
Lecture 23: Learning - 6 &Lecture 23: Learning - 6 &
Resource Bounded Reasoning -1Resource Bounded Reasoning -1

Victor Lesser

CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

TodayToday’’s lectures lecture

• Instance-Based Learning

• Analytical Learning (Explanation-Based

Learning)

– First work done at Umass on learning rules of Baseball

– Material take from Mitchell’s Machine Learning

• Begin Resource Bounded Reasoning

3V. Lesser CS683 F2004

Instance-Based LearningInstance-Based Learning

• Encode specific experiences in memory
rather than abstractions

• Carry out generalizations at the retrieval time
rather than the storage time -- lazy learning.

• In their most general form:
– Based on partial match on a similarity metric, retrieve a

set of cases/instances most “relevant” to the present
context.

– Adapt the retrieved experiences to new situations. This
could be based on algorithms ranging from a simple k-
nearest neighbor classification to chains of reasoning.

4V. Lesser CS683 F2004

Example of Instance-Based LearningExample of Instance-Based Learning

• Key idea: just store all training examples !xi, f(xi)"

• Nearest neighbor:

– Given query instance xq, first locate nearest training example xn,

then estimate

• K- Nearest neighbor

– Given xq, take vote among its k nearest neighbors (if discrete-

valued target function)

– Take mean of f values of k nearest neighbors (if real-valued)

ˆ f (qx) ! f (nx)

ˆ f (qx) ! f (ixi=1

k")
 k

5V. Lesser CS683 F2004

Voronoi Voronoi DiagramsDiagrams

On left, Positive and Negative Training Examples

•Nearest neighbor yes for xq, 5-k classifies it as negative

On right, is decision surface for nearest neighbor, query in

region will have same value

6V. Lesser CS683 F2004

Distance-WeightedDistance-Weighted kkNNNN

• Might want weight nearer neighbors more

heavily…

• Where

• And d(xq, xi) is distance between xq, xi

• Note now it makes sense to use all training

examples instead of just k

– Classification much slower

ˆ f (qx) ! iw f (ixi=1

k")

 iw
i=1
k!

iw !
1

d q , ixx()
2

7V. Lesser CS683 F2004

Curse of DimensionalityCurse of Dimensionality

• Imagine instances described by 20 attributes,
but only 2 are relevant to target function

• Curse of dimensionality: nearest neighbor is
easily mislead when high-dimensional X
– Similar to overfitting

• One approach:
– Stretch jth axis by weight zj, where z1, …,zn chosen to

minimize prediction error
• Length the axes that correspond to the more relevant

attributes

– Use cross-validation to automatically choose weights
z1,…,zn

• Minimize error in classification

• Setting zj to zero eliminates this dimension all together
8V. Lesser CS683 F2004

When to Consider Nearest NeighborWhen to Consider Nearest Neighbor

• Instances map to points in #n

– Continuous real values

• Less than 20 attributes per instance

• Lots of training data

• Advantages:
– Training is very fast

– Robust to noise training data

– Learn complex target functions

– Don’t lose information

• Disadvantages:
– Slow at query time

– Easily fooled by irrelevant attributes

9V. Lesser CS683 F2004

Locally Weighted Regression:Locally Weighted Regression:
Approximating Real-Valued FunctionApproximating Real-Valued Function

• Note kNN forms local approximation to f for each query point xq

• Why not form an explicit approximation for region

surrounding xq

– Fit linear function to k nearest neighbors

• F(x)= w0+w1a1+ …….. wnan

– Fit quadratic….

– Produces “piecewise approximation” to f

• Several choices of error to minimize -- exploit grading descent

– Squared error over k nearest to neighbors

– Distance-weighted squared error over all neighbors

– …

ˆ f (x)

E1 (xq) !

1

2x " (f (x) ! ˆ f (x))
2$

x in k nearest nbrs of xq

E2 (xq) !

1

2
(f (x) " ˆ f (x))

2

K (d (qx
x#D

$, x))

1/2

10V. Lesser CS683 F2004

Case-Based ReasoningCase-Based Reasoning

• Can apply instance-based learning even when

• Need different distance metric

• Case-Based Reasoning is instance-based learning

applied to instances with symbolic logic

descriptions

 X ! "
n

((user-complaint error53-on-shutdown)

 (cpu-model PowerPC)

 (operating-system Windows)

 (network-connection PCIA)

 (memory 48meg)

 (installed-applications Excel Netscape VirusScan

 (disk 1gig)

 (likely-cause ???))

