
Decision Making As An 
Optimization Problem

Hala Mostafa
683 Lecture 14

Wed Oct 27th

 

2010



DEC-MDP 
•

 
Formulation as a math’al program 
–

 
Often requires good insight into the problem to get a 
compact ‘well-behaved’

 
formulation

–
 

Can be very un-intuitive
–

 
Math’al programming may turn out to be ill-suited for 
the problem

Wait! Why bother?
Premise:
There are great, industrial-strength, highly 

optimized solvers out there. Use them!



Outline

•
 

Linear Programming
–

 
MDP policy finding as LP #1

–
 

Sequence form
–

 
MDP policy finding as LP #2

•
 

DEC-POMDP and DEC-MDP
•

 
Quadratic &  Bilinear Programming
–

 
2-Agent DEC-MDP as Bilinear Program

•
 

Nonlinear Programming
•

 
Mixed Integer LP



Linear Programming
max cTx
subject to Ax ≤

 
b

•
 

Both objective function and constraints are linear (x is 
only multiplied by constants)

•
 

Can model equality constraints using the above. Ex = f 
can be expressed as

Ex –

 

f ≤

 

0 and

 

–

 

Ex

 

+

 

 f ≤

 

0
Solvers typically accept this form
min cTx
subject to Ax ≤

 
b

Ex = f
lb ≤

 
x ≤

 
ub





MDP as LP#1

•
 

MDP goal: find the policy that maximizes reward 
over the T steps of the problem

•
 

Policy maps states to distributions over actions
•

 
Pure policy assigns all probability at a state to a 
single action. Deterministic.

•
 

Policy representation #1: for every state s and 
every action at that state a, x(s,a) = probability of 
doing a at s. Occupancy measure



MDP as LP#1

•
 

Objective function: 
max Σs

 

Σa

 

x(s,a).r(s,a)
•

 
Constraints:
–

 
For start state s: prob going out of s = 1
Σa

 

x(s,a) = 1
–

 
For every non-leaf state s:
prob going out of s = prob going into s
Σa

 

x(s,a) =
 

Σs’

 

Σa’

 

x(s’,a’)P(s|s’,a’)
–

 
For every state, action: x(s,a) ≥

 
0



s1

s2 s3

s5 s6 s7

a4
a5

a6

s4

a3

a1 a2 r(s1,a1) = 5

r(s1,a2) = 2

r(s2,a3) = 3

r(s2,a4) = 4

r(s3,a5) = 3

r(s3,a6) = 5

max cx  subject to Ax = b
where x = [x(s1,a1), x(s1,a2), x(s2,a3), x(s2,a4), x(s3,a5), x(s3,a6)] 
c = [5,2,4,4,3,5]
Constraints:

x(s1,a1) + x(s1,a2) = 1
x(s2,a3) + x(s2,a4) = x(s1,a1)
x(s3,a5) + x(s3,a6) = x(s1,a2)

Thus  A = [

 

1    1   0   0   0   0;
-1   0   1    1   0   0;
0   -1   0    0   1    1]

b = [1 0 0] T



Sequence Form
•

 
Sequence: a path through the MDP, starting at the root 
[st1

 

,a1

 

,st2
 

,a2

 

,…stn
 

,an

 

]
•

 
Complete seq: ends at a leaf

•
 

Information set ψ: a decision-making point 
[st1

 

,a1

 

,st2
 

,a2

 

,…stn
 

]
•

 
(ψ.a) is the sequence obtained from doing action a at 
info set ψ

•
 

A policy can be characterized by the weight it assigns 
each sequence

•
 

Policy representation #2:
 

x(s) = realization weight of 
sequence s. Product of action probabilities on the 
sequence



MDP as LP#2

•
 

Obj fun: max Σs in C x(s).r(s)
r(s) is the reward for the complete seq s

•
 

Constraints:
Σa x(st0.a) = 1
sum of child seqs = weighted parent seq
Σa x(s.st.a) = x(s)P(st|s) for every seq s 

and next state st
x(s) ≥ 0



st3 st4

s1

 

= [st1

 

,a1

 

,st2

 

,a2

 

]

a4 a5 a6
a7

0.3 0.7

s2 s3 s4 s5

s2

 

+ s3

 

= 0.3s1

s4

 

+ s5

 

= 0.7s1

Action node

Chance node



Note

•
 

W/ probabilistic outcomes, multiple full 
sequences can have non-zero weights 
under a pure policy
–

 
It’s not like we’re choosing the one sequence 
to assign max weight to and setting others=0

