each event in 
the sample space. 

 Discrete vs. continuous distributions. 
  We will in this module talk about discrete 

distributions 

 Ex.  P(Weather) = (0.7, 0.2, 0.08, 0.02)   
   [sunny,rain,cloudy,snow] 

 Q.  What are those numbers?    
 Where do they come from? 
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Joint Probability Distributions 
  Given X1, ..., Xn, the joint probability distribution P(X1, ..., 

Xn) assigns probabilities to each set of possible values of 
the variables.  Example: 

     Toothache    ¬Toothache 
          Cavity        0.04        0.06 
                   ¬Cavity     0.01        0.89 

   P (Cavity, ¬Toothache)= .06 

Objective probability 

 Probabilities are precise properties of the 
universe. 

 Value can be obtained by reasoning, for 
example, if a coin is perfect, use symmetry. 

 When probability of elementary events are 
equally likely 
  Pr[event] = size of event set / size of sample 

space. 
 Exist only in “artificial” domains. 
 Require high degree of symmetry. 
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Subjective probability 

 Represent degrees of belief 

 More realistic approach to representing 
“expert opinion”. 

 Examples: 
  The likelihood of a patient recovering from a 

heart attack. 
  The quality of life in a certain city. 
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Probabilities as Frequencies 

  Probability as frequency of occurrence 
  Pr[event] = number of time event occurs / number 

of repeated random experiments 
  Problem: Need to gather infinite amount of data 

and assume that the probability does not change 
over time. 

  Some experiments cannot be repeated:  
 o  Success of oil drilling at a particular location 
 o  Success of marketing a new PC operating system 
 o  Success of the UMass basketball team in 2009 
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Conditional probability 
  Prior probability 

  P(Cavity) = 0.05 
  Posterior/Conditional probability 

  posterior probability of a random event or an uncertain proposition is the 
conditional probability that is assigned after the relevant evidence is taken 
into account 

  P(Cavity|Toothache) = 0.8 
  P(X|Y) refers to the two dimensional table:  P(X=xi|Y=yi) 
  Conditional probability can be defined in terms of unconditional 

probabilities: 
  P(A|B) = P(A,B)/P(B)    when P(B) > 0, or 
  P(A,B) = P(A|B) P(B)  (the product rule) 
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Conditionality with Joint 
Probability Distributions 

  Given X1, ..., Xn, the joint probability distribution P(X1, ..., 
Xn) assigns probabilities to each set of possible values of the 
variables.  Example: 

    Toothache    ¬Toothache 
         Cavity     0.04        0.06 
 	
 	
¬Cavity     0.01        0.89 

  From the joint distribution we can compute the probability of 
any complex proposition such as: P(Cavity v Toothache)  
  Identify all atomic events where proposition is true and add up their 

probabilities 
  Can not directly calculate P(Cavity | Toothache)? 

  Why the need to normalize? 
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Examples of Using Joint Probabilities Distribution 

   Toothache    ¬Toothache 
       Cavity     0.04        0.06 

¬Cavity     0.01        0.89 

   Toothache    ¬Toothache 
         Cavity     0.04(.04)       0.06 
 	
 	
¬Cavity     0.01        0.89 

P(Cavity v Toothache) = 

 .04+.01+.06=.11 

P(Cavity=t |Toothache=t) = 

P(Cavity=t , Toothache=t)/ P(Toothache=t)= .04/(.04+.01)=.8  
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More on Calculating with Joint 
Probability Distributions 

  Completely specifies the probability assignments for all 
propositions in the domain: 

  P(A ∧ B) = P(A,B) 

  P(A ∨ B) = P(A) + P(B) - P(A,B) 

  P(A) = ∑iP(A,Bi) -- marginalization or summing out 

  P(A) = ∑iP(A | Bi) P(Bi) -- conditioning 
  based on product rule 

Why not use the joint probability distribution? 
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Bayes’ Rule 

P(A,B,C,D,..) = P(A|B,C, D,..) P(B,C, D,..) ; product rule 
P(A,B) = P(A|B)P(B) = P(B|A)P(A)  

Thus, Bayes’ Rule:  

This allows us to compute a conditional probability from its inverse so as to reflect 
causality. 

Bayes’ rule is typically written as: P(B | A)=αP(A | B)P(B) 
(α is the normalization constant needed to make the P(B=bi | A) entries sum to 1, it 
eliminates the need to know P(A);  
if computing all the probabilities values of B=True and False then just add up and 
normalize; don’t need to know constant ) 

P(B | A) = P(A | B)P(B)

P(A)

E.g.,      P(disease | symptom) =
P(symptom | disease)P(disease)

P(symptom)
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Bayes’ Rule continued 

 Don’t really need P(A): Normalization 
  P(B=T|A) = α P(A|B=T) P(B=T);  
  P(B=F|A) = α P(A| B=F) P(B=F); 
     
 or: 

 Condition on background knowledge E: 
 P(B|A,E) = (P(A|B,E) P(B|E)) / P(A|E)  

P(yi | x) =
P(x | yi)P(yi)
P(x | yj)P(yj )

j
∑ [marginalization and 

conditioning of P(x)] 
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Why is Bayes’ Rule Useful? 

Appropriate View of Causality 

  P(object | image) proportional to:  
 P(image | object) P(object) 

  P(sentence | audio) proportional to: 
 P(audio | sentence) P(sentence) 

  P(fault | symptoms) ... 
 P(symptoms | fault) P(fault) 

Abductive Inference!! 

Knowledge 
easier to 
obtain 
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Example 

3 pennies are placed in a box (2-headed, 2-tailed, 
fair).  A coin is selected at random and tossed.  
What is the probability that the 2H coin was 
selected given that the outcome is H?     