11V. Lesser CS683 F2004

Ingredients of Problem-solving CBRIngredients of Problem-solving CBR

• Key elements of problem solving CBR are:

– Cases represented as solved problems

– Index cases under goals satisfied and planning

problems avoided

– Retrieve prior case sharing the most goals &

avoiding the most problems

– Adapt solution of prior case to solve a new case.

May require re-solving problems and/or repairing

solutions

– Index new case and solution under goals satisfied

and planning problems avoided

12V. Lesser CS683 F2004

Case-Based Reasoning in CADETCase-Based Reasoning in CADET

• CADET: 75 stored examples of mechanical

devices

– Each training example: [qualitative function,

mechanical structure]

– New query: desired function

– Target value: mechanical structure for this function

• Distance metric: match qualitative function

descriptions

– Size of largest subgraph between two function graphs

13V. Lesser CS683 F2004

Case-Based Reasoning inCase-Based Reasoning in

CADETCADET

Exploits domian

specific rewrite

rule to modify

cases to make

matching more

likely

A + --> B

to

A + --> x + --> B

14V. Lesser CS683 F2004

Case-Based Reasoning in ChefCase-Based Reasoning in Chef

• CHEF consists of six processes:

– Problem anticipation: the planner anticipates planning problems by
noticing features in the current input that have previously participated in
past planning problems

– Plan retrieval: The planner searches for a plan that satisfies as many of
its current goals as possible while avoiding the problems that it has
predicted

– Plan modification: The planner alerts the plans it has found to satisfy
any goals from the input that are not already achieved

– Plan repair: When a plan fails, the planner fixes the faculty plan by
building up a casual explanation of why the failure has occurred and
using it to find the different strategies for repairing it

– Credit assignment: Along with repairing a failed plan, the planner wants
to repair the characterization of the world that allowed it to create the
failed plan in the first place. It does this by using the casual explanation
of why the failure occurred to identify the features in the input that led to
the problem and then mark them as predictive of it

– Plan storage: The planner places successful plans in memory, indexed
by the goals that they satisfy and the problems that they avoid

15V. Lesser CS683 F2004

Beef-with-green-beansBeef-with-green-beans

• Chop the garlic into pieces the size of matchheads

• Shred the beef

• Marinate the beef in the garlic, sugar, corn starch, rice wine and soy sauce

• Stir fry the spices, rice wine and beef for one minute

• Add the green bean to the spices, rice wine and beef

• Stir fry the spices, rice wine, green bean and beef for three minutes

• Add the salt to the spices, rice wine, green bean and beef

A half pound of beef

Two tablespoons of soy sauce

One teaspoon of rice wine

A half tablespoon of corn starch

One teaspoon of sugar

A half pound of green bean

One teaspoon of salt

One chunk of garlic

16V. Lesser CS683 F2004

Request for a New RecipeRequest for a New Recipe

Recipe for BEEF-AND-BROCOLI

 Found nearest recipe is BEEF-WITH-GREEN-BEANS

Modifying recipe: BEEF-WITH-GREEN-BEANS
To satisfy: include broccoli in the dish

Placing some broccoli in recipe BEEF-WITH-GREEN-BEANS

-Considering ingredient-critic:
Before doing step: Stir fry the -Variable-

do: Chop the broccoli into pieces the size of chunks

-Ingredient critic applied

Chef alters old plans to satisfy new goals using a set of
modification rules and a set of new objects

17V. Lesser CS683 F2004

Check Whether New Recipe WorksCheck Whether New Recipe Works
via Simulationvia Simulation

• Chop the garlic into pieces the size of matchheads

• Shred the beef

• Marinate the beef in the garlic, sugar, corn starch, rice wine and soy sauce

• Chop the broccoli into pieces the size of chunks

• Stir fry the spices, rice wine and beef for one minute

• Add the broccoli to the spices, rice wine and beef

• Stir fry the spices, rice wine, broccoli and beef for three minutes

• Add the salt to the spices, rice wine, broccoli and beef

A half pound of beef One teaspoon of sugar

Two tablespoons of soy sauce A half pound of

broccoli

One teaspoon of rice wine One teaspoon of salt
A half tablespoon of corn starch One chunk of garlic

The beef is now tender. The dish now tastes salty.