•
 

How many sequences can be non-zero 
simultaneously? Depends on the horizon 
and # action outcomes



s3 s4

Ch

s1 A

[s1,a1,s3,a3] = [s1,a1,s4,a4] = 1

Support size = 2

a1

a4
a5a3a2



Multi-Agent Decision Making



Tiger Problem

- Want to open the door with the treasure

- Can listen or open a door, but listening 

- is noisy: may hear tiger on left when it’s right

- has a cost

- Agent do not communicate their observations

- Need to reason over what the other agent may be hearing



DEC-POMDP
•

 
DEC-POMDP is a a tuple <S, A, P,R, Ω,O>
–

 

S is a finite set of world states
–

 

A = A1

 

× A2

 

×

 

... ×

 

An

 

is a finite set of joint actions
–

 

P : S ×

 

A ×

 

S [0, 1] is the transition function
–

 

R : S ×

 

A ×

 

S R is the reward function
– Ω

 

= Ω1

 

×

 

Ω2

 

×

 

... Ωn

 

is a finite set of joint observations
–

 

O : S ×

 

A ×

 

Ω [0, 1] is the observation function
•

 
Observations of all agents do not necessarily determine 
global state

•
 

An agent’s policy maps each observation history to an 
action

•
 

Joint policy: a tuple with one policy per agent



Tiger DEC-POMDP
TigerL OpenL OpenR Listen

Listen -200 9 -2

OpenL -50 -100 -200

OpenR -100 20 9

S = {TigerL, TigerR}
A1 = A2 ={OpenL, OpenR, 
Listen} 
Ω1 = Ω2 = {NoiseL, NoiseR}

Observation function 



DEC-MDP

•
 

Putting observations together determines 
global state

•
 

We’ll consider DEC-MDPs with local 
observability. Each agent knows its own 
state

•
 

Agent’s policy maps its local states to local 
actions



Mars Rovers

1

2
3

4

56

- Rovers collect samples from Mars. 

-
 

Each site has rock quality (reward) and probability of being 
easy (transition function) that depends on what both rovers 
do

- A rover knows which site it is at, but not where the other is



Mars Rovers DEC-MDP

-
 

Si

 

= <site,outcome> pairs visited by rover i

-
 

Ai

 

= set of sites unvisited by rover i

-
 

r(s1

 

,s2

 

,a1

 

,a2

 

) = reward when rovers visit sites 
a1

 

,a2 respectively

-
 

Reward interactions: collecting samples can be 
redundant or complementary

-
 

Transition interactions: rovers can get in each 
other’s way,or help each other finish a site faster



1

2
3

4

56

r(*,*,a1

 

,a1

 

) = 10  r(*,*,a1

 

,ak≠1

 

) = 3 + r(ak

 

)   complementary

r(*,*,a2

 

,a2

 

) = 3  r(*,*,a2

 

,ak≠2

 

) = 3 + r(ak

 

)
 
redundant

p(site2 fast | a3

 

,a3

 

) = 0.9   rovers help each other

p(site2 fast | a3

 

,ak≠3

 

) = 0.2
 

rovers get in the way



QP
•

 
Quadratic program has the variable raised to a 
max power of 2

Maximize f(x) = ½
 

xTQx + cTx
subject to Ax ≤

 
b

Ex = d
•

 
If Q=0, we have an LP

•
 

5x1
2

 
- 2 x1

 

x2

 

- x1

 

x3

 

+ 2x2
2

 
+ 3x2

 

x3

 

+ 10x3
2

 
+ 2 x1

 

-
 35 x2

 

-
 

47 x3
•

 
Q = 10

 
-2 -1

 -2 4 3
 -1 3 10 

•
 

c = [2 -35 -47]



BLP

•
 

Special case of QP
•

 
Separable bilinear program

Maximize f(x,y) = r1
Tx + xTCy + r2

T

 
y

subject to A1

 

x = b1

A2

 

y = b2

x, y ≥
 

0



DEC-MDP as BLP
Maximize f(x,y) = r1

Tx + xTCy
 

+ r2
T

 
y

subject to A1

 

x = b1

A2

 

y = b2

x, y ≥
 

0
Rewards of i

Rewards of j
rewards that depend 

on both i and j. Guarantee that 
realization weights 

represent a legal policy

This assumes realization weights of each 
agent are independent of the other

i.e. Transition independence



DEC-MDP as BLP
•

 
C can’t contain raw rewards

•
 

C is the only term that can capture interactions 
between agents
Slightly different formulation

•
 

Move transition probabilities from constraints to 
C

•
 

Constraints:
Σa x(st0

 

.a) = 1
Σa x(s.st.a) = x(s) for every seq s and 

next state st



DEC-MDP as BLP

•
 

C(i,j) = r(i,j) * P(i|j) * P(j|i)
•

 
P(i|j) = product of chance outcomes along 
seq i given actions of both agents along 
seqs i and j

•
 

C now captures all the interactions 



NLP

•
 

Variable appears in arbitrary expression (raised 
to any power, in trig functions..anything!)

