Decision Making As An
Optimization Problem

Hala Mostafa

683 Lecture 14
Wed Oct 27t 2010

DEC-MDP

« Formulation as a math’al program

— Often requires good insight into the problem to get a
compact ‘well-behaved’ formulation

— Can be very un-intuitive

— Math’al programming may turn out to be ill-suited for
the problem

Wait! Why bother?
Premise:

There are great, industrial-strength, highly
optimized solvers out there. Use them!

Outline

Linear Programming

— MDP policy finding as LP #1

— Sequence form

— MDP policy finding as LP #2
DEC-POMDP and DEC-MDP

Quadratic & Bilinear Programming
— 2-Agent DEC-MDP as Bilinear Program

Nonlinear Programming
Mixed Integer LP

Linear Programming

max cTx

subject to AxX<Db

« Both objective function and constraints are linear (X is
only multiplied by constants)

« Can model equality constraints using the above. Ex =f
can be expressed as

Ex—f<0 and —Ex +f<0
Solvers typically accept this form
min cTx
subject to AxX<Db
Ex=f

Ib < x<ub

|

feasible
region

MDP as LP#1

MDP goal: find the policy that maximizes reward
over the T steps of the problem

Policy maps states to distributions over actions

Pure policy assigns all probability at a state to a
single action. Deterministic.

Policy representation #1: for every state s and
every action at that state a, x(s,a) = probability of
doing a at s. Occupancy measure

MDP as LP#1

* Objective function:
max 2, 2, X(s,a).r(s,a)
« Constraints:
— For start state s: prob going out of s = 1
2. X(s,a)=1
— For every non-leaf state s:
prob going out of s = prob going into s
2. X(s,a) =2, 2, x(s’,a)P(s|s’,a’)
— For every state, action: x(s,a) 2 0

r(s1,a1)=5
r(s1,a2) =2
r(s2,a3) =3
r(s2,a4) =4
r(s3,a5) =3
(

r(s3,a6) =5

max cX subject to Ax =D

where x = [x(s1,a1), x(s1,a2), x(s2,a3), x(s2,a4), x(s3,a5), x(s3,a6)]
c=1[5,2,4,4,3,5]

Constraints:

X(s1,a1) + x(s1,a2) = 1
X(s2,a3) + x(s2,a4) = x(s1,a1)
X(s3,a5) + x(s3,a6) = x(s1,a2)
Thus A = 1100 0 O;
-1 01 1 0 0
0O -10 01 1]

b=[100]T

Sequence Form

Sequence: a path through the MDP, starting at the root
[sti,a,,st,,a,,...8t ,a,]

Complete seq: ends at a leaf

Information set y: a decision-making point
[st,,a,,st5,a,,...5t]

(p.a) is the sequence obtained from doing action a at
info set

A policy can be characterized by the weight it assigns
each sequence

Policy representation #2: x(s) = realization weight of
sequence s. Product of action probabilities on the
sequence

MDP as LP#2

* ODbj fun: max 2., - X(s).r(s)
r(s) is the reward for the complete seq s

« Constraints:
= 2_X(sty.a)=1
= sum of child segs = weighted parent seq

2 X(s.st.a) = x(s)P(st|s) for every seq s
and next state st

= X(s)z20

_ ‘ Action node

Note

« W/ probabilistic outcomes, multiple full
sequences can have non-zero weights
under a pure policy
— It's not like we're choosing the one sequence

to assign max weight to and setting others=0

 How many sequences can be non-zero
simultaneously? Depends on the horizon
and # action outcomes

a2 Q3 a4

[s1,a1,s3,a3] = [s1,a1,s4,a4] = 1
Support size = 2

Multi-Agent Decision Making

Tiger Problem

»HR®T:

- Want to open the door with the treasure

- Can listen or open a door, but listening
- is noisy: may hear tiger on left when it’s right
- has a cost

- Agent do not communicate their observations

- Need to reason over what the other agent may be hearing

DEC-POMDP

DEC-POMDRP is a a tuple <S, A, P,R, Q,0>

— S is a finite set of world states

- A=A, xA,x ... x A, is a finite set of joint actions

— P:SxAx3S=>»]0, 1] is the transition function

— R:SxAx§S =>» Ris the reward function

— Q0=0,xQ,x..Q._is afinite set of joint observations
— 0:SxAxQ=>][0, 1] is the observation function

Observations of all agents do not necessarily determine
global state

An agent’s policy maps each observation history to an
action

Joint policy: a tuple with one policy per agent

Tiger DEC-POMDP

TigerL | OpenL | OpenR |Listen | S = {TigerL, TigerR}
T 200 |9 5 A1 = A2 ={OpenL, OpenR,
sten |-] Listen)
OpenL |-50 -100 -200 Q1 = Q2 = {NoiseL, NoiseR}
OpenR [-100 20 9
Observation function
Joint Action State Joint Observation Probability
(Listen, Listen) Left (Noise Left, Noise Left) 0.7225

)
(Listen, Listen) Left (Noise Left, Noise Right) 0.1275
(Listen, Listen) Left (Noise Right, Noise Left) 0.1275
() Left (Noise Right, Noise Right) 0.0225

i

Listen, Listen

DEC-MDP

» Putting observations together determines
global state

« We’'ll consider DEC-MDPs with local
observability. Each agent knows its own
state

* Agent’s policy maps its local states to local
actions

Mars Rovers

- Rovers collect samples from Mars.

