Lecture 11: Search 10

Victor R. Lesser CMPSCI 683 Fall 2010

This Lecture

•Multi-Level Search

- BlackBoard Based Problem Solving
- Hearsay-II Speech Understanding System

Multi-Level vs Hierarchical Search

Strict Hierarchical Search

- Movement patterns among levels from lower to higher and back are not fixed
- •Each level is a complete search space
- •State (search nodes) held at each of the level do not go away when moving from one level to another
- •Operators that modify the search space at one level may use information from multi-levels

Even More Complex Search

- Multi-Level & Bi-Directional
- Non-Monotonic Domain
- Cost of Control
 - Non-uniform and costly with respect to node generation
- Non-uniform cost of operator application

Blackboard Problem Solving Model: Cooperating Experts

A Set of Knowledge Sources(KSs) Incrementally adding knowledge/ hypotheses/partial solutions through a shared multi-level structure called the blackboard –think of a group problem-solving process

Blackboard Structure

- Partitioned into distinct information levels
 - Each level holds a *different representation of the problem space*, with its own primitive elements
- KS decomposition relates naturally to one or a few information levels
 - Localization of KS activity
- Levels form a *loose hierarchical* structure
 - Abstraction of elements of the next lower level
 - An *a priori* framework of a plan for problem solving
 - Analysis/synthesis action between levels

Example BlackBoard System

Blackboard Nodes

- Nodes (partial solutions) exist at particular level and associated with a primitive element
 - Each level has associated with it a vocabulary that defines the range of primitive elements
 - Each node has a set of attributes that can be level-dependent
- Nodes can be related to other nodes at the same or different levels
 - **Explicitly** through links and **Implicitly** based on node attributes
- Nodes may represent alternative competing partial solutions
 - Permits direct comparison of alternative search paths
 - Integrated representation of alternative search paths

Implicit linking of Nodes through Time

Explicit Linking of Nodes

Blackboard Control

- Application of knowledge is triggered by current state of blackboard (data directed)
- Based on blackboard events:
 - A change to the blackboard (addition, deletion, modification)
 - Non-occurrence of an expected change
- Trigger evaluation of preconditions of relevant KS
- KS whose preconditions are satisfied is instantiated with appropriate context and placed on scheduling queue (agenda, open list)
- Focus of attention mechanism evaluates agenda and chooses for execution KS(s) that are most promising for further system progress
- KS(s) are executed and alter state of blackboard, trigger new blackboard events

Hearsay-II Architecture

Knowledge Source Structure (KS)

- Trigger specifies a set of event predicates that need to be true for KS to be considered for execution
- Precondition specifies a set of state predicates that need to be true for KS to execute
- Context specifies where KS will be applied (KSAR)
- Obviation condition specifies a set of state-based predicates that if all true indicate KS/Context is to be removed from agenda
- KS action arbitrarily complex program
- Declarative Information used for scheduling

An Example Knowledge Source: Yoke KS (Hayes-Roth, '86)

(LENGTH

Name: Yoke-Structures

Trigger Conditions:

((\$EVENT-LEVEL-IS STRUCTURAL SOLID) (\$EVENT-TYPE-IS Modify) (\$CHANGED-ATTRIBUTE-IS APPLIED-CONSTRAINTS) (\$SET Possible-Combinations (Get-Possible-Combinations \$TRIGGER-OBJECT)))

Context Variables:

((PS-Anchor Anchoree1 Anchoree2) Possible Combinations)

Preconditions:

((\$SET Yoking-Info (There-is-Yoking-Info-For Anchoree1 Anchoree2)) (\$VALUE Anchoree1 'Applied-Constraints) (\$VALUE Anchoree2 'Applied-Constraints))

Obviation Conditions: NIL

KS Variables:

((NewLocLabelForAnchoree1 (Generate-LocTableLabel PS-Anchor Anchoree 1
(\$VALUE Anchoree 1 'Legal Orientations))))
(NewLocLabelForAnchoree2 (Generate-LocTableLabel PS-Anchor Anchoree2
(LENGTH (\$VALUE Anchoree2 'Legal-Orientations))))
(Descriptor 1(Make-Descriptor-For-Yoke PS-Anchor Anchoree1 Anchoree2))
(Descriptor2(Make--Descriptor-For-Yoke PS-Anchor Anchoree2 Anchoree1)))

Actions:

((1 (T)

 (EXECUTE (\$SET YokeResult (Yoke-Structures PS-Anchor Anchoree1 Anchoree2 (CADAR (LAST (\$VALUE Anchoree1 'Legal-Orientations))) (CADAR (LAST (\$VALUE Anchoree2 'Legal-Orientations))) NewLocLabelForAnchoree1 Descriptor1 NewLocLabelForAnchoree2 Descriptor2 (LENGTH Yoking-Info) Yoking-Info VanderWaalsCheck?))))