The dish now tastes savory. The dish now tastes sweet.

The broccoli is not crisp. The dish now tastes like garlic.

18V. Lesser CS683 F2004

Plan RepairPlan Repair

• ALTER-PLAN:SIDE-EFFECT: Replace the step that causes the

violating condition with one that does not have the same side-

effect but achieves the same goal

• SLPIT-AND-REFORM: Split the step into two separate steps

and run them independently

• ADJUNT-PLAN:REMOVE: Add a new step to be run along with

a step that causes a side-effect that removes the side-effect as

it is created

19V. Lesser CS683 F2004

Plan StoragePlan Storage

Indexing BEEF-AND-BROCCOLI under goals and problems:

If this plan is successful, the following should be true:

The beef is now tender.

The broccoli is now crisp.

Include beef in the dish.
Include broccoli in the dish.

Make a stir-fry dish.

The plan avoids failure exemplified by the state

“The broccoli is now soggy” in recipe BEEF-AND-BROCCOLI.

20V. Lesser CS683 F2004

Problem AnticipationProblem Anticipation

Searching for plan that satisfies input goals-

Include chicken in the dish.

Include snow pea in the dish.

Make a stir-fry dish.

Collecting and activating tests.

Is the dish STYLE-STIR-FRY

Is the item a MEAT

Is the item a VEGETABLE

Is the TEXTURE of item CRISP

Chicken+Snow pea+Stir Frying= Failure

“Meat sweats when it is stir-fried.”

“Stir-frying in too much liquid makes crisp vegetables soggy.”

Reminded of a failure in the BEEF-AND-BROCCOLI plan.

Failure= “The vegetable is now soggy”

21V. Lesser CS683 F2004

Plan RetrievalPlan Retrieval

Driving down on: Make a stir-fry dish.

Succeeded-

Driving down on:

Avoid failure exemplified by the state “The broccoli is now soggy”

in recipe BEEF-AND-BROCCOLI

Succeeded

Driving down on: Include chicken in the dish

 Failed- Trying more general goal

 Driving down on: Include meat in the dish

 Succeeded

Driving down on: Include snow pea in the dish

 Failed-Trying more general goal

 Driving down on: Include vegetable in the dish.

 Succeeded

Found recipe% REC9 BEEF-AND-BROCCOLI

22V. Lesser CS683 F2004

The Inductive Generalization ProcessThe Inductive Generalization Process

• Given

– Space of Hypotheses

– Training examples of target concept

• Determine

– Hypothesis consistent with the training examples

May need a lot of training examples to

distinguish relevant from irrelevant features

23V. Lesser CS683 F2004

The Analytical GeneralizationThe Analytical Generalization
ProblemProblem

• Give
– Space of Hypotheses

– Training examples of target concepts

– Domain theory for explaining examples

• Determine
– Hypothesis consistent with both the training examples

and the domain theory

May need fewer training examples to
distinguish relevant attributes because

generalization can be based on logical rather
than statistical reasoning

24V. Lesser CS683 F2004

Why Analytical LearningWhy Analytical Learning

• Normal Learning

– Involves a long process of uncovering the

consequences of prior knowledge

– Guided by a specific training examples

• Use prior knowledge to reduce the complexity

of the hypothesis space to be searched

– Reducing sample complexity

– Improving generalization accuracy

25V. Lesser CS683 F2004

An Analytical GeneralizationAn Analytical Generalization
ProblemProblem

Given:

• Instances: pairs of objects

– represented by the predicates Type, Color, Volume, Owner, Material, Density and

On.

