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Decision Making As An 
Optimization Problem
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DEC-MDP 
• Formulation as a math’al program 

– Often requires good insight into the problem to get a 
compact ‘well-behaved’ formulation

– Can be very un-intuitive
– Math’al programming may turn out to be ill-suited for 

the problem

Wait! Why bother?
Premise:
There are great, industrial-strength, highly 

optimized solvers out there. Use them!

Outline

• Linear Programming
– MDP policy finding as LP #1
– Sequence form
– MDP policy finding as LP #2

• DEC-POMDP and DEC-MDP
• Quadratic &  Bilinear Programming

– 2-Agent DEC-MDP as Bilinear Program
• Nonlinear Programming
• Mixed Integer LP

Linear Programming
max cTx
subject to Ax ≤ b
• Both objective function and constraints are linear (x is 

only multiplied by constants)
• Can model equality constraints using the above. Ex = f 

can be expressed as
Ex – f ≤ 0 and – Ex + f ≤ 0

Solvers typically accept this form
min cTx
subject to Ax ≤ b

Ex = f
lb ≤ x ≤ ub
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MDP as LP#1

• MDP goal: find the policy that maximizes reward 
over the T steps of the problem

• Policy maps states to distributions over actions
• Pure policy assigns all probability at a state to a 

single action. Deterministic.
• Policy representation #1: for every state s and 

every action at that state a, x(s,a) = probability of 
doing a at s. Occupancy measure

MDP as LP#1

• Objective function: 
max Σs Σa x(s,a).r(s,a)

• Constraints:
– For start state s: prob going out of s = 1
Σa x(s,a) = 1

– For every non-leaf state s:
prob going out of s = prob going into s
Σa x(s,a) = Σs’Σa’ x(s’,a’)P(s|s’,a’)

– For every state, action: x(s,a) ≥ 0

s1

s2 s3

s5 s6 s7

a4
a5

a6

s4

a3

a1 a2 r(s1,a1) = 5

r(s1,a2) = 2

r(s2,a3) = 3

r(s2,a4) = 4

r(s3,a5) = 3

r(s3,a6) = 5

max cx  subject to Ax = b
where x = [x(s1,a1), x(s1,a2), x(s2,a3), x(s2,a4), x(s3,a5), x(s3,a6)] 
c = [5,2,4,4,3,5]
Constraints:

x(s1,a1) + x(s1,a2) = 1
x(s2,a3) + x(s2,a4) = x(s1,a1)
x(s3,a5) + x(s3,a6) = x(s1,a2)

Thus  A = [ 1    1   0   0   0   0;
-1   0   1    1   0   0;
0   -1   0    0   1    1]

b = [1 0 0] T
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Sequence Form
• Sequence: a path through the MDP, starting at the root 

[st1,a1,st2,a2,…stn,an]
• Complete seq: ends at a leaf
• Information set ψ: a decision-making point 

[st1,a1,st2,a2,…stn]
• (ψ.a) is the sequence obtained from doing action a at 

info set ψ
• A policy can be characterized by the weight it assigns 

each sequence
• Policy representation #2: x(s) = realization weight of 

sequence s. Product of action probabilities on the 
sequence

MDP as LP#2

• Obj fun: max Σs in C x(s).r(s)
r(s) is the reward for the complete seq s

• Constraints:
Σa x(st0.a) = 1

sum of child seqs = weighted parent seq
Σa x(s.st.a) = x(s)P(st|s) for every seq s 

and next state st
x(s) ≥ 0

st3 st4

s1 = [st1,a1,st2,a2]

a4 a5 a6
a7

0.3 0.7

s2 s3 s4 s5

s2 + s3 = 0.3s1

s4 + s5 = 0.7s1

Action node

Chance node

Note

• W/ probabilistic outcomes, multiple full 
sequences can have non-zero weights 
under a pure policy
– It’s not like we’re choosing the one sequence 

to assign max weight to and setting others=0
• How many sequences can be non-zero 

simultaneously? Depends on the horizon 
and # action outcomes
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s3 s4

Ch

s1 A

[s1,a1,s3,a3] = [s1,a1,s4,a4] = 1

Support size = 2

a1

a4
a5a3a2

Multi-Agent Decision Making

Tiger Problem

- Want to open the door with the treasure

- Can listen or open a door, but listening 

- is noisy: may hear tiger on left when it’s right

- has a cost

- Agent do not communicate their observations

- Need to reason over what the other agent may be hearing

DEC-POMDP
• DEC-POMDP is a a tuple <S, A, P,R, Ω,O>

– S is a finite set of world states
– A = A1 × A2 × ... × An is a finite set of joint actions
– P : S × A × S [0, 1] is the transition function
– R : S × A × S R is the reward function
– Ω = Ω1 × Ω2 × ... Ωn is a finite set of joint observations
– O : S × A × Ω [0, 1] is the observation function

• Observations of all agents do not necessarily determine 
global state

• An agent’s policy maps each observation history to an 
action

• Joint policy: a tuple with one policy per agent
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Tiger DEC-POMDP

20

-100

9

OpenR

-2-200Listen

9-100OpenR

-200-50OpenL

ListenOpenLTigerL S = {TigerL, TigerR}
A1 = A2 ={OpenL, OpenR, 
Listen} 
Ω1 = Ω2 = {NoiseL, NoiseR}

Observation function 

DEC-MDP

• Putting observations together determines 
global state

• We’ll consider DEC-MDPs with local 
observability. Each agent knows its own 
state

• Agent’s policy maps its local states to local 
actions

Mars Rovers

1

2
3

4

56

- Rovers collect samples from Mars. 

