
Lecture 24:Resource Bounded ReasoningLecture 24:Resource Bounded Reasoning

Victor Lesser

CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

ExamExam

• Time

– Friday 12/17 8-10am.

• Location
– GSMN 51 Goessmann Lab

• Open Book

• Only on Material not covered on

Midterm

3V. Lesser CS683 F2004

Exam LocationExam Location

4V. Lesser CS683 F2004

Material for ExamMaterial for Exam

• Rational Decision Making under Uncertainty
– Utility Theory

– Value of Information

– Decision Networks/Influence Diagrams

• Learning
– Decision trees

– Reinforcement learning
• Dynamic programming

– Neural networks

– Instance-based learning
• Case-based learning

– Analytic learning
• EBL

– Relational learning (guest lecture)

• Resource Bounded Reasoning

• Multi-Agent Systems

5V. Lesser CS683 F2004

TodayToday’’s Lectures Lecture

• Resource Bounded Reasoning

6V. Lesser CS683 F2004

Need for Resource-Bounded ReasoningNeed for Resource-Bounded Reasoning

• Agents have limited computational power.

• They must react within an acceptable time.

• Computation time delays action and reduces the

value of the result.

• Must cope with uncertainty and missing information.

• Limited planning horizon.

• The “appropriate” level of deliberation is situation

dependent.

Agents cannot be perfectly rational

7V. Lesser CS683 F2004

Building Resource-Bounded Reasoning SystemsBuilding Resource-Bounded Reasoning Systems

A methodology for building satisficing systems

by addressing the following four major issues:

1. Elementary algorithm construction

2. Performance measurement and prediction

3. Composability of methods (subsystems)

4. Monitoring and meta-level control

In the context of an Overall System Architecture

8V. Lesser CS683 F2004

Elementary Algorithm ConstructionElementary Algorithm Construction

• Two Approaches
– Anytime Methods

• Increasing better result with time or other resources

• Always have an answer available

– Approximate Methods
• Approximate solution in shorter time/ less resources than

required by optimal solution

• Quality measures replace “correctness”
— Certainty - Likelihood that the answer is correct.

— Precision - Accuracy of the answer.

— Specificity - Level of detail in the answer.

— Completeness - Part of problem solved

— Cost - Overall solution cost.

— Multidimensional quality measures.

9V. Lesser CS683 F2004

Anytime AlgorithmsAnytime Algorithms

• An anytime algorithm is an algorithm whose quality of
results improves gradually as computation time
increases

– computational methods that allow small quantities of
resources - such as time, memory, or information - to
be traded for gains in the value of computed results.

– Interruptible algorithms are anytime algorithms whose run time
need not be determined in advance

• They can be interrupted at any time during execution and return a
result

• Anytime algorithms have been designed for planning,
Bayesian inference, CSPs, combinatorial
optimization, diagnosis

10V. Lesser CS683 F2004

Anytime AlgorithmsAnytime Algorithms

Decision
Quality

Time

Ideal

Traditional

Time cost

Anytime
Value

• Ideal (maximal quality in no time)

• Traditional (quality maximizing)

• Anytime (utility maximizing)

• Performance profiles, Q(t) , return quality as a function
of time

11V. Lesser CS683 F2004

Approximate MethodsApproximate Methods

• Construct Approximate Methods that have

– Less variance on their resource usage

– Lower expected resource usage

• Different Forms of Approximation

– Process Approximations

– Knowledge Approximations

– Data Approximations

12V. Lesser CS683 F2004

Where do Process Approximations Come From?Where do Process Approximations Come From?