(2 (T).... V. Lesser: CS683. F10

Instantiated KS (KSAR) on Scheduling Queue

NAME - KSAR50 TRIGGER-EVENT - ANCHOR-HELIX modifying attributes of HELIX1 ContextVars - ((PS-Anchor Helix1) (Anchoree1 Helix3) (Anchoree2 Helix2)) KS - Yoke-Structures BoundVars - ((NewLocLabelForAnchoree1 Hel1inHel3-5) (NewLocLabelForAnchoree2 Hel1inHel2-4) (Descriptor1 Yoke-Helix3-andHelix2-around-Helix1) (Descriptor2 Yoke-Helix2-and-Helix3-around-Helix1)) ExecutableCycle - 18 ScheduledCycle - NIL ExecutedCycle - NIL Status - EXECUTABLE

A Yoke-Structures KSAR. Yoke-Structures has been triggered by a modification of helix1's applied-constraints. This KSAR represents the blackboard context in which helices 2 and 3 have constraints with one another and with helix1. Since both helices have previously identified locations, the KSAR is executable.

Generic Data Interpretation KSs

Issues in BB Control

- How to decide which of many potential KS instantiations are the most preferred
 - How to compare apples and oranges
 - Different levels and parts of seach space
- How to control the potential for combinatorial explosion of hypotheses on the blackboard
 - Overhead significantly increases as large number of partial solutions are placed on BB
- How to decide when the system has an acceptable solution -- search termination criteria

Non-monotonic character of search

Hearsay-II Speech Understanding System

Information Retrieval Based on Interpreting Connected Speech

Sample sentences:

"Which abstracts refer to theory of computation?"

"List those articles."

"What has McCarthy written since 1974?"

Why Connected Speech Understanding is Difficult

- Large search space
 - $\approx 10^8$ legal sentences
- Uncertainty and Approximate Knowledge
 - Sensors
 - Acoustic phonetic knowledge
- Knowledge costly to apply
- Difficult to subdivide problem solving
- Interacting constraints
 - Co-articulation phenomenon
- Wide variety of knowledge needs to be applied

Masking in Time-Domain: Co-Articulation

 Continuous speech blurs word boundaries and changes pronunciations...

How each word would look when spoken in isolation

Functional Description of the Speech-Understanding KSs

Hearsay-II Knowledge Sources Domain and Control

- Signal acquisition, parameter extraction, segmentation and labeling
 - SEG: digitizes the signal, measures parameters and produces a labeled segmentation
- Word spotting
 - POM: creates syllable-class hypotheses from segments
 - MOW: creates word hypotheses from syllable classes
 - WORD-CTL: controls the number of word hypotheses that MOW creates
- *Phrase-island generation*
 - WORD-SEQ: creates word-sequence hypotheses that represent potential phrases from word hypotheses and weak grammatical knowledge
 - WORD-SEQ-CTL: controls the number of hypotheses that WORD-SEQ creates
 - PARSE: attempts to parse a word sequence and, if successful, creates a phrase hypothesis from it

Hearsay-II Knowledge Sources, cont'd

Phrase extending

- PREDICT: predicts all possible words that might syntactically precede or follow a given phrase
- VERIFY: rates the consistency between segment hypotheses and a contiguous word-phrase pair
- CONCAT: creates a phrase hypothesis from a verified contiguous word-phrase pair

Rating, halting, and interpretation

- RPOL: rates the credibility of each new or modified hypothesis, using information placed on the hypothesis by other KSs
- STOP: decides to halt processing (detects a complete sentence with a sufficiently high rating, or notes the system has exhausted its available resources) and selects the best phrase hypothesis or set of complementary phrase hypotheses as the output
- SEMANT: generates an unambiguous interpretation for the information-retrieval system which the user has queried

Abstract State Space Through Approximate Knowledge

Approximate K_1 by \tilde{K}_1 \rightarrow more errors/uncertainty Correct with ΔK_2 Win if $Cost(\tilde{K}_1 + \Delta K_2) < Cost(K_1)$ $K_1 = PARSE$ $\tilde{K}_1 = WORD - SEQ's$ matrix $\Delta K_2 = PARSE$ applied to sequences

Basic Control Cycle

- Scheduler invokes highest-rated KS with specific context
 - Check before running whether precondition still valid
- KS modifies blackboard
 - Focus-of-control database is updated
 - Relevant precondition procedures are notified
- Relevant precondition procedures are evaluated
 - New KS instances are posted on scheduler with context
- Priority of new KS instances are calculated and those old ones are affected by change in control database

Control Strategy

- Bottom-up processing to word level
 - Sufficient reliability for opportunistic processing
- KS as generator functions
 - Limited generation of alternatives
 - Retriggered to generate additional hypotheses as search stagnates
- Select sequence of word hypotheses as candidates for phrase hypotheses
- Opportunistic search at Phrase Level
 - Islands-of-reliability
 - Integrate partial phrases coming from different directions
 - Fill out words not bottom-hypothesized

Control Strategy, cont'd

- If search not progressing, retrigger KSs for more hypotheses
 - Implement with control KSs stimulated by agenda
- Search termination
 - Special mode when a spanning hypothesis is constructed of sufficient credibility
 - Use hypotheses to constrain further search

V. Lesser; CS683, F10

c2 2

V. Lesser; CS683, F10

C2 4

Hearsay-II Trace as a Search Graph

11.KS:PREDICT & VERIFY*

Stimulus: [+ ARE* (phrase)

Action: Predict (from the grammar) 292 words following.

