
Lecture 21: Learning - 5Lecture 21: Learning - 5

Victor Lesser

CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

TodayToday’’s lectures lecture

• Continuation of Reinforcement

learning

– Q-learning

• Instance Based Learning

– Case-based learning

3V. Lesser CS683 F2004

Markov Decision Processes (MDPs)Markov Decision Processes (MDPs)

In RL, the environment is usually modeled as an
MDP, defined by

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

S – set of states of the environment

A(s) – set of actions possible in state s "S

P(s,s',a) – probability of transition from s to s' given a

R(s,s',a) – expected reward on transition s to s' given a
$ – discount rate for delayed reward

 discrete time, t = 0, 1, 2, . . .

4V. Lesser CS683 F2004

The Objective is to Maximize Long-termThe Objective is to Maximize Long-term

Total Discounted RewardTotal Discounted Reward

These are called value functions (cf. evaluation functions in AI)

Find a policy ! : s" S # a" A(s) (could be stochastic)

 that maximizes the value/utility (expected future reward) of each s :

and each s,a pair:

V (s) = E {r + $ r + $ r + s =s, ! }

rewards

t +1 t +2 t +3 t
. . .

2
!

Q (s,a) = E {r + $ r + $ r + s =s, a =a, ! }
t +1 t +2 t +3 t t

. . .
2!

5V. Lesser CS683 F2004

Optimal Value Functions and PoliciesOptimal Value Functions and Policies

There exist optimal value functions:

And corresponding optimal policies:

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

!* is the greedy policy with respect to Q*

6V. Lesser CS683 F2004

What Many RL Algorithms DoWhat Many RL Algorithms Do

Experience
Build

Value
Function

Policy• Continual, online

• Simultaneous acting and learning

Select
V #V*
Q #Q*

! #!*

Predictions

. . .

Actions

7V. Lesser CS683 F2004

RL Interaction of Policy and ValueRL Interaction of Policy and Value

Policy
Value

Function

policy
evaluation

policy
improvement

value
learning

“greedification”

!

V*, Q*

V, Q

!*
8V. Lesser CS683 F2004

Passive Learning in a Known EnvironmentPassive Learning in a Known Environment

Given:

• A Markov model of the environment.
– P(s,s',a) – probability of transition from s to s' given a

– R(s,s',a) – expected reward on transition s to s' given a

• States, with probabilistic actions.

• Terminal states have rewards/utilities.

Problem:

• Learn expected utility of each state.

9V. Lesser CS683 F2004

ExampleExample

S

Percepts tell you:

[State, Reward, Terminal?]

+1

%1

10V. Lesser CS683 F2004

Learning Utility FunctionsLearning Utility Functions

• A training sequence is an instance of

world transitions from an initial state to a

terminal state.

• The additive utility assumption: utility of

a sequence is the sum of the rewards over

the states of the sequence.

• Under this assumption, the utility of a state

is the expected reward-to-go of that state.

11V. Lesser CS683 F2004

NaNaïïve Updatingve Updating

• Developed in the late 1950's in the area of
adaptive control theory.

• Just keep a running average of rewards for each
state.

• For each training sequence, compute the reward-
to-go for each state in the sequence and update
the utilities.
– Accumulate reward as you go back

• Generates utility estimates that minimize the
mean square error (LMS-update).

12V. Lesser CS683 F2004

NaNaïïve Updatingve Updating

• i = st & j = st+1

• U(i)ni+1 = (Ri + U(i)ni * ni + U(j)nj)/ (ni+1)

• ni = ni+1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

T T T TT

T T T T T

13V. Lesser CS683 F2004

Problems with LMS-updateProblems with LMS-update

Converges very slowly because it ignores

the relationship between neighboring states:

New

U=?

Old

U=-.8

-1

+1

p=.9

p=.1

Si
Sj

14V. Lesser CS683 F2004

Adaptive Dynamic ProgrammingAdaptive Dynamic Programming

Utilities of neighboring states are mutually
constrained:

U(i) = R(i) + 'j Pij U(j)

Can apply dynamic programming to solve the
system of equations (one eq. per state).

Can use value iteration: initialize utilities based
on the rewards and update all values based on
the above equation.

15V. Lesser CS683 F2004

Temporal Difference LearningTemporal Difference Learning

• Approximate the constraint equations without

solving them for all states.

• Modify U(i) whenever we see a transition from i to

j using the following rule:

– U(i) = U(i) + & (R(i) + U(j) % U(i))

• The modification moves U(i) closer to satisfying

the original equation.