- Each site has rock quality (reward) and probability of being
easy (transition function) that depends on what both rovers
do

- A rover knows which site it is at, but not where the other is

Mars Rovers DEC-MDP

S, = <site,outcome> pairs visited by rover |
A, = set of sites unvisited by rover |

r(s4,S,,a1,a,) = reward when rovers visit sites
a,,a, respectively

Reward interactions: collecting samples can be
redundant or complementary

Transition interactions: rovers can get in each
other’s way,or help each other finish a site faster

r(*,",as,a4) =10 r(*,*,a,a,4¢) = 3 + r(a,) complementary
r(*,*,a,,a,) =3 r(*,",a5,a,4) =3 +r(a,) redundant

p(site2 fast | aj,a;) = 0.9 rovers help each other

p(site2 fast | aj,a,.3) = 0.2 rovers get in the way

QP

* Quadratic program has the variable raised to a
max power of 2

Maximize f(x) = %2 x"Qx + ¢c'x
subject to AX<Db
Ex=d

« IfQ=0, we have an LP
. 2)5(1)2(2- _24)(71);(23 - X4X3F 2X,2 + 3X,X3 + 10X52 + 2 X4 -
Q= 10 -2 -1

2 4 3

-1 3 10

e c=[2 -35 -47]

BLP

» Special case of QP
* Separable bilinear program

Maximize f(x,y)= r,'x+x'Cy+r,"y
subject to AX = Db,
Ay = b,

X,y20

DEC-MDP as BLP

Maximize f(x,y) =
subject to

r, "X+ X'Cy+,"y

A,X =D,
Azy = Db,
X,y20

This assumes realization weights of each
agent are independent of the other

I.e. Transition independence

DEC-MDP as BLP

« C can’t contain raw rewards

* C is the only term that can capture interactions
between agents

=> Slightly different formulation

* Move transition probabilities from constraints to
C

* Constraints:
2. X(sty.a) =1
2 X(s.st.a) = x(s) for every seq s and
next state st

DEC-MDP as BLP

* C(1L) = r()) ™ P(lp) = P(li)
* P(i]j) = product of chance outcomes along

seq i given actions of both agents along
seqgs | and |

» C now captures all the interactions

NLP

Variable appears in arbitrary expression (raised
to any power, In trig functions..anything!)

Objective function isn’t represented in matrix
notation

Solver takes pointer to function that takes
variable vector and returns value

Same for nonlinear constraints. Take variable
vector and return value of constraint, assuming
this value should be <0

NLP

Max objFun(x)
Subject to Agq X = by,

Aineqx = bineq

Cx)<0

LB<x<UB
solver(objFunPtr,A,;,beqAineq:Pineq: CPLT,

| B,UB,x0)

NLP Examples

* Min x*sin(3.14159x)
subject to O<x<6
* Max 2X, + X, - dlog,(X4)sin(x,)
subjectto x;x, <10
0.1<x1<5

0.1<x2<3

NLP Examples

double objFun(x)

return 2x[2] + x[2] — 5*log(Xx[1])* sin(x[2])
end
double constrFun(x)

double ret[2]

ret[1] = x[1]*x[2] — 10

ret[2] = abs(x[1] — x[2]) — 2

return ret
end
LB =[0.1 0.1] UB =[5 3]
solver(@objFun,[],[1.[l.[],@constrFun,LB,UB)

DEC-MDP as NLP

* X Is vector of realization weights of all
agents’ sequences, i.e. a joint policy

* objFun returns the value of the given joint
policy
objFun = 2; 2 2| XXX r(i,j,k)

* Aineq:Pineq: CPIr =[]

ineq?

NLP

With LP, QP and BP, solver can easily
determine how obj fun & constraints vary as the
components in x vary, i.e. first order derivatives

Derivatives help follow the shape of the obj fun &
constraints
In NLP, obj fun is a black box!

— Solver has no information how to move from one
search point (a value of x) to the next

Providing solver with first derivatives helps a
LOT

MIP

Mixed Integer programming has some continuous
variables and some integer (or boolean) variables
Why?

— Integer: # persons assigned to a job, # airplanes manufactured

— Boolean: indicator variables representing decsions. “Should we
use the n" machine?”

MILP harder than LP

— With LP, optimal solution is at corner of feasible region. Not so
with MILP

— Use as few integer variables as possible

— Solve the problem w/o integrality constraints to get an initial
upper bound (for max problem)

Software

Mosek (free for academic purposes)

— LP, convex QP (for which easy to get global opt.)
— MIP

Knitro (free for academic purposes)

— LP, convex and non-convex QP
— NLP
— MINLP

CPLEX (free under IBM Academic Initiative)
— LP, convex QP
— MILP

All 3 have Matlab interfaces

Bibliography

* Formal Models and Algorithms for
Decentralized Decision Making under
Uncertainty. S. Seuken and S. Zilberstein.

Autonomous Agents and Multi-Agent
Systems, 2008.

* A Bilinear Programming Approach for
Multiagent Planning. Marek Petrik and
Shlomo Zilberstein. Journal of Artificial
Intelligence Research, 2009.

	Decision Making As An Optimization Problem
	DEC-MDP
	Outline
	Linear Programming
	Slide Number 5
	MDP as LP#1
	MDP as LP#1
	Slide Number 8
	Sequence Form
	MDP as LP#2
	Slide Number 11
	Note
	Slide Number 13
	Multi-Agent Decision Making
	Tiger Problem
	DEC-POMDP
	Tiger DEC-POMDP
	DEC-MDP
	Mars Rovers
	Mars Rovers DEC-MDP
	Slide Number 21
	QP
	BLP
	DEC-MDP as BLP
	DEC-MDP as BLP
	DEC-MDP as BLP
	NLP
	NLP
	NLP Examples
	NLP Examples
	DEC-MDP as NLP
	NLP
	MIP
	Software
	Bibliography

