
Lecture 10: Search 9

Victor R. Lesser
CMPSCI 683

Fall 2010

Announcement

 Office Hours Today from 1:30-2:45

 Hala will send out a new version of the simulator
fixing some minor problems

 Exam on Monday October 18; covering all
material including today’s and tomorrow’s lecture
  Open book but not access to internet
  Required readings but not optional readings

V. Lesser; CS683, F10

GSAT Algorithm

Problem: Given a formula of the propositional calculus, find an interpretation of the variables under which the formula
comes out true, or report that none exists.

procedure GSAT

Input: a set of clauses ∝, MAX-FLIPS, and MAX-TRIES

Output: a satisfying truth assignments of ∝, if found
begin

 for i:= 1 to MAX-TRIES ; random restart mechanism
 T := a randomly generated truth assignment
 for j := 1 to MAX-FLIPS

 if T satisfies ∝ then return T

 p := a propositional variable such that a change in its truth assignment gives the largest increase in

total number of clauses of ∝ that are satisfied by T.
 T := T with the truth assignment of p reversed
 end for
 end for
 return “no satisfying assignment found”

end
V. Lesser; CS683, F10

; needs to be highly efficient

3SAT Phase Transition

20--variable formulas ♦	

40--variable formulas +	

50--variable formulas 	

Ratio of clauses-to-variables	

of

 D
P

ca
lls
	

Ratio of clauses-to-variables	

Fr

ac
tio

n
of

 u
ns

at
is

fia
bl

e
fo

rm
ul

ae	

  Easy -- Sastifiable problems where many solutions
  Hard -- Sastifiable problems where few solutions
  Easy -- Few Satisfiable problems

  Assumes concurrent search in the satisfiable space and the non-satisfiable space
(negation of proposition)

V. Lesser; CS683, F10

V. Lesser; CS683, F10

This Lecture

  Informed-Backtracking Using
 Min-Conflicts Heuristic

 Arc Consistency for Pre-processing

  Intelligent backtracking

 Reducing the Search by structuring the CSP as
a tree search

V. Lesser; CS683, F10

Depth-First CSP Search with Single-Variable
Assignments -- Backtracking Search

Recursion implicitly holds the search
tree and the possibilities that have not
been explored

; Expand
depth-first

; starts out with no variable/value in assignments

V. Lesser; CS683, F10

Intelligent Search for CSPs

  CSP search complexity may be affected by:

  The order in which variables are assigned values;

  The domain values chosen for assignment.

  Variable-ordering heuristics reduce the bushiness of the search
tree by moving failures to upper levels.

  Value-ordering heuristics move solutions to the “left” of the
search tree so they are found more quickly by backtracking
search.

  Good heuristics can reduce search complexity by nearly an
order of magnitude.

V. Lesser; CS683, F10

Informed-Backtracking Using
 Min-Conflicts Heuristic

Procedure INFORMED-BACKTRACK (VARS-LEFT VARS-DONE)
 If all variables are consistent, then solution found, STOP.
 Let VAR = a variable in VARS-LEFT that is in conflict.; HOW TO CHOOSE?
 Remove VAR from VARS-LEFT.
 Push VAR onto VARS-DONE.
 Let VALUES = list of possible values for VAR ordered in ascending
 order according to number of conflicts with variables
 in VARS-LEFT. – min-conflict heuristic
 For each VALUE in VALUES, until solution found:
 If VALUE does not conflict with any variable that is in VARS-DONE,
 then Assign VALUE to VAR.
 Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE); DEPTH-FIRST RECURSION
 end if
 end for; WHAT HAPPENS IF YOU DON’T FIND ACCEPTABLE VALUE?

end procedure
Begin program (INITIALIZATION OF RECURSIVE BACKTRACKING)

 Let VARS-LEFT = list of all variables, each assigned an initial state
 Let VARS-DONE = nil
 Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

End program

; start with with all
variables in vars-left

Heuristics that can help

Key questions:
1.  Which variable should be assigned next and

in what order should the values be tried?
2.  What are the implications of the current

variable assignments for the other
unassigned variables?

3.  When a path fails, can the search avoid
repeating this failure in subsequent paths?

V. Lesser; CS683, F10

V. Lesser; CS683, F10

Number of backtracks/repairs for
N-Queens algorithms (S. Minton et al.)

