
Lecture 15: MDP4

Victor R. Lesser
CMPSCI 683

Fall 2010

Today’s Lecture

  Quick Review of First Part of Exam

  Hidden Markov Processes

General Comments

  I will grade the exam based on 91 points total
rather than 100 points. So many people were
unprepared to answer question 1F. The grade on
the answer to this question can be thought of as
extra credit.

V. Lesser; CS683, F10

Question 1A

V. Lesser; CS683, F10

Suppose you had two admissible A* heuristics (h1 and h2) for a specific problem application
and there was respectively cost (c1 and c2) every time you applied the heuristic in a search.
How would you go about deciding which heuristic to use for the entire class of problems?

Run experiments on a number of comparison cases using each of the heuristics to get the
average time for each search with different heuristics. The heuristic whose average search
time over the set of examples is the lowest would be the one chosen. Another way to do think
about it is get the average number of nodes expanded in each search. Then it would be E of h1
(average number of nodes expanded) *c1; and similarly for h2. The formula that gave the
lowest value would determine what heuristic to choose. Obviously, if h2 dominates h1 and the
cost of applying h1 (c2) has lower cost than c1, you would choose heuristic h2 for all
problems and no experimentation is necessary. In my answer, I did not think of trying
experimentally the case of max (h1,h2) which incurs the cost of applying both heuristics to
each search node expanded. However, in some cases that could be the best choice but I
suspect it is very rare. Further in considering which heuristic to choose for a class of
problems, I was only considering which would lead to the smallest expected search cost for
solving a problem. Another criterion could be to minimize the number of nodes expanded, this
would lead to a slightly different reasoning about which heuristic to choose. Very few people
got the idea that the number of nodes searched was key!

Question 1B

V. Lesser; CS683, F10

What are the similarities and differences between Anytime A* and RTA*?

Both are doing an approximate search given a fixed amount of time that can be used.
They both exploit an admissible and monotonically increasing h* heuristic. However,
their search strategies are very different. RTA* use a limited (based on a fixed
horizon) depth-first search to get a better approximation of a node’s f value to make
a decision what operator to apply next. There is some interesting pruning going on
in how the f value’s at the horizon are backed-up – but that was not important for the
answer. It then applies after each search the chosen operator in the real world and
then repeats the procedure to choose the next operator after the move is completed.
Anytime A* in contrast is doing a complete search trying to get an acceptable
solution quickly and then over time improving the solution. When it is finally
terminated either because of time limits or an optimal solution is found, the best
(lowest cost) complete path/plan that has been encountered is chosen. I was
surprised that people talked about Anytime A* in terms of a non-admissible
heuristic, the h heuristic is in fact admissible and this is exploited in the pruning.

Question 1C

V. Lesser; CS683, F10

What are the similarities and differences between SMA* and RBFS?

Both exploit the fact that f is monotonically increasing and there is a
remembrance of the f values of previously encountered partial
solutions to focus what node should be next (re)expanded; they also
both are trying to reduce the amount of memory necessary for the
search, and for that reason both may generate repeatedly the same
node. In the case of SMA*, it deletes nodes due to fixed memory
limitations while RBFS may delete nodes because it keeps a very
restricted open list based on a depth-first type of search. SMA* needs
to have as much memory as the length of the optimal path otherwise it
will be able to find this optimal path.

Question 1D

V. Lesser; CS683, F10

Explain the common reason/principle for the use of the techniques of beam search in
Genetic Algorithms and random restart in GSAT. Could you apply beam search to
GSAT?

Both search techniques are trying to avoid getting stuck in local minima. The beam
search has the potential advantage over random restart since it is able to constantly
readjust what solutions are in the beam according to the quality and potentially the
diversity of these solutions, and to be able to take parts of one solution and combine
with parts of another solution in the beam to create a new solution. Maybe, the beam
search could be applied to GSAT, it is interesting question of how often in GSAT do
you need to do random restarts versus paying the overhead of concurrently
processing multiple solutions (this is general problem with the beam search in
contrast to random restart). To really exploit the beam search idea in GSAT, you
would in some sense need to alter the basic search strategy of GSAT so that there
was more than one next solution generated at each iteration. In this way, at each
stage, the beam could be narrowed back to k width based on “fitness” of the current
solutions in the beam. I am not sure whether this will be effective?

Question 1E

V. Lesser; CS683, F10

What would be your explanation for why GSAT does not exploit a
specialized procedure to generate a “good” initial assignment for the
truth values of the literals?

One possible explanation is that the cost of getting a good initial
solution is quite expensive and it is better just searching based on a
random initial solution and if that is not progressing well just try
another random initial solution. It also may be that there are no
general heuristics for a getting a good initial solution for an arbitrary
problem though there may be good heuristics for a specific class of
problems. – This was a think question and generally everyone got it
right.