•
 

Objective function isn’t represented in matrix 
notation

•
 

Solver takes pointer to function that takes 
variable vector and returns value

•
 

Same for nonlinear constraints. Take variable 
vector and return value of constraint, assuming 
this value should be ≤

 
0



NLP
Max objFun(x)
Subject to

 
Aeq  x = beq

Aineq

 

x ≤
 

bineq

C(x) ≤
 

0

LB ≤
 

x ≤
 

UB

solver(objFunPtr,Aeq

 

,beq

 

,Aineq

 

,bineq

 

,CPtr, 
LB,UB,x0)



NLP Examples

•
 

Min x*sin(3.14159x) 
subject to 0 ≤

 
x ≤

 
6 

•
 

Max
 

2x1

 

+ x2

 

- 5loge

 

(x1

 

)sin(x2

 

)
 subject to

 
x1

 

x2

 

≤
 

10 
| x1

 

– x2

 

| ≤
 

2
 0.1 ≤

 
x1 ≤

 
5 

0.1 ≤
 

x2 ≤
 

3 



NLP Examples
double objFun(x)

return 2x[2] + x[2] –
 

5*loge

 

(x[1])* sin(x[2])
end
double constrFun(x)

double ret[2]
ret[1] = x[1]*x[2] –

 
10 

ret[2] = abs(x[1] –
 

x[2]) –
 

2
return ret

end
LB = [0.1 0.1]

 
UB = [5 3]

solver(@objFun,[],[],[],[],@constrFun,LB,UB)



DEC-MDP as NLP

•
 

x is vector of realization weights of all 
agents’

 
sequences, i.e. a joint policy

•
 

objFun returns the value of the given joint 
policy
objFun = Σi

 

Σ
 

j

 

Σ
 

k

 

xi

 

xj

 

xk

 

r(i,j,k)
•

 
Aineq

 

,bineq

 

,CPtr = []



NLP
•

 
With LP, QP and BP, solver can easily 
determine how obj fun & constraints vary as the 
components in x vary, i.e. first order derivatives

•
 

Derivatives help follow the shape of the obj fun & 
constraints

•
 

In NLP, obj fun is a black box!
–

 
Solver has no information how to move from one 
search point (a value of x) to the next

•
 

Providing solver with first derivatives helps a 
LOT



MIP
•

 
Mixed Integer programming has some continuous 
variables and some integer (or boolean) variables

•
 

Why?
–

 

Integer: # persons assigned to a job, # airplanes manufactured
–

 

Boolean: indicator variables representing decsions. “Should we 
use the nth

 

machine?”
•

 
MILP harder than LP
–

 

With LP, optimal solution is at corner of feasible region. Not so 
with MILP

–

 

Use as few integer variables as possible
–

 

Solve the problem w/o integrality constraints to get an initial 
upper bound (for max problem) 



Software
•

 
Mosek (free for academic purposes)
–

 
LP, convex QP (for which easy to get global opt.)

–
 

MIP
•

 
Knitro (free for academic purposes)
–

 
LP, convex and non-convex QP

–
 

NLP
–

 
MINLP

•
 

CPLEX (free under IBM Academic Initiative)
–

 
LP, convex QP

–
 

MILP
•

 
All 3 have Matlab interfaces



Bibliography

•
 

Formal Models and Algorithms for 
Decentralized Decision Making under 
Uncertainty. S. Seuken and S. Zilberstein. 
Autonomous Agents and Multi-Agent 
Systems, 2008.

•
 

A Bilinear Programming Approach for 
Multiagent Planning. Marek Petrik and 
Shlomo Zilberstein. Journal of Artificial 
Intelligence Research, 2009.


	Decision Making As An Optimization Problem 
	DEC-MDP 
	Outline
	Linear Programming
	Slide Number 5
	MDP as LP#1
	MDP as LP#1
	Slide Number 8
	Sequence Form
	MDP as LP#2
	Slide Number 11
	Note
	Slide Number 13
	Multi-Agent Decision Making
	Tiger Problem
	DEC-POMDP
	Tiger DEC-POMDP
	DEC-MDP
	Mars Rovers
	Mars Rovers DEC-MDP
	Slide Number 21
	QP
	BLP
	DEC-MDP as BLP
	DEC-MDP as BLP
	DEC-MDP as BLP
	NLP
	NLP
	NLP Examples
	NLP Examples
	DEC-MDP as NLP
	NLP
	MIP
	Software
	Bibliography

