Decision Making As An Optimization Problem

Hala Mostafa 683 Lecture 14 Wed Oct 27th 2010

DEC-MDP

- Formulation as a math'al program
 - Often requires good insight into the problem to get a compact 'well-behaved' formulation
 - Can be very un-intuitive
 - Math'al programming may turn out to be ill-suited for the problem

Wait! Why bother?

Premise:

There are great, industrial-strength, highly optimized solvers out there. Use them!

Outline

- Linear Programming
 - MDP policy finding as LP #1
 - Sequence form
 - MDP policy finding as LP #2
- DEC-POMDP and DEC-MDP
- Quadratic & Bilinear Programming
 _ 2-Agent DEC-MDP as Bilinear Program
- Nonlinear Programming
- Mixed Integer LP

Linear Programming

с⊤х max Ax ≤ b subject to • Both objective function and constraints are linear (x is only multiplied by constraints using the above. Ex = fcan be expressed as Ex – f ≤ 0 and - Ex + f ≤ 0 Solvers typically accept this form min с⊤х Ax ≤ b subject to Ex = f $lb \le x \le ub$

MDP as LP#1

- MDP goal: find the policy that maximizes reward over the T steps of the problem
- Policy maps states to distributions over actions
- Pure policy assigns all probability at a state to a single action. Deterministic.
- <u>Policy representation #1</u>: for every state s and every action at that state a, x(s,a) = probability of doing a at s. Occupancy measure

MDP as LP#1

- Objective function: max Σ_s Σ_a x(s,a).r(s,a)
- Constraints:
 - For start state s: prob going out of s = 1 $\Sigma_a x(s,a) = 1$
 - For every non-leaf state s:
 - prob going out of s = prob going into s $\Sigma_a x(s,a) = \Sigma_{s'} \Sigma_{a'} x(s',a') P(s|s',a')$
 - For every state, action: $x(s,a) \ge 0$

Sequence Form

- Sequence: a path through the MDP, starting at the root $[st_1,a_1,st_2,a_2,\ldots st_n,a_n]$
- · Complete seq: ends at a leaf
- Information set ψ : a decision-making point $[st_1,a_1,st_2,a_2,\ldots st_n]$
- $(\psi.a)$ is the sequence obtained from doing action a at info set ψ
- A policy can be characterized by the weight it assigns each sequence
- <u>Policy representation #2:</u> x(s) = realization weight of sequence s. Product of action probabilities on the sequence

MDP as LP#2

- Obj fun: max Σ_{s in C} x(s).r(s)
- r(s) is the reward for the complete seq s
- Constraints:
 - Σ_a x(st₀.a) = 1
 - sum of child seqs = weighted parent seq
 Σ_a x(s.st.a) = x(s)P(st|s) for every seq s and next state st
 - x(s) ≥ 0

Multi-Agent Decision Making

DEC-POMDP

- DEC-POMDP is a a tuple <S, A, P,R, Ω,O>
 S is a finite set of world states
 - A = $A_1 \times A_2 \times ... \times A_n$ is a finite set of joint actions
 - P : S × A × S \rightarrow [0, 1] is the transition function
 - R : S × A × S \rightarrow R is the reward function
 - $\ \Omega$ = $\Omega_1 \times \Omega_2 \times ... \ \Omega_n$ is a finite set of joint observations
 - O : S × A × Ω → [0, 1] is the observation function
- Observations of all agents do not necessarily determine global state
- An agent's policy maps each observation history to an action
- · Joint policy: a tuple with one policy per agent

Tiger DEC-POMDP						
TigerL	OpenL	OpenR	Listen	S = {TigerL, Tiger	۲}	
Listen	-200	9	-2	A1 = A2 ={Ope	enL, OpenR,	
OpenL	-50	-100	-200	$\Omega 1 = \Omega 2 = {No$	iseL, NoiseR}	
OpenR	-100	20	9			
Observation function Observation function Joint Action Probability						
(Listen, Listen) Lef		Left	(Noise	Left, Noise Left)	0.7225	
(Listen, Listen) Left		Left	(Noise	Left, Noise Right)	0.1275	
(Listen, Listen) Left		Left	(Noise	Right, Noise Left)	0.1275	

(Noise Right, Noise Right)

0.0225

DEC-MDP

- Putting observations together determines global state
- We'll consider DEC-MDPs with local observability. Each agent knows its own state
- Agent's policy maps its local states to local actions

Mars Rovers

- Rovers collect samples from Mars.

