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Today’s Lecture 

 Continuation with MDP 

  Value and Policy iteration 

 Partial Observable MDP (POMDP) 
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Markov Decision Processes (MDP) 

 S - finite set of domain states 
 A - finite set of actions 
 P(sʹ′ | s, a) - state transition function 
 R(s), R(s, a), or R(s, a, sʹ′) - reward function 

  Could be negative to reflect cost 
 S0 - initial state 
 The Markov assumption: 

P(st | st-1, st-2, …, s1, a) = P(st | st-1, a)	
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Example: An Optimal Policy 
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Actions succeed with probability 0.8 and move at right angles!
with probability 0.1 (remain in the same position when"
there is a wall). Actions incur a small cost (0.04)."

A policy is a choice of what action to choose at each state 

An Optimal Policy is a policy where you are always choosing the 
action that maximizes the “return”/”utility” of the current state 
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Computing The Optimal Policy: 
The Bellman equation 

  Optimal policy defined by: 

  Can be solved using dynamic programming 
[Bellman, 1957] 

  How to compute U(j) when it’s definition is recursive € 

π * (s) = argmax
a

P(s' | s,a)U(s')
s'
∑

U(s) = R(s) + γmax
a

P(s' | s,a)U(s')
s'
∑
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Value iteration [Bellman, 1957] 
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€ 

initialize U '
repeat
   U←U '
   for each state s do

      U '[s]← R[s] + γmax
a

P(s' | s,a)U(s')
s'
∑

   end
until CloseEnough(U,U ')
return greedy policy with respect to U '
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Value Iteration Example 

0 1 2 

3 4 5 

10 15 19 

Final Version of U 
What is interesting about this example? 
What does it say about intermediate reward? 
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Initial  Version of U 
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Convergence of VI 

9 

Why Does Discount Rate 
Affect Convergence? 
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Issues with Value Iteration   
 Slow to converge 
 Convergence occurs out from goal 
 Information about shortcuts propagates 

out from goal – where there is reward 
 Intermediate/Greedy policy is optimal 

before U values completely settle – Why?. 
 Optimal value function is a “fixed point” 

of VI. 
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Policy loss 

The error bound on the utility of each state may not 
be the most important factor. 

What the agent cares about is how well it does based 
on a given policy / utility function. 

Note that the policy loss can approach zero long 
before the utility estimates converge. 

€ 

if ||Ui −U* ||< ε  then ||U π i −U* ||< 2εγ /(1− γ)
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Greedy Policy vs Optimal Policy 
Error bound and policy loss 
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Prioritized Sweeping 
  State value updates can be performed in any order in value 

iteration. This suggests trying to decide what states to update to 
maximize convergence speed. 
  Use values computed on the current iteration for updates of other 

values not yet updated on that cycle – how? 

  Prioritized sweeping is a variation of value iteration; more 
computationally efficient (focused). 

  Puts all states in a priority queue in order of how much we 
think their values might change given a step of value iteration. 

  Very efficient in practice (Moore & Atkeson, 1993). 
13 
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Policy Iteration 
  Solve infinite-horizon discounted MDPs in finite 

time. 
  Start with value function U0 for each state 
  Let π1 be greedy policy based on U0. 
  Evaluate π1 and let U1 be the resulting value 

function. 
  Let πt+1 be greedy policy for Ut 
  Let Ut+1 be value of πt+1. 

  Each policy is an improvement until optimal policy is 
reached (another fixed point). 

  Since finite set of policies, convergence in finite time. 
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Policy Iteration 

  π1 →V π1 →π 2 → Vπ 2 →π * →V * →π *

Policy "
Evaluation"

 step"

“Greedification”"
 step"

Improvement"
is monotonic	



Generalized Policy Iteration:!
!Intermix the two steps at a finer scale:!
!state by state, action by action, etc."
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Simulated PI Example 

•  Start out with the reward to go (U) of each cell be 0 
except for the terminal cells 
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Policy iteration [Howard, 1960] 

€ 

repeat
   π ← π '
   U←ValueDetermination(π )
   for each state s do

      π '[s]← argmax
a

P(s' | s,a)U(s')
s'
∑

   end
until π = π '

; reverse from value iteration 
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Value determination 

€ 

Can be implemented using :
Value Iteration :

U '(s) = R(s) + γ P(s' | s,π (s))U(s')
s'
∑

or
By solving a set of n linear equations :

U(s) = R(s) + P(s' | s,π (s))U(s')
s'
∑

€ 

repeat
   U←U '
   for each state s do

      U '[s]← R[s] + γmax
a

P(s' | s,a)U(s')
s'
∑

   end
until CloseEnough(U,U ')

• Notice on each iteration re-
computing what the best action – 
convergence to optimal values 

• Contrast with the value iteration 
done in value determination 
where policy is kept fixed. i.e., 
best action is not changing 

•  convergence to values 
associated with fixed policy 
much faster  

Normal Value Iteration  
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Adding in Time to MDP Actions 
SMDP 

 <S,A,P,R> 
  S: states 
  A: actions 
  P(s,a,N,s’): likelihood of transition at a certain time 

step N 
  R(s): reward  

P (s’|s,N,a) 

€ 

π * (s) = argmax
a

P(s' | s,a)U(s')
s'
∑

U(s) = R(s) + γmax
a

P(s' | s,a)U(s')
s'
∑

N
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POMDP (Partially Observable MDP) 