• Complex problem solving as a multi-step
process
– Sequence of intermediate subgoals

• Sequence partially ordered
– Not all steps are necessary

• Sequence repeated in multiple
contexts/Search
– Not all contexts need to be looked at

• Problem solving already assumes the
solution to a subgoal may not be optimal
– Adding alternative ways of solving subgoals

doesn’t alter things too much

13V. Lesser CS683 F2004

Process Approximation --Process Approximation --Time Frame SkippingTime Frame Skipping

14V. Lesser CS683 F2004

Data Approximation (Input)Data Approximation (Input)

t2

t2t1 t3

t3
t3

t3

t3

t4

t5

t5

t2

t2t1 t3

t3
t3

t3

t3

t4

t5

t5

original data
– Incomplete
processing
(ignoring attributes)

– change in
representation

– Clustering
information

The Effects of Approximate Signal ProcessingThe Effects of Approximate Signal Processing

Figure 2.14: A comparison of

the exact and the approximate

STFTs corresponding to a

violin playing a sequence of two

notes. Approximate STFTs

were calculated using the hybrid

narrowing approach with

minimum frequency coverage

constraint set to 2000 Hz. The

Plot in part (a) corresponds to

the exact STFT. Plots in (b), (c)

and (d) correspond to

approximate STFTs with

arithmetic complexity relative to

that of a pruned FFT restricted

to 50%, 25%, and 12.5%,

respectively.

Source: Erkan Dorken, Ph.D., Thesis, Boston University
15 16V. Lesser CS683 F2004

Knowledge ApproximationKnowledge Approximation

Partial Support Eliminate Detail

17V. Lesser CS683 F2004

CompositionComposition

• Given:
– Alternative ways of solving the problem

• composed of anytime algorithms or approximate
methods for solving primitive subgoals

– (Conditional) Performance Profiles of the
primitive methods (components)

• Quality of input to method leads to different performance
profiles

– A time-dependent/resource dependent utility
function

• Problem:

– For given a particular setting of the utility function,
calculate the best way to solve the problem

18V. Lesser CS683 F2004

Alternative Compositional ApproachesAlternative Compositional Approaches

• Contract Algorithms
– Build out of anytime algorithms

– Allocate a fix amount of time to each anytime algorithm
based on deadline

• Based on performance profile

• Design-to-Time
– Construct a sequence of approximate methods that will

likely meet deadline restrictions
• Involves elements of planning (deciding what to do) and

scheduling (deciding when to perform particular actions).

• Replan/re-adjust if partial sequence not making suitable
progress

19V. Lesser CS683 F2004

Contract Contract !! Interruptible Interruptible

• What if we want to use a contract

algorithm in a setting where we don’t

know the deadline?

• We can repeatedly activate the contract

algorithm with increasing run times

20V. Lesser CS683 F2004

Contract Contract !! Interruptible Interruptible

• When the deadline occurs, we can return the

result produced by the last contract to finish:

Deadline

Return result
from this
contract

1
t

2
t

3
t

4
t

5
t

6
t …

21V. Lesser CS683 F2004

The Resulting Performance ProfileThe Resulting Performance Profile

time

Q(t)

…
1
t

2
t

3
t

4
t

5
t

6
t

22V. Lesser CS683 F2004

The Progressive Processing ModelThe Progressive Processing Model

• Progressive processing is an approach to
performing a set of tasks under tight resource
constraints and high-level of uncertainty.

• Each task is composed of a hierarchy of levels
each of which offers a tradeoff between resource
consumption and quality.

• Problem: (fine-grained scheduling) how to select
modules for execution so as to maximize the
overall expected utility?

23V. Lesser CS683 F2004

A Sample Robotic Activity Represented as aA Sample Robotic Activity Represented as a

Progressive Processing UnitProgressive Processing Unit

Take high-res

 picture

Take low-res

picture

Take mid-res

picture

Locate object

Apply low

 compression

Apply high

compression

Aim camera
Approach object

& aim camera

24V. Lesser CS683 F2004

Formal ModelFormal Model

• A progressive processing unit is composed of a
sequence of processing levels (l1...lL)

• Each level li is composed of a set of pi alternative
modules {m1…mpi

}

• Each module mi has a module descriptor

• A reward function, U(q), specifies the immediate
reward for performing the activity with an overall
quality q.