(Listen, Listen) Left

- Each site has rock quality (reward) and probability of being easy (transition function) that depends on what **both** rovers do
- A rover knows which site it is at, but not where the other is

Mars Rovers DEC-MDP

- S_i = <site,outcome> pairs visited by rover i
- A_i = set of sites unvisited by rover i
- r(s₁,s₂,a₁,a₂) = reward when rovers visit sites a₁,a₂ respectively
- Reward interactions: collecting samples can be redundant or complementary
- Transition interactions: rovers can get in each other's way,or help each other finish a site faster

DEC-MDP as **BLP**

- C can't contain raw rewards
- C is the only term that can capture interactions between agents
- →Slightly different formulation
- Move transition probabilities from constraints to C
- · Constraints:

 $\Sigma_a x(st_0.a) = 1$ $\Sigma_a x(s.st.a) = x(s)$

for every seq s and next state st

DEC-MDP as BLP

- C(i,j) = r(i,j) * P(i|j) * P(j|i)
- P(i|j) = product of chance outcomes along seq i given actions of both agents along seqs i and j
- · C now captures all the interactions

NLP

- Variable appears in arbitrary expression (raised to any power, in trig functions..anything!)
- Objective function isn't represented in matrix notation
- Solver takes pointer to function that takes variable vector and returns value
- Same for nonlinear constraints. Take variable vector and return value of constraint, assuming this value should be ≤ 0

NLP

Max Subject to objFun(x) $A_{eq} x = b_{eq}$ $A_{ineq}x \le b_{ineq}$ $C(x) \le 0$

LB ≤ x ≤ UB

solver(objFunPtr,A_{eq},b_{eq},A_{ineq},b_{ineq},CPtr, LB,UB,x0)

NLP Examples

•	Min	x*sin(3.14159x)
---	-----	-----------------

subject to

- Max subject to
- $0 \le x \le 6$ $2x_1 + x_2 - 5\log_e(x_1)\sin(x_2)$ $x_1x_2 \le 10$ $|x_1 - x_2| \le 2$ $0.1 \le x1 \le 5$ $0.1 \le x2 \le 3$

NLP Examples

double objFun(x) return $2x[2] + x[2] - 5*log_e(x[1])* sin(x[2])$ end double constrFun(x) double ret[2] ret[1] = x[1]*x[2] - 10 ret[2] = abs(x[1] - x[2]) - 2 return ret end LB = [0.1 0.1] UB = [5 3] solver(@objFun,[],[],[],[],@constrFun,LB,UB)

DEC-MDP as NLP

- x is vector of realization weights of all agents' sequences, i.e. a joint policy
- objFun returns the value of the given joint policy
 - objFun = $\Sigma_i \Sigma_j \Sigma_k x_i x_j x_k r(i,j,k)$
- A_{ineq},b_{ineq},CPtr = []

NLP

- With LP, QP and BP, solver can easily determine how obj fun & constraints vary as the components in x vary, i.e. first order derivatives
- Derivatives help follow the shape of the obj fun & constraints
- In NLP, obj fun is a black box!

 Solver has no information how to move from one search point (a value of x) to the next
- Providing solver with first derivatives helps a LOT

MIP

- Mixed Integer programming has some continuous • variables and some integer (or boolean) variables
- Why?
 - Integer: # persons assigned to a job, # airplanes manufactured – Boolean: indicator variables representing decsions. "Should we use the n^{th} machine?"
- MILP harder than LP
- - With LP, optimal solution is at corner of feasible region. Not so with MILP
 - Use as few integer variables as possible
- Solve the problem w/o integrality constraints to get an initial upper bound (for max problem)

Software

- Mosek (free for academic purposes)
 - LP, convex QP (for which easy to get global opt.) – MIP
- Knitro (free for academic purposes)
 - LP, convex and non-convex QP
 - NLP
 - MINLP
- CPLEX (free under IBM Academic Initiative) - LP, convex QP
 - MILP
- All 3 have Matlab interfaces

Bibliography

- Formal Models and Algorithms for Decentralized Decision Making under Uncertainty. S. Seuken and S. Zilberstein. Autonomous Agents and Multi-Agent Systems, 2008.
- A Bilinear Programming Approach for Multiagent Planning. Marek Petrik and Shlomo Zilberstein. Journal of Artificial Intelligence Research, 2009.