Question 1F

V. Lesser; CS683, F10

The HEARSAY-II speech understanding system as described in class is not based on the
A* search because of the difficult of constructing an admissible and effective heuristic.
However, it uses a termination procedure resembling Anytime A*. When Hearsay-II
search found a complete solution that was above a certain rating, it could prune partial
solutions (nodes) on the blackboard based on calculating a measure using all the words
that had been constructed either through bottom-up or top-down processing at the point
that a complete solution was generated. Explain the basis for the pruning and also why
this approach could potentially lead to incorrectly pruning a correct partial solution
though we never saw an example of this.

Based on an analysis of the word lattice, a measure can be constructed for the highest
ranking word in each segment of the speech signal. This rating can be used to construct
the “highest” possible score that a partial solution could get when it is completed. This is
not totally accurate because in expanding a partial solution, it is possible that new
higher rated words could be generated as a result the top-down word verification
process. For this reason, the heuristic is not admissible and thus could lead to pruning of
a partial solution that could have created a higher score than the current best solution.

V. Lesser; CS683, F10

Hidden Markov Models:
(slides courtesy of Andrew McCallum)

Mapping A
Sequence of
Observations to
the Underlying
States of the
MDP

Input: the lead paint is unsafe
TaggedOutput: the/Det lead/N paint/N is/V unsafe/Adj

DT"

JJ"

NN"

VBP"

IN"
for"
above"
in"
…"

transitions!

emissions!

P(xt+1|xt)"

P(ot|xt)"

1

2
3

4

5

V. Lesser; CS683, F10

Part-of-speech tags, examples

  PART-OF-SPEECH TAG EXAMPLES
  Adjective JJ happy, bad
  Adjective, comparative JJR happier, worse
  Adjective, cardinal number CD 3, fifteen
  Adverb RB often, particularly
  Conjunction, coordination CC and, or
  Conjunction, subordinating IN although, when
  Determiner DT this, each, other, the, a, some
  Determiner, postdeterminer JJ many, same
  Noun NN aircraft, data
  Noun, plural NNS women, books
  Noun, proper, singular NNP London, Michael
  Noun, proper, plural NNPS Australians, Methodists
  Pronoun, personal PRP you, we, she, it
  Pronoun, question WP who, whoever
  Verb, base present form VBP take, live

Fed raises interest rates 0.5 %	

 in effort to
control inflation	

Part-of-speech ambiguities"

NNP" NNS"
VBZ" NNS"

VBZ"
NNS"
VBZ"VB"

CD" NN"

VB - Verb, base form
VBZ - Verb, 3rd person singular present

V. Lesser; CS683, F10

(Hidden) Markov Model
  View sequence of states(tags) as a Markov chain.

Assumptions:
  Limited horizon

  Time invariant (stationary)

  We assume that a word’s tag only depends on the
previous tag (limited horizon) and that his dependency
does not change over time (time invariance)

  A state (part of speech) generates an output (word). We
assume it depends only on the state.

V. Lesser; CS683, F10

A Possible Path Thru the Network

  Top row is unobserved states, interpreted as POS tags
  Bottom row is observed output observations (words)
  What is the likelihood of this path??

V. Lesser; CS683, F10

Applications of HMMs
  NLP

  Part-of-speech tagging
  Word segmentation
  Information extraction
  Optical Character Recognition (OCR)

  Speech recognition
  Modeling acoustics

  Computer Vision
  gesture recognition

  Biology
  Gene finding
  Protein structure prediction

  Economics, Climatology, Communications, Robotics…

V. Lesser; CS683, F10

(One) Standard HMM formalism
  (X, O, xs, A, B) are all variables. Model µ = (A, B)
  X is state sequence of length T; O is observation seq.
  xs is a designated start state (with no incoming transitions).
  A is matrix of transition probabilities (each row is a

conditional probability table (ConditionalProbablityTable)
  B is matrix of output probabilities (vertical CPTs)

  HMM is a probabilistic (nondeterministic) finite state
automaton, with probabilistic outputs (from vertices, not
arcs, in the simple case)

Prob of sequence X
generating sequence
O given the model µ

V. Lesser; CS683, F10

Review of POMDP Model
Augmenting the completely observable MDP with the

following elements:
  O – a finite set of observations
  P(o|s',a) – observation function: the probability that o is

observed after taking action a resulting in a transition to
state s'

  A discrete probability distribution over starting states
(the initial belief state):