 Constructive Repair-based
 Standard Most constrained Min-conflicts Min-conflicts

 n backtrack backtrack¨ hill-climbing backtrack
n = 101 53.8 17.4 57.0 46.8
n = 102 4473 (70%) 687 (96%) 55.6 25.0
n = 103 88650 (13%) 22150 (81%) 48.8 30.7
n = 104 * * 48.5 27.5
n = 105 * * 52.8 27.8
n = 106 * * 48.3 26.4

* = exceeded computation resources

V. Lesser; CS683, F10

Potential Reasons for Heuristic Repair
to be Advantageous

  Depth-first search badly organized
  Poorer choices are explored first at each branch point

  More solutions with first queen placed in center of first row
  Takes a very long time to recover from bad decision made early in search

  Backtracking program that randomly orders rows (and columns within
rows) still performs poorly

  Distribution of solutions
  Depth first does not perform well where solutions clustered in tree

  Random backtracking (Las Vegas algorithm) does better but still
problem

V. Lesser; CS683, F10

Potential Reasons for Heuristic
Repair to be Advantageous (cont’d)

  Informedness hypothesis
  Heuristic repair is better because it has more

information that is not available to a constructive
backtracking (more encompassing view of search
space)

  Mini-conflict heuristic — select a variable that is
in conflict and assign it a value that minimizes the
number of conflicts (number of other variables
that will need to be repaired)

V. Lesser; CS683, F10

Other Examples of Heuristics for CSPs

  Most-constraining variable
  Select for assignment the variable that is involved in the

largest number of constraints on unassigned variables;
  Also called the search-rearrangement method;

  Least-constraining value
  Select a value for the variable that eliminates the smallest

number of values for variables connected with the variable
by constraints;

  i.e., maximize the number of assignment options still
open.

V. Lesser; CS683, F10

Most constrained variable

Choose the variable with the fewest legal values	

V. Lesser; CS683, F10

Most constraining variable

 Tie-breaker most constrained variables
 Choose the variable with the most constraints on

remaining variables

5

2 1

Don’t
choose

V. Lesser; CS683, F10

Least constraining value

  Choose the one that rules out the fewest values in the
remaining variables

  Combining all these heuristics, make 1000 queens
feasible

Some Additional Ideas on CSP
Search

 Arc Consistency for Pre-processing

 Other approaches to ordering
variables and values in search

Heuristics that can help

Key questions:
1.  Which variable should be assigned next and

in what order should the values be tried?
2.  What are the implications of the current

variable assignments for the other
unassigned variables?

3.  When a path fails, can the search avoid
repeating this failure in subsequent paths?

V. Lesser; CS683, F10

V. Lesser; CS683, F10

 … is the process of determining how the possible
values of one variable affect the possible values of
other variables

The placement of
the two queens
makes the
placement of
queens in the
black dots invalid

V. Lesser; CS683, F10

Forward Checking:
 A Simple kind of Propagation

  After a variable X is assigned a value v, look at each
unassigned variable Y that is connected to X by a
constraint and deletes from Y’s domain any value that is
inconsistent with v

  Reduces the branching factor and help identify failures
early.

V. Lesser; CS683, F10

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

V. Lesser; CS683, F10

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB

T
WA

NT

SA

Q

NSW

V

V. Lesser; CS683, F10

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB

T
WA

NT

SA

Q

NSW

V

V. Lesser; CS683, F10

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G R B RGB

T
WA

NT

SA

Q

NSW

V

Impossible assignments that forward
checking does not detect

V. Lesser; CS683, F10

Arc (K=2) consistency
 An arc from X to Y in the constraint graph is

consistent if, for every value of X, there is some
value of Y that is consistent with X.

 Can detect more inconsistencies than forward
checking.
  Can be applied as a preprocessing step before search
  As a propagation step after each assignment during

search. -- how is this advantageous
 Process must be applied repeatedly until no

more inconsistencies remain. Why?

V. Lesser; CS683, F10

ARC Consistency Example

No possible solution with WA=red and Q=green

Forward checking
(WA,Q)

Arc consistency NSW/SA
Update V/NSW,

Arc consistency SA/NT

For NSW=B is there
any valid set of its
neighbors that will
allow its constraints
to be satisfied; then
for V= R, and finally
SA=B

V. Lesser; CS683, F10

ARC Consistency Algorithm

Wrong

If (x,y) arc consistency can not be satisfied with some value y in DOMAIN[Xj] !
then delete x from DOMAIN[Xj]; remove<-true!