• Hypotheses: sets first-order if-then rules - horn clauses

• Target Concept: Safe-to-stack(x,y) -- this is what needs to be learned

• Training Example: Safe-to-stack(OBJ1,OBJ2)

On(OBJ1,OBJ2)

Type(OBJ1,BOX)

Type(OBJ2,ENDTABLE)

Color(OBJ1,RED)

Color(OBJ2,BLUE)

Volume(OBJ1,.1)

Density(OBJ1,.1)

…

26V. Lesser CS683 F2004

An Analytical GeneralizationAn Analytical Generalization
Problem, Problem, contcont’’dd

• Domain Theory:

Safe-To-Stack(x,y) <- Not(Fragile(y))

Safe-To-Stack(x,y) <- Lighter(x,y)

Lighter(x,y) <- Weight(x,wx) and Weight(y,wy) and

 Less(wx,wy)

Weight(x,w) <- Volume(x,v) and Density(x,d) and

 Equal(w,v*d)

Weight(x,5) <- Type(x, ENDTABLE)

...

Determine: Hypothesis (h) consistent with
domain theory (B) if B does not entail not (h)

27V. Lesser CS683 F2004

Prolog EBGProlog EBG

Initialize hypothesis = {}

• For each positive training example not

covered by hypothesis:

1. Explain how training example satisfies target

concept, in terms of domain theory

2. Analyze the explanation to determine the most

general conditions under which this explanation

(proof) holds

3. Refine the hypothesis by adding a new rule, whose

preconditions are the above conditions, and whose

consequent asserts the target concept

28V. Lesser CS683 F2004

Explanation of a Training ExampleExplanation of a Training Example

29V. Lesser CS683 F2004

Computing the WeakestComputing the Weakest Preimage Preimage ofof
ExplanationExplanation

30V. Lesser CS683 F2004

Regression AlgorithmRegression Algorithm

Regress(Frontier, Rule, Expression, Ul,R)

New Rule

SafeToStack(x,y) <--

Volume(x,vx) & Density(x,dx)

& Equal(wx,times(vx,dx) &

LessThan(wx,5) &

Type(y,Endtable)

31V. Lesser CS683 F2004

Lessons from Safe-to-Stack ExampleLessons from Safe-to-Stack Example

• Justified generalization from single
example

– Compiling relevant parts of domain theory

• Explanation determines feature
relevance

• Regression determines needed feature
constraints

• Generality of result depends on domain
theory

• Still require multiple examples
32V. Lesser CS683 F2004

Perspectives on Perspectives on Anayltical Anayltical LearningLearning

• Theory-guided generalization from examples

• Example-guided operationalization of theories

• “Just” restating what learner already “knows”

Is it learning?
• Are you learning when you get better over time at

chess?

– Even though you already know everything in principle,
once you know rules of the game…

• Are you learning when you sit in a math class?

– Even though those theorems follow deductively from
the axioms you’ve already learned...

33V. Lesser CS683 F2004

Summary of Explanation-BasedSummary of Explanation-Based
LearningLearning

• Knowledge of the domain is represented as
logical rules

• View learning as a form of reasoning

• Background knowledge is used to construct
proofs or ‘explanations of experience’

• These proofs are then “generalized” (based on
a type of goal regression) and compiled into
rules

• It is a process of transforming existing
knowledge into another form so as to be able
to apply it efficiently – also called speedup
learning

34V. Lesser CS683 F2004

Summary of LearningSummary of Learning

• Learning as a search for the “best”
hypothesis/function that matches the training data

• Learning technology has become very formal and
closely related to statistics

• Credit Assignment is a complex problem

• Many different approaches to learning based on
– Supervised vs. Unsupervised

– Learning Single step decision process vs. multiple step one

– On-line/Incremental vs. Off-line learning

– Character of Function that needs to be learned

– Quality and Character of Training Data

• We have just scratched the surface
– Support Vector Machines, Hidden Markov Models, Baysean

Network Learning, …

– Field is evolving very quickly

Resource Bounded ReasoningResource Bounded Reasoning

36V. Lesser CS683 F2004

Problem:Problem:

Agents cannot be perfectly rationalAgents cannot be perfectly rational

• Agents have limited computational power.

• They must react within an acceptable time.

• Computation time delays action and reduces the
value of the result.

• Must cope with uncertainty and missing information.

• Limited planning horizon.

• The “appropriate” level of deliberation is situation
dependent.

It is beneficial to build systems that can tradeoff
computational resource for quality of results.

