
Lecture 13: MDP2

Victor R. Lesser
CMPSCI 683

Fall 2010

Today’s Lecture

 Continuation with MDP

  Value and Policy iteration

 Partial Observable MDP (POMDP)

V. Lesser; CS683, F10

Markov Decision Processes (MDP)

 S - finite set of domain states
 A - finite set of actions
 P(sʹ′ | s, a) - state transition function
 R(s), R(s, a), or R(s, a, sʹ′) - reward function

  Could be negative to reflect cost
 S0 - initial state
 The Markov assumption:

P(st | st-1, st-2, …, s1, a) = P(st | st-1, a)	

3 V. Lesser; CS683, F10

Example: An Optimal Policy

+1
-1

.812" +1 .868".912"

-1 .762"

.705"

.660"

.655".611" .388"

Actions succeed with probability 0.8 and move at right angles!
with probability 0.1 (remain in the same position when"
there is a wall). Actions incur a small cost (0.04)."

A policy is a choice of what action to choose at each state

An Optimal Policy is a policy where you are always choosing the
action that maximizes the “return”/”utility” of the current state

4

V. Lesser; CS683, F10

Computing The Optimal Policy:
The Bellman equation

  Optimal policy defined by:

  Can be solved using dynamic programming
[Bellman, 1957]

  How to compute U(j) when it’s definition is recursive €

π * (s) = argmax
a

P(s' | s,a)U(s')
s'
∑

U(s) = R(s) + γmax
a

P(s' | s,a)U(s')
s'
∑

5 V. Lesser; CS683, F10

Value iteration [Bellman, 1957]

6

€

initialize U '
repeat
 U←U '
 for each state s do

 U '[s]← R[s] + γmax
a

P(s' | s,a)U(s')
s'
∑

 end
until CloseEnough(U,U ')
return greedy policy with respect to U '

V. Lesser; CS683, F10

Value Iteration Example

0 1 2

3 4 5

10 15 19

Final Version of U
What is interesting about this example?
What does it say about intermediate reward?

7

Initial Version of U

V. Lesser; CS683, F10

Convergence of VI

9

Why Does Discount Rate
Affect Convergence?

V. Lesser; CS683, F10

Issues with Value Iteration
 Slow to converge
 Convergence occurs out from goal
 Information about shortcuts propagates

out from goal – where there is reward
 Intermediate/Greedy policy is optimal

before U values completely settle – Why?.
 Optimal value function is a “fixed point”

of VI.

10 11

Policy loss

The error bound on the utility of each state may not
be the most important factor.

What the agent cares about is how well it does based
on a given policy / utility function.

Note that the policy loss can approach zero long
before the utility estimates converge.

€

if ||Ui −U* ||< ε then ||U π i −U* ||< 2εγ /(1− γ)

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Greedy Policy vs Optimal Policy
Error bound and policy loss

V. Lesser; CS683, F10

Prioritized Sweeping
  State value updates can be performed in any order in value

iteration. This suggests trying to decide what states to update to
maximize convergence speed.
  Use values computed on the current iteration for updates of other

values not yet updated on that cycle – how?

  Prioritized sweeping is a variation of value iteration; more
computationally efficient (focused).

  Puts all states in a priority queue in order of how much we
think their values might change given a step of value iteration.

  Very efficient in practice (Moore & Atkeson, 1993).
13

V. Lesser; CS683, F10

Policy Iteration
  Solve infinite-horizon discounted MDPs in finite

time.
  Start with value function U0 for each state
  Let π1 be greedy policy based on U0.
  Evaluate π1 and let U1 be the resulting value

function.
  Let πt+1 be greedy policy for Ut
  Let Ut+1 be value of πt+1.

  Each policy is an improvement until optimal policy is
reached (another fixed point).

  Since finite set of policies, convergence in finite time.
V. Lesser; CS683, F10

Policy Iteration

 π1 →V π1 →π 2 → Vπ 2 →π * →V * →π *

Policy "
Evaluation"

 step"

“Greedification”"
 step"

Improvement"
is monotonic	

Generalized Policy Iteration:!
!Intermix the two steps at a finer scale:!
!state by state, action by action, etc."

V. Lesser; CS683, F10

Simulated PI Example

•  Start out with the reward to go (U) of each cell be 0
except for the terminal cells

V. Lesser; CS683, F10

Policy iteration [Howard, 1960]

€

repeat
 π ← π '
 U←ValueDetermination(π)
 for each state s do

 π '[s]← argmax
a

P(s' | s,a)U(s')
s'
∑

 end
until π = π '

; reverse from value iteration

V. Lesser; CS683, F10

Value determination

€

Can be implemented using :
Value Iteration :

U '(s) = R(s) + γ P(s' | s,π (s))U(s')
s'
∑

or
By solving a set of n linear equations :

U(s) = R(s) + P(s' | s,π (s))U(s')
s'
∑

€

repeat
 U←U '
 for each state s do

 U '[s]← R[s] + γmax
a

P(s' | s,a)U(s')
s'
∑

 end
until CloseEnough(U,U ')

• Notice on each iteration re-
computing what the best action –
convergence to optimal values

• Contrast with the value iteration
done in value determination
where policy is kept fixed. i.e.,
best action is not changing

•  convergence to values
associated with fixed policy
much faster

Normal Value Iteration

V. Lesser; CS683, F10

Adding in Time to MDP Actions
SMDP

 <S,A,P,R>
  S: states
  A: actions
  P(s,a,N,s’): likelihood of transition at a certain time

step N
  R(s): reward

P (s’|s,N,a)

