Biased Random GSAT - WalkSat

Lecture 12: MDP1

function WALKSAT(clauses, p, maz _flips) returns a satisfying model or failure j
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk™ move, typically around 0.5
maz_flips, number of flips allowed before giving up

. model — a random assignment of true/false to the symbols in clauses Notice no
Victor R. Lesser for i 1 to mas-flips do o ot
if model satisfies clauses then return model
CMPSCI 683 clause —a selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
F all 2010 else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping
the values of variables. Many versions of the algorithm exist.

Today’s lecture Planning under uncertainty
+ Search where there is Uncertainty in @ peresption

Operator Outcome --Sequential Agent —< Environment

Decision Problems

OQ ~— A

action

e Planning Under Uncertainty

. Utility depends on a sequence of decisions
= Markov Decision Processes (MDP) Actions have unpredictable outcomes

Approaches to planning

Classical Al planning

Operations Research

No uncertainty Uncertainty

Achieve goals Maximize utility

Search Dynamic

programming

Search with Uncertainty
20% st 20%
Al 30% no—
s _—
50% MA
3 s9
A3
3 0% o,
% e How could you define

30 an optimization criteria

6 for such a search?

What is the output of
the search?

Stochastic shortest-path problems

* Given a start state, the objective is to minimize the
expected cost of reaching a goal state.

+ S: a finite set of states
* A(i), i € S: a finite set of actions available in state i

* P;(a): probability of reaching state j after action a
in state

¢ C(a): expected cost of taking action «a in state i

Markov decision process

+ A model of sequential decision-making developed in
operations research in the 1950’s.

* Allows reasoning about actions with uncertain
outcomes.

+ MDPs have been adopted by the Al community as a
framework for:

= Decision-theoretic planning (e.g., [Dean et al., 1995])
= Reinforcement learning (e.g., [Barto et al., 1995])

Markov Decision Processes (MDP)

+ S - finite set of domain states
* A - finite set of actions
¢ P(s' | 5, a) - state transition function
* R(s), R(s, a), or R(s, a, s") - reward function
u Could be negative to reflect cost
¢ S, - initial state
¢ The Markov assumption:
P(s,1I's, ;58,2 .o 8, a) =P(s,1s,,, a)

The MDP Framework (cont)

* Agent fully observes its current state

* Markovian property: the state contains enough
information to pick the optimal action

¢ Objective: maximize the expected reward of the start
state

¢ Policy: i : S --> A; how to find optimal policy

action

Current Next
sate Otage t state

V. Lesser; CS683, F10 10

Policy vs.
Plan

A Finite MDP with Loops

Recycling Robot

* At each step, robot has to decide whether it should

= (1) actively search for a can.
= (2) wait for someone to bring it a can.
= (3) go to home base and recharge.

* Searching is better but runs down the battery; if runs out
of power while searching, has to be rescued (which is
bad and represented as a penalty).

¢ Decisions made on basis of current energy level: high,
low.

¢ Reward = number of cans collected
V. Lesser; CS683, F10. 12

Recycling Robot MDP

S ={high, low}

R***°" = expected no. of cans while searching
A(high) = {search, wait}

R™* = expected no. of cans while waiting
A(low) = {search,wait, recharge}

-6,

Reearch puait

1, R Vit 3

B, R search

What is an
example of a
1, 0 recharge policy?

Where is
there
uncertainty?

1. R vait
«, R search l-a, R search B
, ,

Breaking the Markov Assumption
to get a Better Policy

+ Concerned about path to Low State (whether you came
as a result of a search from a high state or a search or
wait action from a low state (high, low1, low2, low3)

= can more accurately reflect likelihood of rescue
= develop policy that does one search in low state

Goals and Rewards

¢ [s a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.

¢ A goal should specify what we want to achieve, not
how we want to achieve it.

= [t is not the path to a specific state but reaching a specifig
state — fits with Markov Assumption

* A goal must be outside the agent’s direct control—
thus outside the agent.
* The agent must be able to measure success:
= Explicitly in terms of a reward;
:ufrfquently during its lifespan.

Performance criteria

¢ Specify how to combine rewards over multiple time
steps or histories.
¢ Finite horizon problems involve a fixed number of
steps.
¢ The best action in each state may depend on the
number of steps left, hence it is non-stationary.
= Finite horizon non-stationary problems can be solved by
adding the number of steps left to the state — adds more
states
¢ Infinite horizon policies depend only on the current

state, hence the optimal policy is stationary.
. Lesser; €683, FIO. 18

Performance criteria cont.

+ The assumption the agent’s preferences between state sequences is
stationary: [59,8,,85,...] > [80,8,,8, ... 1 iff [81,8,,...] > [5,°,8,,...]
» how you got to a state does not affect the best policy from that state
¢ This leads to just two ways to define utilities of histories:
= Additive rewards: utility of a history is U([s,a;,5,,25.5,,...]) =R
(89) T R(s)) + R(sp) + ...
= Discounted rewards: utility of a history is U([s(,a,,5,,2,,55,...]) =
R(s) + YR(s)) +R(s)) ...
+ With a proper policy (guaranteed to reach a terminal state) no
discounting is needed.
¢ An alternative to discounting in infinite-horizon problems is to
optimize the average reward per time step.

¥ Losier, CS683,F10

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.
As an episodic task where episode ends upon failure:
reward = +1 for each step before failure
= return = number of steps before failure
As a continuing task with discounted return:
reward = -1 upon failure; O otherwise

= return = —y*, for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

Lessr, 683, F10

Another Example

Get to the top of the hill

/ as quickly as possible.
/|
reward = -1 for each step where not at top of hill
= return = - number of steps before reaching top of hill

Return is maximized by minimizing
number of steps to reach the top of the hill.

Policies and utilities of states

¢ A policy i is a mapping from states to
actions.
¢ An optimal policy ¥ maximizes the
expected reward: .
m*=argmax| > r'R(s,) In]

=0
¢ The utility of a state
U™(s)= E| Y y'R(s,) 1,5, = s]

t=0

Lessr, 683, F10

A simple grid environment

3 | x| 08
2 0.1 0.1
1 | start

1 2 3 4

(@) (b)

Figure 17.1 (a) A simple 4 x 3 environment that presents the agent with a sequential
decision problem. (b) Tllustration of the transition model of the environment: the “intended™
outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles
to the intended direction.

Example: An Optimal Policy

A policy is a choice of what action to choose at each state

An Optimal Policy is a policy where you are always choosing the
action that maximizes the “return”/"utility” of the current state

.812|.868/.912 +1

660/ —1

.611].388

Actions succeed with probability 0.8 and move at right angles

with probability 0.1 (remain in the same position when
there is a wall). Actions incur a small cost (0.04).
* What happens when cost increases?
e, Why move from .611 to .655 instead of .6607?

24

Policies for different R(s)

Terminate as soon

- = |1 S N . s |
4 =|ca| | 4 |
3 —_ | | —
R(s) <—1.6284 —0.4278 < R(s) < —0.0850
- [-[=| FR<]=
1 f —-— —-— —-— ‘ - | + - |
" [==0] [+
—0.0218<R(s) <0 R(s) >0
Avoid -1 state since R Never terminate
(@ (s) small (

Figure 17.2 (a) An optimal policy for the stochastic environment with R(s) = — 0.04 in
the nonterminal states. (b) Optimal policies for four different ranges of R(s). 25

Next Lecture

+Continuations with MDP

- Value and policy iteration
¢Search where is Uncertainty in
Operator Outcome and Initial State

Partial Orderded MDP (POMDP)
+Hidden Markov Processes