; propagates effects thru network

; If Xi has an inconsistent
domain value then need to
reassess relations with other
neighbors

V. Lesser; CS683, F10

Complexity of arc consistency
  A binary CSP has at most O(n2) arcs

  Each arc (X→Y) can only be inserted on the agenda d times
because at most d values of Y can be deleted.

  Checking consistency of an arc can be done in O(d2) time.

  Worst case time complexity is: O(n2d3).

  Does not reveal every possible inconsistency!
  Does not take into account multiple constraints

simultaneously
  The only value of X than can satisfy the constraint from Y is

5 while the only of X than can satisfy the constraint form W
is 6; in this case there is no solution

V. Lesser; CS683, F10

K-consistency
  A graph is k-consistent if, for any set of k variables, there is

always a consistent value for the kth variable given any
consistent partial assignment for the other k-1 variables.
  A graph is strongly k-consistent if it is i-consistent for i = 1..k.
  IF k=number of nodes than no backtracking

  Higher forms of consistency offer stronger forms of constraint
propagation.
  Reduce amount of backtracking
  Reduce effective branching factor
  Detecting inconsistent partial assignments

  Balance of how much pre-processing to get graph to be k
consistent versus more search

Need for 3-Consistency
 With 2-Consistency no further reduction

 With 3-Consistency realizes problem is
unsolvable: ({N1=R,N2=B},{N1=B, N2=R}) no
consistent assignment for node 3

V. Lesser; CS683, F10

 Node 1
 {R,B} Node 3

 {R,B}

Node 2
 {R,B}

V. Lesser; CS683, F10

Intelligent Backtracking:
BackJumping

  Chronological backtracking: always backtrack to most recent assignment. Not
efficient!

  Conflict set: A set of variables that caused the failure.

  Backjumping: backtrack to the most recent variable assignment in the conflict
set.

  Simple modification of BACKTRACKING-SEARCH.

  Forward Checking can be used to generate conflict set based on
variables that remove elements from domain of other variables

Fixed variable ordering Q,NSW,V,T,SA,WA,NT

{Q,NSW,V,T}, SA=?; backup to T makes no sense

What Variable(s) Caused the Conflict

Backtrack to V, most recent variable set in conflict set

V. Lesser; CS683, F10

More Advanced Backtracking
  Conflict-directed backjumping: better definition of conflict sets

leads to better performance -- bottom-up/top-down state
integration WA=red, NSW=red can never be solved

T= red, then assign NT,Q,V,SA (always fails)

How to know that (indirect) conflict set of NT is

WA and NSW since they don’t conflict with NT

Conflict set of NT is set of preceding variables that caused NT, together with
any subsequent variables, to have no consistent solutions

SA fails conflict {WA,NT,Q} based on forward propagation; backjump to Q

Q absorbs conflict set of SA minus Q {WA,NSW,NT}; backjump to NT

NT absorbs conflict set of Q minus NT {WA,NSW};

V. Lesser; CS683, F10

Complexity and problem structure
  The complexity of solving a CSP is strongly related to

the structure of its constraint graph.

  Decomposition into independent subproblems yields
substantial savings: O(dn) → O(dc⋅n/c)

  Tree-structured problems can be solved in linear time
O(n⋅d2)

  Cutset conditioning can reduce a general CSP to a
tree-structured one, and is very efficient if a small
cutset can be found.

V. Lesser; CS683, F10

Algorithm for Tree Structured
CSPs

1 ….. n

Remove inconsistencies

Assign values

V. Lesser; CS683, F10

Algorithm for Nearly-Tree Structured CSPs

Generate 3 different
trees depending on
SA value

• Solve for each tree based on a specific value for cut variable (SA[r,b,g]

Summary
  CSP are a special class of search problems

  States defined by a values for a fixed set of variables
  Goal test defined by constraints on variables
  Can be thought as a Depth-first search with one variable

assigned per node
  Mini-Conflict heuristic based search is often a powerful tool for

solving CSP problems
  Variable Ordering and Value Ordering heuristics can significantly

speed-up search
  Constraint propagation can narrow the search space significantly
  If the problem can be mapped into a set of tree structured CSPs, it

can be solved quickly
V. Lesser; CS683, F10

V. Lesser; CS683, F10

Next lecture

 Multi-level Search

  Blackboard Problem-Solving Architecture