37V. Lesser CS683 F2004

More on the ProblemMore on the Problem

• AI deliberation techniques have a large

variability in execution time, memory

consumption, etc.

– Difficult to predict reasonable upper bounds:

• Non-deterministic search

• Variable amount of data

• Variable amount of uncertainty

• The computational resources required to

reach an optimal decision normally reduce the

overall utility of the result.

38V. Lesser CS683 F2004

ApproachApproach

• Not only an issue of more computing
power.

– Need intelligent control

• How to build agents that “satisfice”
rather than “optimize”?

– How to get the “best” answer within available
resources

39V. Lesser CS683 F2004

SatisficingSatisficing

• Proposed by Herbert Simon in 1957 to denote
decision making that searches until an
alternative is found that meets the agent’s
aspiration level criterion.

“It appears probable that, however adaptive the
behavior of organisms in learning and choice

situations, this adaptiveness falls far short of the
ideal “maximizing” postulated in economic

theory. Evidently, organisms adapt well enough
to “satisfice”; they do not, in general,

“optimize”.”

40V. Lesser CS683 F2004

Problem CharacteristicsProblem Characteristics

• It is not feasible (computationally) or desirable

(economically) to compute the optimal answer

• The “appropriate” level of deliberation is

situation dependent

• It is beneficial to build systems that can

tradeoff computational resources for quality of

results

Key to Applying AI in Open Environments

41V. Lesser CS683 F2004

Computational/Resources TradeoffsComputational/Resources Tradeoffs

! Computation Time versus Quality of
Results

! Memory versus Time versus Power

! Cost of Information versus Quality of
Results

! Communication Bandwidth versus Quality

! Many more …….

42V. Lesser CS683 F2004

Approaches to Approaches to SatisficingSatisficing

• Satisficing = approximate reasoning

• Satisficing = approximate modeling

• Satisficing = approximate meta-reasoning

• Satisficing = bounded optimality

• Satisficing = a combination of the above

43V. Lesser CS683 F2004

An Example of Satisficing :An Example of Satisficing :

 Vehicle Monitoring Vehicle Monitoring

• Goal

– Within 10 seconds, supply the vehicle types, positions, and movement

characteristics for as many vehicles moving through the environment as possible,

giving preference to tracking vehicles of type v1 and determining vehicle

directions with high precision.

• Best possible

– The following events and their corresponding features are certain: Vehicle type v1
located at l1, moving with speed s1 and direction d1. Vehicle type v2 at 12

moving with speed s2 and direction d2.

 No other vehicles are present in the environment.

• Best within Deadline:

– From a cursory analysis, it is likely that there exists a vehicle of type v1 located
near l1, moving with speed between s0 and s1 in direction d1.

 Other vehicles might be present.

(v1, s1, l1, d1) (v2, s2, l2, d2)

44V. Lesser CS683 F2004

Situation Dependent SatisficingSituation Dependent Satisficing

• Appropriate approximation is based both on the needs of

the user and on the current state

45V. Lesser CS683 F2004

ApplicationsApplications

• Medical diagnosis of treatments

• Combinatorial Optimization

• Evaluation of belief networks

• Real-time heuristic search

• Information Gathering

• Mobile robot navigation

• Database query optimization

• Software validation

• Real-time Graphics

46V. Lesser CS683 F2004

Real-Time GraphicsReal-Time Graphics

Fig. 1: Flexible strategy for reducing the

complexity of models. Methods for reducing

the number of vertices used to describe a

geometric model can be used to generate a

spectrum of models from an ideal model to

progressively simpler models. The fully

detailed model (left) is described by 6,795

vertices. The simplified model (right) is

described by 97 vertices.

Fig. 3: Reducing the spatial solution.

Objects can be sampled at a variety of

spatial resolutions before being

composited into final scenes, allowing

for a trade-off between the clarity of an

object and the computation required to

render the object.

Horvitz &Horvitz & Lengyel Lengyel:: Working Notes of the AAAI Fall Working Notes of the AAAI Fall Symp Symp. on. on

Flexible Computation, 1996Flexible Computation, 1996

47V. Lesser CS683 F2004

Real Time Graphics, cont.Real Time Graphics, cont.

