
Lecture 12: MDP1

Victor R. Lesser
CMPSCI 683

Fall 2010

Biased Random GSAT - WalkSat

V. Lesser; CS683, F10 2

Notice no
random restart

V. Lesser; CS683, F10

Today’s lecture

 Search where there is Uncertainty in

Operator Outcome --Sequential

Decision Problems
 Planning Under Uncertainty

 Markov Decision Processes (MDP)

3

V. Lesser; CS683, F10

Planning under uncertainty

perception

action

Environment

Utility depends on a sequence of decisions"
Actions have unpredictable outcomes!

Agent

4

5

Approaches to planning

Classical AI planning" Operations Research"

No uncertainty"

Achieve goals"

Search"

Uncertainty"

Maximize utility"

Dynamic "
programming"

Markov!
decision!
process!

V. Lesser; CS683, F10

Search with Uncertainty

V. Lesser; CS683, F10

S0
A1

A3

S1

S2

S3

S4

S5

A3

A2

S6

50%

30%
S8

20%

10%

60%

30%

S9

20%

80%

How could you define
an optimization criteria
for such a search?

What is the output of
the search?

6

V. Lesser; CS683, F10

 Given a start state, the objective is to minimize the
expected cost of reaching a goal state.

 S: a finite set of states
 A(i), i ∈ S: a finite set of actions available in state i
 Pij(a): probability of reaching state j after action a

in state i
 Ci(a): expected cost of taking action a in state i

Stochastic shortest-path problems

7

8

Markov decision process

  A model of sequential decision-making developed in
operations research in the 1950’s.

  Allows reasoning about actions with uncertain
outcomes.

  MDPs have been adopted by the AI community as a
framework for:
  Decision-theoretic planning (e.g., [Dean et al., 1995])
  Reinforcement learning (e.g., [Barto et al., 1995])

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Markov Decision Processes (MDP)

 S - finite set of domain states
 A - finite set of actions
 P(sʹ′ | s, a) - state transition function
 R(s), R(s, a), or R(s, a, sʹ′) - reward function

  Could be negative to reflect cost
 S0 - initial state
 The Markov assumption:

P(st | st-1, st-2, …, s1, a) = P(st | st-1, a)	

9

V. Lesser; CS683, F10

The MDP Framework (cont)

action

Stage t Current
state

Next
state

: S Aπ → : S Aπ →

Policy vs.
Plan

10

V. Lesser; CS683, F10

Recycling Robot 	

A Finite MDP with Loops

  At each step, robot has to decide whether it should
  (1) actively search for a can.
  (2) wait for someone to bring it a can.
  (3) go to home base and recharge.

  Searching is better but runs down the battery; if runs out
of power while searching, has to be rescued (which is
bad and represented as a penalty).

  Decisions made on basis of current energy level: high,
low.

  Reward = number of cans collected
12

V. Lesser; CS683, F10

Recycling Robot MDP

S = high ,low{ }
A(high) = search , wait{ }
A(low) = search ,wait, recharge{ }

Rsearch = expected no. of cans while searching
Rwait = expected no. of cans while waiting
 Rsearch > Rwait

search

high low
1, 0

 1– ! , –3

search

recharge

wait

wait

search1– "!" R

! , R search

", R search

1, R wait

1, R wait

rescued

What is an
example of a
policy?

Where is
there
uncertainty?

13

Breaking the Markov Assumption
to get a Better Policy

  Concerned about path to Low State (whether you came
as a result of a search from a high state or a search or
wait action from a low state (high, low1, low2, low3)
  can more accurately reflect likelihood of rescue
  develop policy that does one search in low state

V. Lesser; CS683, F10

high

From
high
(search)-
low1

From
low1
(search)
– low3

From
low1
(wait) –
low2

V. Lesser; CS683, F10

Goals and Rewards
  Is a scalar reward signal an adequate notion of a

goal?—maybe not, but it is surprisingly flexible.
 A goal should specify what we want to achieve, not

how we want to achieve it.
  It is not the path to a specific state but reaching a specific

state – fits with Markov Assumption
 A goal must be outside the agent’s direct control—

thus outside the agent.
 The agent must be able to measure success:

  Explicitly in terms of a reward;
  frequently during its lifespan.

15

V. Lesser; CS683, F10

Performance criteria
  Specify how to combine rewards over multiple time

steps or histories.
  Finite horizon problems involve a fixed number of

steps.
  The best action in each state may depend on the

number of steps left, hence it is non-stationary.
  Finite horizon non-stationary problems can be solved by

adding the number of steps left to the state – adds more
states

  Infinite horizon policies depend only on the current
state, hence the optimal policy is stationary.

18

V. Lesser; CS683, F10

Performance criteria cont.

  The assumption the agent’s preferences between state sequences is
stationary: [s0,s1,s2,…] > [s0,s1’,s2’,…] iff [s1,s2,…] > [s1’,s2’,…]
  how you got to a state does not affect the best policy from that state

  This leads to just two ways to define utilities of histories:
  Additive rewards: utility of a history is U([s0,a1,s1,a2,s2,…]) = R

(s0) + R(s1) + R(s2) + …
  Discounted rewards: utility of a history is U([s0,a1,s1,a2,s2,…]) =

R(s0) + γR(s1) + γ2R(s2) …
  With a proper policy (guaranteed to reach a terminal state) no

discounting is needed.
  An alternative to discounting in infinite-horizon problems is to

optimize the average reward per time step.
19

V. Lesser; CS683, F10

An Example
Avoid failure: the pole falling beyond	

a critical angle or the cart hitting end of	

track.	

reward = +1 for each step before failure
⇒ return = number of steps before failure

As an episodic task where episode ends upon failure:	

As a continuing task with discounted return:	

reward = −1 upon failure; 0 otherwise
⇒ return = − γ k , for k steps before failure

In either case, return is maximized by 	

avoiding failure for as long as possible.	

20

V. Lesser; CS683, F10

Another Example

Get to the top of the hill	

as quickly as possible. 	

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing 	

number of steps to reach the top of the hill. 	

21

V. Lesser; CS683, F10

Policies and utilities of states

 A policy π is a mapping from states to
actions.

 An optimal policy π* maximizes the
expected reward:

 The utility of a state
€

π* =
π

argmax γ tR(st) |π
t= 0

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥

€

U π (s) = E γ tR(st) |π,s0 = s
t= 0

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥

22

V. Lesser; CS683, F10

A simple grid environment

23

V. Lesser; CS683, F10

Example: An Optimal Policy

+1
-1

.812" +1 .868".912"

-1 .762"

.705"

.660"

.655".611" .388"

Actions succeed with probability 0.8 and move at right angles!
with probability 0.1 (remain in the same position when"
there is a wall). Actions incur a small cost (0.04)."

•  What happens when cost increases?"
•  Why move from .611 to .655 instead of .660? "

A policy is a choice of what action to choose at each state

An Optimal Policy is a policy where you are always choosing the
action that maximizes the “return”/”utility” of the current state

24

V. Lesser; CS683, F10

Policies for different R(s)

Never terminate

Terminate as soon
as possible

Avoid -1 state since R
(s) small

25

Next Lecture

 Continuations with MDP

  Value and policy iteration

 Search where is Uncertainty in

Operator Outcome and Initial State

Partial Orderded MDP (POMDP)

 Hidden Markov Processes