- Each site has rock quality (reward) and probability of being 
easy (transition function) that depends on what both rovers 
do

- A rover knows which site it is at, but not where the other is

Mars Rovers DEC-MDP

- Si = <site,outcome> pairs visited by rover i

- Ai = set of sites unvisited by rover i

- r(s1,s2,a1,a2) = reward when rovers visit sites 
a1,a2 respectively

- Reward interactions: collecting samples can be 
redundant or complementary

- Transition interactions: rovers can get in each 
other’s way,or help each other finish a site faster
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1

2
3

4

56

r(*,*,a1,a1) = 10  r(*,*,a1,ak≠1) = 3 + r(ak)   complementary

r(*,*,a2,a2) = 3  r(*,*,a2,ak≠2) = 3 + r(ak) redundant

p(site2 fast | a3,a3) = 0.9   rovers help each other

p(site2 fast | a3,ak≠3) = 0.2 rovers get in the way

QP
• Quadratic program has the variable raised to a 

max power of 2
Maximize f(x) = ½ xTQx + cTx
subject to Ax ≤ b

Ex = d
• If Q=0, we have an LP
• 5x1

2 - 2 x1x2 - x1x3+ 2x2
2 + 3x2x3 + 10x3

2 + 2 x1 -
35 x2 - 47 x3

• Q = 10 -2 -1
-2 4 3
-1 3 10 

• c = [2 -35 -47]

BLP

• Special case of QP
• Separable bilinear program
Maximize f(x,y) = r1

Tx + xTCy + r2
T y

subject to A1x = b1

A2y = b2

x, y ≥ 0

DEC-MDP as BLP
Maximize f(x,y) = r1

Tx + xTCy + r2
T y

subject to A1x = b1

A2y = b2

x, y ≥ 0
Rewards of i

Rewards of j
rewards that depend 

on both i and j. Guarantee that
realization weights 

represent a legal policy

This assumes realization weights of each 
agent are independent of the other

i.e. Transition independence
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DEC-MDP as BLP
• C can’t contain raw rewards
• C is the only term that can capture interactions 

between agents
Slightly different formulation

• Move transition probabilities from constraints to 
C

• Constraints:
Σa x(st0.a) = 1
Σa x(s.st.a) = x(s) for every seq s and 

next state st

DEC-MDP as BLP

• C(i,j) = r(i,j) * P(i|j) * P(j|i)
• P(i|j) = product of chance outcomes along 

seq i given actions of both agents along 
seqs i and j

• C now captures all the interactions 

NLP

• Variable appears in arbitrary expression (raised 
to any power, in trig functions..anything!)

• Objective function isn’t represented in matrix 
notation

• Solver takes pointer to function that takes 
variable vector and returns value

• Same for nonlinear constraints. Take variable 
vector and return value of constraint, assuming 
this value should be ≤ 0

NLP
Max objFun(x)
Subject to Aeq  x = beq

Aineqx ≤ bineq

C(x) ≤ 0

LB ≤ x ≤ UB

solver(objFunPtr,Aeq,beq,Aineq,bineq,CPtr, 
LB,UB,x0)
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NLP Examples

• Min x*sin(3.14159x) 
subject to 0 ≤ x ≤ 6 
• Max 2x1 + x2 - 5loge(x1)sin(x2)

subject to x1x2 ≤ 10 
| x1 – x2 | ≤ 2
0.1 ≤ x1 ≤ 5 
0.1 ≤ x2 ≤ 3 

NLP Examples
double objFun(x)

return 2x[2] + x[2] – 5*loge(x[1])* sin(x[2])
end
double constrFun(x)

double ret[2]
ret[1] = x[1]*x[2] – 10 
ret[2] = abs(x[1] – x[2]) – 2
return ret

end
LB = [0.1 0.1] UB = [5 3]
solver(@objFun,[],[],[],[],@constrFun,LB,UB)

DEC-MDP as NLP

• x is vector of realization weights of all 
agents’ sequences, i.e. a joint policy

• objFun returns the value of the given joint 
policy
objFun = Σi Σ j Σ k xixjxk r(i,j,k)

• Aineq,bineq,CPtr = []

NLP
• With LP, QP and BP, solver can easily 

determine how obj fun & constraints vary as the 
components in x vary, i.e. first order derivatives

• Derivatives help follow the shape of the obj fun & 
constraints

• In NLP, obj fun is a black box!
– Solver has no information how to move from one 

search point (a value of x) to the next
• Providing solver with first derivatives helps a 

LOT
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MIP
• Mixed Integer programming has some continuous 

variables and some integer (or boolean) variables
• Why?

– Integer: # persons assigned to a job, # airplanes manufactured
– Boolean: indicator variables representing decsions. “Should we 

use the nth machine?”
• MILP harder than LP

– With LP, optimal solution is at corner of feasible region. Not so 
with MILP

– Use as few integer variables as possible
– Solve the problem w/o integrality constraints to get an initial 

upper bound (for max problem) 

Software
• Mosek (free for academic purposes)

– LP, convex QP (for which easy to get global opt.)
– MIP

• Knitro (free for academic purposes)
– LP, convex and non-convex QP
– NLP
– MINLP

• CPLEX (free under IBM Academic Initiative)
– LP, convex QP
– MILP

• All 3 have Matlab interfaces
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