Pi
j
((q' ,!r) | q)

 delta r is the resource allocation

q is the quality of input to module

25V. Lesser CS683 F2004

The Reactive Control ProblemThe Reactive Control Problem

Problem: select a set of alternative modules so

as to maximize the expected utility over a

complete plan.

• Respond quickly to deviations from expected

quality or resource consumption of a module.

• Respond quickly to plan modifications.

• Avoid a complex rescheduling process.

26V. Lesser CS683 F2004

Optimal Control of a Single PRUOptimal Control of a Single PRU

by Mapping to an MDPby Mapping to an MDP

• State representation:

• Select the best action:

• Rewards and the value function:

S ={[li ,q, r] | li !u}

E i+1

j
 - execute j - th module of the next level

!

Pr([li+1,q', r " #r] | [li ,q,r], E i+1

j
) = Pi+1

j
((q',#r) |q)

V([lL ,q, r]) =U(q)

V([li ,q, r]) = max
j

Pi+1
j

q' ,!r

" ((q' ,!r) |q)V([li+1, q' ,r # !r])

27V. Lesser CS683 F2004

Optimal ControlOptimal Control

Theorem: Given a progressive processing unit

u, an initial resource allocation r0 and a reward

function U(q), the optimal policy for the

corresponding MDP provides an optimal

strategy to control u.

Proof: Based on the one-to-one

correspondence and the fact that the PRU

transition model satisfies the Markov

assumption.

28V. Lesser CS683 F2004

Scheduling Sequence of PRUsScheduling Sequence of PRUs

• Can extend the state space to be [i,l,q,r] and
apply the same approach to construct a
globally optimal policy.
– i is the current PRU in the sequence

• But, hard to reconstruct a global policy on-
board or transmit it to the rover.

• How could the remaining plan be factored into
the control process? And how to avoid
revising the entire policy when the plan is
modified?

29V. Lesser CS683 F2004

Example of Design-to-TimeExample of Design-to-Time

Information Gathering AgentInformation Gathering Agent

! Objective: gather information to support
decisions

! Application: software evaluation

! Example: “Within 20 minutes, help me choose
a 3D rendering package that runs under
Windows 95 on my current hardware setup, and
find a vendor who’ll sell it to me for under $400.
Mac compatibility is a bonus.”

! Results: recommendation, knowledge gained
during search, and source documents or URLs
for source documents

30V. Lesser CS683 F2004

Information Gathering Plan NetworkInformation Gathering Plan Network

Query-AltaVistaQuery-Infoseek

Find-Corel-URL

Quality (30% 0)(70% 10)
Duration (50% 60sec)(25% 180sec)

(25% 240sec)
Cost (100% 0)

CPU Utilization 60%

Quality (40% 0)(50% 5)(10% 8)
Duration (50% 30sec)(50% 60sec)
Cost (100% 0)

CPU Utilization 80%

Quality (5% 0)(95% .1)
Duration (50% 30sec)(50% 60sec)
Cost (100% 0)

CPU Utilization 90%

Quality (10% 0)(90% 20)
Duration (50% 8min)(50% 14min)
Cost (100% $2)

CPU Utilization 30%

Quality (10% 0)(90% 12)
Duration (50% 1min)(50% 2min)
Cost (100% 0)

CPU Utilization 80%

Best-First-Search-at-Corel-Using
Advanced-Text-Processing

sum()

max()

Enables NLE

Subtask Relation

Enables NLE

Method

Task

Query-Simple-Corel-Search-Engine

Propagation Delay
(50% 45sec)(50% 120sec)

Find-Information-on-WordPerfect

Search-the-Corel-Website

31V. Lesser CS683 F2004

Utility FunctionUtility Function

Raw Goodness

Max

Min

Quality Cost Duration

Meta

Raw
Goodness

Thresholds/
Limits Uncertainty

Thresholds/Limits

Quality Cost Duration

$5.75

Uncertainty

Quality Cost Duration

LimitThreshold Limit

32V. Lesser CS683 F2004

33V. Lesser CS683 F2004

Principles of Meta-Level ControlPrinciples of Meta-Level Control

• What’s are the base-level computational

methods?