Fig. 4: Minimizing computation via

sprite reuse. Talisman takes advantage of

spatial and temporal coherence by

transforming previously rendered sprites

instead of re-rendering the sprites.

Rectangles composed of dotted lines

bound sprites warped to fit a new frame;

rectangles of solid lines bound re-

rendered sprites.

Fig. 8: Role of visual attention. We seek

to understand the variation of the

sensitivity of viewers to various classes of

graphics degradation as spatial and

temporal relationships change. This figure

highlights opportunities for modeling

attention as functions of the primary focus

of attention and such relationships as

adjacency (r), distance in the background

(z), and motion of sprites . (
d!

dt
)

Horvitz &Horvitz & Lengyel Lengyel:: Working Notes of the AAAI Fall Working Notes of the AAAI Fall Symp Symp. on Flexible Computation, 1996. on Flexible Computation, 1996 48V. Lesser CS683 F2004

Resource-bounded reasoningResource-bounded reasoning

A methodology for building satisficing systems

by addressing the following four major issues:

1.Elementary algorithm construction

2.Performance measurement and prediction

3.Composability of methods (subsystems)

4.Monitoring and meta-level control

In the context of an Overall System Architecture

49V. Lesser CS683 F2004

Elementary AlgorithmElementary Algorithm

ConstructionConstruction

• Develop computational methods that allow
small quantities of resources - such as time,
memory, or information - to be traded for
gains in the value of computed results.

• Quality measures replace “correctness”
— Certainty - Likelihood that the answer is correct.

— Precision - Accuracy of the answer.

— Specificity - Level of detail in the answer.

— Completeness - Part of problem solved

— Cost - Overall solution cost.

— Multidimensional quality measures.

50V. Lesser CS683 F2004

Principles of Meta-Level ControlPrinciples of Meta-Level Control

• What’s are the base-level computational

methods?

• How does the system represent and project

resource/quality tradeoffs?

• What kind of meta-level control is used?

• What are the characteristics of the overall

system?

51V. Lesser CS683 F2004

Anytime AlgorithmsAnytime Algorithms

• An anytime algorithm is an algorithm whose

quality of results improves gradually as

computation time increases

• Anytime algorithms have been designed for

planning, Bayesian inference, CSPs,

combinatorial optimization, diagnosis

52V. Lesser CS683 F2004

Anytime AlgorithmsAnytime Algorithms

Decision
Quality

Time

Ideal

Traditional

Time cost

Anytime
Value

• Ideal (maximal quality in no time)

• Traditional (quality maximizing)

• Anytime (utility maximizing)

53V. Lesser CS683 F2004

Two Types of Anytime AlgorithmsTwo Types of Anytime Algorithms

• Interruptible algorithms are anytime
algorithms whose run time need not be
determined in advance
– They can be interrupted at any time during execution

and return a result

• Contract algorithms are anytime algorithms
that take the deadline as input
– No assumption is made about the results produced

before the deadline

54V. Lesser CS683 F2004

Performance ProfilesPerformance Profiles

• Both interruptible and contract algorithms
have performance profiles, Q(t) , which return

quality as a function of time

• Note that for contract algorithms the

horizontal axis is the time that was given in

advance

55V. Lesser CS683 F2004

Contract Contract AlgorithmsAlgorithms

• Good contract algorithms can be easier to

design because they can optimize with

respect to the extra time input

Examples:

• Depth-bounded or cost-bounded tree search

• Discretizing a continuous problem

• Composition of anytime algorithms

56V. Lesser CS683 F2004

Contract Contract !! Interruptible Interruptible

• What if we want to use a contract algorithm in

a setting where we don’t know the deadline?

• We can repeatedly activate the contract

algorithm with increasing run times

57V. Lesser CS683 F2004

Contract Contract !! Interruptible Interruptible

• When the deadline occurs, we can return the

result produced by the last contract to finish:

Deadline

Return result

from this

contract

1
t

2
t

3
t

4
t

5
t

6
t …

58V. Lesser CS683 F2004

The Resulting Performance ProfileThe Resulting Performance Profile

time

Q(t)

…
1
t

2
t

3
t

4
t

5
t

6
t

59V. Lesser CS683 F2004

Next LectureNext Lecture

• More on Resource Bounded Reasoning

