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Notice no 
random restart 
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Today’s lecture 

 Search where there is Uncertainty in 

Operator Outcome --Sequential 

Decision Problems 
 Planning Under Uncertainty  

 Markov Decision Processes (MDP) 
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Planning under uncertainty 

perception 

action 

Environment 

Utility depends on a sequence of decisions"
Actions have unpredictable outcomes!

Agent 
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Approaches to planning 

Classical AI planning" Operations Research"

No uncertainty"

Achieve goals"

Search"

Uncertainty"

Maximize utility"

Dynamic "
programming"

Markov!
decision!
process!
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Search with Uncertainty 
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S0 
A1 

A3 

S1 

S2 

S3 

S4 

S5 

A3 

A2 

S6 

50% 

30% 
S8 

20% 

10% 

60% 

30% 

S9 

20% 

80% 

How could you define 
an optimization criteria 
for such a search? 

What is the output of 
the search? 
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 Given a start state, the objective is to minimize the 
expected cost of reaching a goal state. 

 S: a finite set of states 
 A(i), i ∈ S: a finite set of actions available in  state i 
 Pij(a): probability of reaching state j after action a 

in state i 
 Ci(a): expected cost of taking action a in state i 

Stochastic shortest-path problems 
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Markov decision process 

  A model of sequential decision-making developed in 
operations research in the 1950’s. 

  Allows reasoning about actions with uncertain 
outcomes. 

  MDPs have been adopted by the AI community as a 
framework for: 
  Decision-theoretic planning (e.g., [Dean et al., 1995]) 
  Reinforcement learning (e.g., [Barto et al., 1995]) 
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Markov Decision Processes (MDP) 

 S - finite set of domain states 
 A - finite set of actions 
 P(sʹ′ | s, a) - state transition function 
 R(s), R(s, a), or R(s, a, sʹ′) - reward function 

  Could be negative to reflect cost 
 S0 - initial state 
 The Markov assumption: 

P(st | st-1, st-2, …, s1, a) = P(st | st-1, a)	
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The MDP Framework (cont) 

action 

Stage t Current 
state 

Next 
state 

: S Aπ → : S Aπ →

Policy vs. 
Plan 
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Recycling Robot 	



A  Finite MDP with Loops 

  At each step, robot has to decide whether it should  
  (1) actively search for a can. 
  (2) wait for someone to bring it a can.  
  (3) go to home base and recharge.  

  Searching is better but runs down the battery; if runs out 
of power while searching, has to be rescued (which is 
bad and represented as a penalty). 

  Decisions made on basis of current energy level: high, 
low. 

  Reward = number of cans collected 
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Recycling Robot MDP 

  

S = high ,low{ }
A(high) = search , wait{ }
A(low) = search ,wait, recharge{ }

  

Rsearch =  expected no. of cans while searching
Rwait =  expected no. of cans while waiting
                     Rsearch > Rwait

search

high low
1,  0

 1– ! ,   –3

search

recharge

wait

wait

search1– "!"  R

! ,  R  search

", R search

1,  R wait

1,  R wait

rescued 

What is an 
example of a 
policy? 

Where is 
there 
uncertainty? 
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Breaking the Markov Assumption 
to get a Better Policy 

  Concerned about path to Low State (whether you came 
as a result of a search from a high state or a search or 
wait action from a low state (high, low1, low2, low3) 
  can more accurately reflect likelihood of rescue 
  develop policy that does one search in low state 
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high 

From 
high 
(search)- 
low1 

From 
low1 
(search) 
– low3 

From 
low1 
(wait) – 
low2 
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Goals and Rewards 
  Is a scalar reward signal an adequate notion of a 

goal?—maybe not, but it is surprisingly flexible. 
 A goal should specify what we want to achieve, not 

how we want to achieve it. 
  It is not the path to a specific state but reaching a specific 

state – fits with Markov Assumption 
 A goal must be outside the agent’s direct control—

thus outside the agent. 
 The agent must be able to measure success: 

  Explicitly in terms of a reward; 
  frequently during its lifespan. 
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Performance criteria 
  Specify how to combine rewards over multiple time 

steps or histories. 
  Finite horizon problems involve a fixed number of 

steps. 
  The best action in each state may depend on the 

number of steps left, hence it is non-stationary. 
  Finite horizon non-stationary problems can be solved by 

adding the number of steps left to the state – adds more 
states 

  Infinite horizon policies depend only on the current 
state, hence the optimal policy is stationary. 
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Performance criteria cont. 

  The assumption the agent’s preferences between state sequences is 
stationary: [s0,s1,s2,…] > [s0,s1’,s2’,…] iff [s1,s2,…] > [s1’,s2’,…]  
  how you got to a state does not affect the best policy from that state 

  This leads to just two ways to define utilities of histories: 
  Additive rewards: utility of a history is U([s0,a1,s1,a2,s2,…]) = R

(s0) + R(s1) + R(s2) + … 
  Discounted rewards: utility of a history is U([s0,a1,s1,a2,s2,…]) = 

R(s0) + γR(s1) + γ2R(s2) … 
  With a proper policy (guaranteed to reach a terminal state) no 

discounting is needed. 
  An alternative to discounting in infinite-horizon problems is to 

optimize the average reward per time step. 
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An Example 
Avoid failure: the pole falling beyond	


a critical angle or the cart hitting end of	


track.	



reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As an episodic task where episode ends upon failure:	



As  a continuing task with discounted return:	


reward  = −1 upon failure; 0 otherwise
⇒   return =  − γ k , for k  steps before failure

In either case, return is maximized by 	


avoiding failure for as long as possible.	
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Another Example 

Get to the top of the hill	


as quickly as possible. 	



reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Return is maximized by minimizing 	


number of steps to reach the top of the hill. 	
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Policies and utilities of states 

 A policy π is a mapping from states to 
actions. 

 An optimal policy π* maximizes the 
expected reward: 

 The utility of a state 
€ 

π* =
π

argmax γ tR(st ) |π
t= 0

∞

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

U π (s) = E γ tR(st ) |π,s0 = s
t= 0

∞

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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A simple grid environment 
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Example: An Optimal Policy 

+1 
-1 

.812" +1 .868".912"

-1 .762"

.705"

.660"

.655".611" .388"

Actions succeed with probability 0.8 and move at right angles!
with probability 0.1 (remain in the same position when"
there is a wall). Actions incur a small cost (0.04)."

•  What happens when cost increases?"
•  Why move from .611 to .655 instead of .660? "

A policy is a choice of what action to choose at each state 

An Optimal Policy is a policy where you are always choosing the 
action that maximizes the “return”/”utility” of the current state 
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Policies for different R(s) 

Never terminate 

Terminate as soon 
as possible 

Avoid -1 state since R
(s) small 
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Next Lecture 

 Continuations with MDP 

  Value and policy iteration  

 Search where is Uncertainty in 

Operator Outcome and Initial State 

Partial Orderded MDP (POMDP) 

 Hidden Markov Processes 