 The agent does not fully observe the state 
 Current state is not enough to make the optimal 

decision anymore 
 Need entire observation sequence to guarantee 

the Markovian property 

world 
a 

o, r 
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The POMDP Model 
Augmenting the completely observable MDP with the 

following elements: 
  O – a finite set of observations 
  P(o|s',a) – observation function: the probability that o is 

observed after taking action a resulting in a transition to 
state s' 

  A discrete probability distribution over starting states 
(the initial belief state): 

)}1|(|),...,1(),0({ 0000 −= Sbbbb
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POMDP Policy 
  Policy: 

Stage t 

Observation 
sequence  so far: 
a distribution of  
belief in the 
current world 
state 

The new 
observation 
sequence 

action observation 

*: Aπ Ω →
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Performance criteria and utility 
function 

 We will focus on infinite-horizon problems 
 performance criterion = expected discounted reward 

over an infinite horizon 

Utility function measurement: 

        is the a priori state probability distribution 
        is the discount factor 
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A specific policy 
generates a set of 
possible histories, 
each with its own 
likelihood and 
reward 
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Policy representation 
  A policy    is a rule for selecting actions 
  For MDPs this can simply be a mapping from states (of 

the underlying system) to actions 
  For POMDPs this is not possible, because the system 

state is only partially observable 
  Thus, a policy must map from a “decision state” to 

actions. This “decision state” can be defined by: 
-  The history of the process (action, observation sequence)  

-  (Problem: grows exponentially, not suitable for infinite horizon 
problems) 

-  A probability distribution over states 
-  The memory of a finite-state controller 

π
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Bayesian policies (1) 
  The whole history of the process is saved in a 

probability distribution over all system states 
  This probability vector called belief state can be 

updated by Bayesian conditioning after each action 
and observation -- 

  b(s) denotes the probability that the current state of 
the system is s 

  b is the vector of probs over all s, called the belief state 
  P (s',o|s,a) = P(s'|s,a)P(o|s',a) 
  ba

o( s') = SumsP(s',o|s,a)b(s)/ Sums,s'P(s',o|s,a)b(s) 
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Bayesian policies (2) 
  A belief state updated by Bayesian conditioning is a 

sufficient statistic that summarizes all relevant 
information about the history. 

  We can define an MDP with a state set consisting of all 
possible belief states thus mapping a POMDP into an 
MDP 

  V’(bi)=maxa{r(bi,a)+  *(sumoP(o|bi,a)V(bi
a
o)} where 

       r(bi,a) =sumsbi (s)r(s,a)        
  The set of belief states is continuous and infinite but this problem 

can be fixed by using a set of real number basis vectors of size |S| 
to represent V since DP preserves the piecewise linearity and 
convexity of the value function. 

γ
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Finite-memory policies (1) 

  We want a discrete representation with a finite number 
of states! 

  Could do simple binning of probabilities of states but this may 
be a very poor approximation 

  Does not reflect which differences are important and those that 
are not relevant  

  A finite state controller maps H*, the set of all possible 
histories, into a finite number of memory states. 

  Unlike a belief state, a memory state is not a sufficient 
statistic but as the number of memory states is finite, 
the policy representation becomes easier. 
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Finite-state controllers 
  Finite set of inputs – the set of possible 

observations O after each action 
  Finite set of outputs – the set of actions A 
  A finite set of memory states Q 
  A memory state update function  
  An output function (the policy) 
  A nonempty set of possible starting memory 

states + a rule for selecting the starting one 
  A possibly empty set of final memory states  

QOQ →×:τ
AQ→:α
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Difficulties of the finite-memory approach 

  The memory state is not necessarily a sufficient 
statistic, but: 

  A finite-state controller can perform arbitrarily close to 
optimal by using arbitrarily many memory states 

  Mapping different histories into the same memory state is a 
form of generalization in which marginally relevant 
information is ignored  focus on the most relevant aspects 
of the history 

  How to find a good finite-memory 
representation? 

  Finding the best finite-memory representation is the 
difficulty of determining how to organize limited memory 
and use it effectively in decision making, i.e. deciding 
what to remember and what to forget. 
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Policy evaluation for (PO)MDPs 

  Utility function: 

  For completely observable MDPs a policy 
determines a Markov chain 

  each state corresponds to a state of the MDP with 
associated action and transition probabilities to 
next states. 

  Then the utility of each state can be determined 
by solving a system of |S| linear equations: 
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Policy evaluation for POMDPs (2) 

  We allow the finite-state controller to visit an 
infinite number of belief states. 

  In this way, the finite-state controller determines 
a Markov chain in which each state corresponds 
to a combination of a memory state qi and a 
system state sj. 

  qi represents an approximation of the history of 
observations and actions that were taken to get to 
state sj 

  Thus, the size of the Markov chain is |Q||S|.  

V. Lesser; CS683, F10 

Policy evaluation for POMDPs (3) 

two state POMDP becomes a four state markov chain. 

By Mapping a finite controller into a Markov Chain can be 
used to compute utility of finite controller of POMDP; can then 
have a search process to find finite controller that maximizes 
utility of POMDP 

Next Lecture 

 Decision Making As An Optimization 
Problem 