• How does the system represent and project

resource/quality tradeoffs?

• What kind of meta-level control is used?

• What are the characteristics of the overall

system?
34V. Lesser CS683 F2004

Example of Meta-Level Control ProblemExample of Meta-Level Control Problem

• Problem: How to decide when to stop the
execution of an anytime algorithm?

Needed due to the uncertainty regarding:

• The actual quality of the results

• The actual state of the environment

Best monitoring technique depends on:

• Degree of domain uncertainty

• Degree of solution quality uncertainty

• The cost of monitoring

• Interruptible versus contract algorithms

35V. Lesser CS683 F2004

Myopic Control of InterruptibleMyopic Control of Interruptible

AlgorithmsAlgorithms

• Approach: Given an interruptible anytime

algorithm, its Conditional Performance Profile

(CPP), and a time-dependent utility function, run

the algorithm as long as the marginal value of

computation is positive.

• Theorem [Zilberstein, 1993]: Monitoring using the

value of computation is optimal when the CPP is

monotonically increasing and concave down, and

the cost of time is monotonically increasing and

concave up.

36V. Lesser CS683 F2004

Monitoring PoliciesMonitoring Policies

• Approach: Given Pr(qj|qi,!t) and U(qj,tk)
compute "(qj,tk)#(!t,m) by optimizing the
following function:

V(qi, tk) = argmax!t,m{

 $j Pr(qj | qi, !t) U(qj, tk+!t) if m = stop,

 $j Pr(qj | qi, !t) V(qj, tk+!t) % C if m=monitor}

• Theorem [Hansen & Zilberstein, 1996]: A monitoring
policy that maximizes the above value
function is optimal when quality
improvement is Markovian.

37V. Lesser CS683 F2004

Another Meta-Level Control (MLC)Another Meta-Level Control (MLC)

Problem?Problem?

• Dynamically Balance domain and control actions
– Domain - primitive actions

– Control - coordination, scheduling, information gathering

• Chooses control actions
– based on current state and control effort

– likely to lead to good performance

– tailored to time pressure and resource bounds

• Low real-time cost

Key for Agent Operating in Open and Evolving
Environments
– Uncertainty in Tasks Arrival, Deadlines and Behavior

– Resource Availability -- including other agents

38V. Lesser CS683 F2004

Agent Architecture withAgent Architecture with

Meta-Level ReasoningMeta-Level Reasoning

39V. Lesser CS683 F2004

AgentAgent’’s Action Hierarchys Action Hierarchy

Building a Resource BoundedBuilding a Resource Bounded

Agent ArchitectureAgent Architecture

41V. Lesser CS683 F2004

BDIBDI

ArchitectureArchitecture

BeliefBelief

DesireDesire

IntentionIntention

fromfrom
M. Wooldridge's M. Wooldridge's AnAn

Introduction toIntroduction to

MultiAgent MultiAgent SystemsSystems..
Copyright 2002. JohnCopyright 2002. John

Wiley & Sons, Ltd.Wiley & Sons, Ltd. Why not appropriate for Real-time?
42V. Lesser CS683 F2004

PRS Agent ArchitecturePRS Agent Architecture

Interpreter pursues goals by retrieving and executing plans

that satisfy the context, leading to actions and the acquisition of

new context and beliefs, in turn creating new goals.

Plans

Goal(s) Interpreter

Beliefs/

Context

Effector/GUI/

Transmitter

Sensor/GUI/

Receiver

External

Operator/

Environ./

Agent

43V. Lesser CS683 F2004

Next LectureNext Lecture

• Introduction to Multi-Agent Systems

• Short Summary of Course