€

π * (s) = argmax
a

P(s' | s,a)U(s')
s'
∑

U(s) = R(s) + γmax
a

P(s' | s,a)U(s')
s'
∑

N

V. Lesser; CS683, F10

POMDP (Partially Observable MDP)

 The agent does not fully observe the state
 Current state is not enough to make the optimal

decision anymore
 Need entire observation sequence to guarantee

the Markovian property

world
a

o, r

Ω, , , , ,S A P R O

V. Lesser; CS683, F10

The POMDP Model
Augmenting the completely observable MDP with the

following elements:
  O – a finite set of observations
  P(o|s',a) – observation function: the probability that o is

observed after taking action a resulting in a transition to
state s'

  A discrete probability distribution over starting states
(the initial belief state):

)}1|(|),...,1(),0({ 0000 −= Sbbbb

V. Lesser; CS683, F10

POMDP Policy
  Policy:

Stage t

Observation
sequence so far:
a distribution of
belief in the
current world
state

The new
observation
sequence

action observation

*: Aπ Ω →

V. Lesser; CS683, F10

Performance criteria and utility
function

 We will focus on infinite-horizon problems
 performance criterion = expected discounted reward

over an infinite horizon

Utility function measurement:

  is the a priori state probability distribution
  is the discount factor

⎥
⎦

⎤
⎢
⎣

⎡
∑
∞

=0
),(

0
t

tt
t

b asrE γ

0b
γ

A specific policy
generates a set of
possible histories,
each with its own
likelihood and
reward

V. Lesser; CS683, F10

Policy representation
  A policy is a rule for selecting actions
  For MDPs this can simply be a mapping from states (of

the underlying system) to actions
  For POMDPs this is not possible, because the system

state is only partially observable
  Thus, a policy must map from a “decision state” to

actions. This “decision state” can be defined by:
-  The history of the process (action, observation sequence)

-  (Problem: grows exponentially, not suitable for infinite horizon
problems)

-  A probability distribution over states
-  The memory of a finite-state controller

π

V. Lesser; CS683, F10

Bayesian policies (1)
  The whole history of the process is saved in a

probability distribution over all system states
  This probability vector called belief state can be

updated by Bayesian conditioning after each action
and observation --

  b(s) denotes the probability that the current state of
the system is s

  b is the vector of probs over all s, called the belief state
  P (s',o|s,a) = P(s'|s,a)P(o|s',a)
  ba

o(s') = SumsP(s',o|s,a)b(s)/ Sums,s'P(s',o|s,a)b(s)

V. Lesser; CS683, F10

Bayesian policies (2)
  A belief state updated by Bayesian conditioning is a

sufficient statistic that summarizes all relevant
information about the history.

  We can define an MDP with a state set consisting of all
possible belief states thus mapping a POMDP into an
MDP

  V’(bi)=maxa{r(bi,a)+ *(sumoP(o|bi,a)V(bi
a
o)} where

 r(bi,a) =sumsbi (s)r(s,a)
  The set of belief states is continuous and infinite but this problem

can be fixed by using a set of real number basis vectors of size |S|
to represent V since DP preserves the piecewise linearity and
convexity of the value function.

γ

V. Lesser; CS683, F10

Finite-memory policies (1)

  We want a discrete representation with a finite number
of states!

  Could do simple binning of probabilities of states but this may
be a very poor approximation

  Does not reflect which differences are important and those that
are not relevant

  A finite state controller maps H*, the set of all possible
histories, into a finite number of memory states.

  Unlike a belief state, a memory state is not a sufficient
statistic but as the number of memory states is finite,
the policy representation becomes easier.

V. Lesser; CS683, F10

Finite-state controllers
  Finite set of inputs – the set of possible

observations O after each action
  Finite set of outputs – the set of actions A
  A finite set of memory states Q
  A memory state update function
  An output function (the policy)
  A nonempty set of possible starting memory

states + a rule for selecting the starting one
  A possibly empty set of final memory states

QOQ →×:τ
AQ→:α

V. Lesser; CS683, F10

Difficulties of the finite-memory approach

  The memory state is not necessarily a sufficient
statistic, but:

  A finite-state controller can perform arbitrarily close to
optimal by using arbitrarily many memory states

  Mapping different histories into the same memory state is a
form of generalization in which marginally relevant
information is ignored  focus on the most relevant aspects
of the history

  How to find a good finite-memory
representation?

  Finding the best finite-memory representation is the
difficulty of determining how to organize limited memory
and use it effectively in decision making, i.e. deciding
what to remember and what to forget.

V. Lesser; CS683, F10

Policy evaluation for (PO)MDPs

  Utility function:

  For completely observable MDPs a policy
determines a Markov chain

  each state corresponds to a state of the MDP with
associated action and transition probabilities to
next states.

  Then the utility of each state can be determined
by solving a system of |S| linear equations:

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∞

=0
0))(,()(

t
tt

t bbREbU πγπ

∑
∈

∈∀+=
Ss

SssUsssssRsU
'

),'())(,|'Pr())(,()(ππ πγπ
V. Lesser; CS683, F10

Policy evaluation for POMDPs (2)

  We allow the finite-state controller to visit an
infinite number of belief states.

  In this way, the finite-state controller determines
a Markov chain in which each state corresponds
to a combination of a memory state qi and a
system state sj.

  qi represents an approximation of the history of
observations and actions that were taken to get to
state sj

  Thus, the size of the Markov chain is |Q||S|.

V. Lesser; CS683, F10

Policy evaluation for POMDPs (3)

two state POMDP becomes a four state markov chain.

By Mapping a finite controller into a Markov Chain can be
used to compute utility of finite controller of POMDP; can then
have a search process to find finite controller that maximizes
utility of POMDP

Next Lecture

 Decision Making As An Optimization
Problem