Reject (using the acoustic information) 277 of them. The four highest-rated of the fifteen verified words are

REDDY (85,26:52), ANY* (65,24:49), HUGH (55,30:39), and YOU (55, 28:39).

12.KS:CONCAT

Stimulus: [+ ARE* (phrase), REDDY (word) Action: Create phrase: [+ ARE + REDDY(91,0:52)

13.KS: CONCAT*

Stimulus: [+ ARE* (phrase), ANY* (word) Action: Create phrase: [+ ARE + ANY* (86,0:49)

14. KS:PREDICT & VERIFY*

Stimulus: AND + FELDMAN +]* (phrase) Action: Predict 100 words preceding. Reject 76 of them. The best of the verified 24 (in descending rating order) are FEIGENBAUM* (80,72:150), WEIZENBAUM (70,72:150), ULLMAN (70,116:150), NORMAN (70, 108:150), and NEWBORN (70, 108:150).

15. KS:PREDICT & VERIFY

Stimulus: EIGHT (phrase)

Action: Predict the word NINE following and verify it (80,52:82).

Predict SEVEN preceding, but reject this because of mismatch with the acoustic segments.

16. KS:CONCAT*

Stimulus: FEIGENBAUM* (word), AND + FELDMAN +]* (phrase) Action: Create phrase: FEIGENBAUM + AND + FELDMAN +]* (85,72:225)

17. KS: PREDICT & VERIFY*

Stimulus: FEIGENBAUM + AND + FELDMAN +]* (phrase) Action: Predict eight preceding words. Reject one (DISCUSS). Find two already on the blackboard:

BY* (80,52:72) and ABOUT (75,48:72). Verify five others: NOT(75,49:82), ED(75,67:72), CITE(70,49:82), QUOTE(70,49:82), CITES(65,49:82).

25.KS: CONCAT*

Stimulus: ANY* (word), BY + FEIGENBAUM + AND + FELDMAN +]* (phrase) Action: Create phrase: ANY + BY + FEIGENBAUM + AND + FELDMAN +]* (82,24:225) [+ ARE + ANY + BY + FEIGENBAUM + AND + FELDMAN +]* (85,0:225) is also created, from [+ ARE + ANY and BY + FEIGENBAUM + AND + FELDMAN +].

26.KS:STOP

Stimulus: [+ ARE + ANY + BY + FEIGENBAUM + AND + FELDMAN +]*

(complete sentence)

Action: Deactivation of several dozen competing hypotheses.

27. KS:PREDICT & VERIFY

Stimulus: [+ ARE + REDDY Action: Predict three following words. Verify CITED (60, 52:86), OR(30,52:67), AND(25,52:82).

28. KS:CONCAT

Stimulus: [+ARE* (phrase), HUGH (word) Action: Create phrase: [+ HUGH + YOU (83, 0:39)

29. KS:CONCAT

Stimulus: [+ ARE (phrase), YOU (word) Action: Create phrase: [+ ARE + YOU (83,0:39)

30. KS:CONCAT

Stimulus: [+ ARE + REDDY (phrase), CITED (word) Action: Create phrase: [+ ARE + REDDY + CITED (80,0:86)

38. KS:STOP

Stimulus: Stagnation Action: Stop search and accept [+ ARE + ANY + BY + FEIGENBAUM + AND + FELDMAN +]*

39.KS:SEMANT*

Stimulus: Recognized utterance: [+ ARE + ANY + BY + FEIGENBAUM + AND + FELDMAN +]* Action: Generate an interpretation for the database retrieval system.

Advantages of Blackboards

- Many and diverse sources of knowledge can participate in forming and modifying the emerging solution
 - Linking partial solutions at the same level of abstraction and those at different levels
- Each knowledge source can be implemented using
 - The most appropriate representation of it knowledge
 - The most efficient inference engine for its reasoning

Advantages of Blackboards Continued

• No a priori commitment to the order of inferencing steps

- Bottom-up or Top-down
- Data-directed or Model/Goal directed
- Each knowledge source can contribute opportunistically since each has continual access to the current state of the search.
 - The right knowledge can be applied at the right time.
 - Permits Differential diagnosis
- Control Knowledge can exploit a global view of the emerging set of potential solutions and their relationships
 V. Lesser; CS683, F10

Next Lecture (Wed Oct 20)

- Sequential Decision Problems
 - Markov Decision Processes (MDP)
 - Partial Orderded MDP (POMDP)

Good Luck on Exam on Monday