 P(2H|H) = 
       P(H|2H) P(2H) 

   P(H|2H)P(2H) + P(H|2T)P(2T) + P(H|F)P(F) 

= (1 * 1/3 / [1 * 1/3 + 0 * 1/3 + 1/2 * 1/3])  = 2/3 
P(yi | x) =

P(x | yi)P(yi)
P(x | yj)P(yj )

j
∑
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Causal vs. Diagnostic Knowledge 
S =  patient has a stiff neck 
M = patient has meningitis 

 P(S|M)   =  .5 
       P(M) = 1/50,000 
      P(S) =  1/20 

      P(M|S) =  P(S|M)P(M) = .5 x 1/50,000 = .0002 
       P(S)        1/20 

Suppose given only P(M|S) based on actual observation of data… what happens if 
there is a sudden outbreak of meningitis: 

  ⇒ P(M) goes up significantly and P(S/M) not affected 

“Diagnostic knowledge is often more tenuous (makes 
assumptions about the environment) than Causal knowledge.” 
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Combining evidence 
  Consider a diagnosis problem with multiple symptoms:	

	
 	
P(d|si,sj) = P(d)P(si,sj|d)/P(si,sj); Bayes’ Rule	


  For each pair of symptoms, we need to know P(si,sj|d) and P(si,sj).  
Large amount of data is needed. 

  If we can make independence assumptions: 
	
 	
P(si|sj) = P(si) -> P(si,sj)= P(si)P(sj) ; 	

  conditional independence assumptions:	

	
 	
P(si|sj,d) = P(si|d) 	
 P(si,sj|d) = P(si|d) P(sj|d)	


  With conditional independence, Bayes’ rule becomes: 
	
 	
P(Z|X,Y) = α P(Z) P(X|Z) P(Y|Z)	


Relate to Markov 
Assumption 
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Example 

Given:  P(Cavity|Toothache) = 0.8 
   P(Cavity|Catch) = 0.95 

Compute:  P(Cavity|Toothache,Catch) 
 = P(Toothache,Catch|Cavity) P(Cavity) / P

(Toothache,Catch) 
  Need to know  P(Toothache,Catch|Cavity)?? 

Assuming conditional independence: P(si,sj|d) = P(si|d) P(sj|d)) 
  P(Toothache,Catch|Cavity) =P(Catch|Cavity) P(Toothache|Cavity) 
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Bayes’ Rule: Incremental Evidence 
Accumulation 

 Probabilistic inference involves computing probabilities 
that are not explicitly stored by the reasoning system. 

 P(hypothesis | evidence) is a common value we want, 
and we want to compute this incrementally as evidence 
accumulates. 

 Possible with conditional independence 

      P(H | E1,E2) = αP(E2 | H)P(E1 | H)P(H) 

     [P(E1 | H)P(H) is just the based on E1 and is P(H| E1) 
which would be the result after receiving only E1] 
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Abduction as the Basis of Interpretation  

Abduction: if As can cause Bs, P(B|A) >0, and know of a B then 
hypothesize A as an explanation for the B, P(A|B) 

Abductive inferences are uncertain/plausible inferences (as opposed to 
deductive/logical inferences) 

The existence of B provides evidence for A— i.e., a reason to believe A 

Evidence from abductive inference is uncertain because there may be 
some other cause/explanation for B 

Abduction is the basis for medical diagnosis: 

If disease D can cause symptom S then if a patient has symptom S 
hypothesize that she suffers from disease D 
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Model of Abductive Uncertainty 

CONCLUSION 
(EXPLANATION) 

ab
du

ct
iv

e 
in

fe
re

nc
e 

PREMISE 

May be uncertain if inference is 
valid (due to uncertain attributes 
in premise and conclusion)	


premise may have 
alternative explanations	

(constructed or possible) 

conclusion may not have 	

complete supporting evidence: 
unknown vs. negative	


premise may be uncertain	

due to uncertainty in	

supporting evidence	


conclusion may not 	

have explanation:	

unknown vs. negative	


Where is the Laziness in 
P(Conclusion/Premise)! 

Leads to 
Network of 
interrelated 
propositions 
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Sources of Uncertainty 

    

Hypothesis B based on the evidence, {Aj },  where the complete
evidence is {Ai}and {Aj} ⊂{Ai}.
Potential sources of uncertainty in hypothesis :
        -Partial evidence- i.e. ,  {Aj} ≠  {Ai}.
        - Uncertain evidence satisfies the inference axiom i.e.,  
           uncertain some Ak  ∈ {Aj} is ∈ {Ai}.
        - Uncertain premise - i.e.,  some Ak  ∈ {Aj} is uncertain. 
        - Possible alternative interpretations for evidence - i.e.,
           for some Ak  ∈ {Aj} the correct inference is Ak  ⇒  C.
        - Possible altrernative evidence for the hypothesis -  i.e.,  for 
          some Ak  ∈ {Aj} the correct evidence is actually {A l}. 
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Instance of Abductive Uncertainty 

Vehicle	

Position=(t3,x3,y3)	

VID={VID1,VID2}	


Track	

Positions=(t1,x1,y1)(t2,x2,y2))	

VID={VID2}	


partial-support [t4…]	

(missing support for t4…)	


no-explanation	


uncertainty in supporting evidence	

(premise uncertainty)	

possible-alt-explanation-types	

acoustic-ghost, acoustic-noise,	

acoustic sensor-malfunction	


possible-alt-explanation-hyp	

(i.e., may be part of an 	

alternative track)	


ab
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partial-consistency	

{VID1,VID2} vs. {VID2}	


Next Lecture 

 Bayes Nets 
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