)}1|(|),...,1(),0({ 0000 −= Sbbbb

Connection Between HMM and
POMDP

 Similar set up but different problem being
solved
  Given an observation sequence, find the most

likely hidden state sequence (tagging)
  No actions and rewards in HMM – thus you are not trying

to find a optimal policy

  Length of sequence of observations in HMM is
finite

  Start out with well-defined initial state
V. Lesser; CS683, F10 V. Lesser; CS683, F10

Most likely hidden state sequence
  Given O = (o1,…,oT) and model µ = (A,B)
  We want to find

  P(X,O| µ) = P(O|X, µ) P(X| µ)
  P(O|X, µ) = b[o1|x1] b[o2|x2] … b[oT|xT]
  P(X| µ) = a[x2|x1] a[x3|x2] … a[xT|xT-1]
  arg maxX P(X,O| µ) = arg max x1, x2,… xT P(X,O| µ)
  Problem: arg max is exponential in sequence length

Constant with respect to X

V. Lesser; CS683, F10

Representation for Paths: Trellis

Time "1 " 2 " " 3 " "4 "… " T"

States"

X1"

x2"

x3"

x4"

V. Lesser; CS683, F10

Representation for Paths: Trellis

Time "1 " 2 " " 3 " "4 "… " T"

States"

X1"

x2"

x3"

x4"

V. Lesser; CS683, F10

Exploit Markov Assumption to Cut
Down Exponential Search Space

δi(t) = Probability of most likely path that ends at state i at time t. "
 Avoid repeated path computations by keep tracking of δi(t)"

Time "1 " 2 " " 3 " "4 "… " T"

States"

X1"

x2"

x3"

x4" a[x
2|x

4]
b[o

4|x
2]"

δ2(4)

δ4(3)

δ3(3)

δ2(3)

δ1(3) All need to
remember is
max path in

V. Lesser; CS683, F10

Finding Probability of Most Likely
Path using Dynamic Programming

  Efficient computation of max over all states
  Intuition: Probability of the first t observations is the

same for all possible t+1 length sequences.
  Define forward score:

  Compute it recursively from the beginning
  (Then must remember best paths to get arg max.)

V. Lesser; CS683, F10

Finding the Most Likely State Path
with the Viterbi Algorithm [Viterbi 1967]

  Used to efficiently find the state sequence that gives the
highest probability to the observed outputs

  Maintains two dynamic programming tables:
  The probability of the best path (max)

  The state transitions of the best path (arg) – allows for backtracing

  Note that this is different from finding the most likely tag
for each time t! – you are instead looking for the optimal
sequence of tags

V. Lesser; CS683, F10

Viterbi Recipe
  Initialization

  Induction

Store backtrace

 Termination and path readout at terminal states
Probability of entire best seq."

Most likely
terminal state
 and
Backtracing to get
state at previous
time it came from

V. Lesser; CS683, F10

Acceptable Paths for “Give Me...”

Harpy network from"
"-lexical representations"
"-syntactic production rules"
"-word boundary rules"

BEGIN SILENCE VOICEBAR

GBURSTI

IH

AXI
V

M

IY

HMM For Speech Understanding

V. Lesser; CS683, F10

How is the Network Constructed

  Grammatical Knowledge
  BNF Grammar that doesn’t contain substrings of the

form
 … A B C …
 … A1 B C1 …
 where B is a non-terminal, and B is recursive

  Lexical Knowledge
  Finite-state “phoneme” network with duration

information
  Contextual Knowledge

  Juncture rules and juncture “phonemes”

HARPY

HMM
Word
Network

V. Lesser; CS683, F10 V. Lesser; CS683, F10

HARPY Combined Network

V. Lesser; CS683, F10 V. Lesser; CS683, F10

! Given a segmented acoustic signal with
probabilities for each phone at each segment
and a network how do we search it?!
! !	

Each State in the Network	

• Phoneme (from either phonetic dictionary or word juncture

phonemes)	

• Word	

• Unique ID number	

• Duration information	

• A list of successor/previous states	

Heuristic Search in HARPY!

V. Lesser; CS683, F10

Network Search Algorithm

Where "
"Tj,i is the probability of transitioning from state j to i"
" "-based on network (0,1) " ""
" "-duration of being in state j "

"Ai,t is the probability of being in state i given the acoustic"
"event at time t."

Pi,t =Ai,t Max (Pj,t-1 Tj,i)! j	

j1

j0 i

V. Lesser; CS683, F10

BEAM Search

Heuristic version of Viterbi Search to reduce computation

  Compute probability for each Active State in segment i:
keep pointer to state in segment (i-1) that is max
transaction to each active state

  Prune list of active states and normalize problem

  Compute list of active states for segment i+1

  Repeat 1-3 until no more segments

  Backtrace

V. Lesser; CS683, F10 V. Lesser; CS683, F10

Next Lecture

  Introduction to Uncertainty