New reward to go

16V. Lesser CS683 F2004

Rewriting the TD Equation withRewriting the TD Equation with
Discount FactorDiscount Factor

to get:

Rewrite this

V(s)! (1" #)V (s) + # r +$ V(% s)[]

TD error

V(s)!V (s) + " r + #V($ s) % V (s)[]

17V. Lesser CS683 F2004

Temporal Difference (TD) LearningTemporal Difference (TD) Learning

T T T TT

T T T T T

! s
r

s

V(s)! (1" #)V (s) + # r +$V (% s)[] Sutton, 1988

After each

action

update

the state s

18V. Lesser CS683 F2004

Simple Monte CarloSimple Monte Carlo

T T T TT

T T T T T

V(s)! (1" #)V (s) + # REWARD(path)

s

19V. Lesser CS683 F2004

Adaptive/Stochastic DynamicAdaptive/Stochastic Dynamic
ProgrammingProgramming

T T T TT

T T T T T

V(s)! E r +"V(succssor of sundera)
s

r

! s

20V. Lesser CS683 F2004

An Extended Example: Tic-An Extended Example: Tic-TacTac-Toe-Toe

X XXO O

X

XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

} x’s move

} x’s move

} o’s move

} x’s move

} o’s move

...

...... ...

...

x x

x

x o

x

o

xo

x

x

x
x

o

o

Assume an imperfect opponent:

 —he/she sometimes makes mistakes

21V. Lesser CS683 F2004

An RL Approach to Tic-An RL Approach to Tic-TacTac-Toe-Toe

1. Make a table with one entry per

state:

2. Now play lots of games.

To pick our moves,

 look ahead one step:

State V(s) – estimated probability of winning

.5 ?

.5 ?

. . .

. . .

. . .
. . .

1 win

0 loss

. . .
. . .

0 draw

x

xxx

o
o

o
o

o
x

x

oo

o o
x

x
x

x
o

current state

various possible

next states*
Just pick the next state with the highest

estimated prob. of winning — the largest V(s);

a greedy move.

But 10% of the time pick a move at random;

an exploratory move.
22V. Lesser CS683 F2004

RL Learning Rule for Tic-RL Learning Rule for Tic-TacTac-Toe-Toe

“Exploratory” move

s – the state before our greedy move

! s – the state after our greedy move

We increment each V(s) toward V(! s) – a backup :

V(s)"V (s) + # V(! s) $ V (s)[]

a small positive fraction, e.g., ! = .1

the step - size parameter

x

x o

x ox

Take action O

Non-deterministic

outcome based on

opponent’s move

23V. Lesser CS683 F2004

More Complex TD BackupsMore Complex TD Backups

trial primitive TD backups

1–(

((1–()

((1–()2

(3

' = 1

e.g. TD (()

Incrementally

computes a weighted

mixture of these

backups as states are

visited

(= 0 Simple TD

(= 1 Simple Monte Carlo

Blending the

backups
24V. Lesser CS683 F2004

Space of BackupsSpace of Backups

Dynamic
programming

Temporal-
difference
learning

Monte Carlo

Exhaustive
search

 (

full
backups

sample
backups

shallow
backups

deep
backups

Backup

from all

terminal

states

25V. Lesser CS683 F2004

Limitation of Learning VLimitation of Learning V**

Choose best action from any state s using learned V*

 !*(s)=argamax [r(s, a) + $V*(*(s, a))]

A problem:

• This works well if agent knows *: S x A#S and r: S x

A#,

• But when it doesn’t, it can’t choose actions this way

How Much To do we Need to KnowHow Much To do we Need to Know
To LearnTo Learn

26V. Lesser CS683 F2004

Q Q Learning for Deterministic CaseLearning for Deterministic Case

Define new function very similar to V*

Q (s,a)+r(s,a) +$V*(*(s,a))

If agent learns Q, it can choose optimal action
even without knowing r or *!

!*(s)=argamax[r(s,a)+ $V*(*(s,a))]

!*(s)=argamaxQ (s,a)

Q is the evaluation function the agent will
learn

28V. Lesser CS683 F2004

Training Rule to Learn Q forTraining Rule to Learn Q for
Deterministic OperatorsDeterministic Operators

Note Q and V* closely related:
V*(s)=max Q (s,a))
 a’

Which allows us to write Q recursively as
Q(st,at)=r (st,at)+ $V*(*(st,at)))

 = r (st,at)+ $max Q (st+1,a))
 a’

Let denote learner’s current approximation to Q.

Consider training rule

Where s) is the state resulting from applying action a in

state s, and a) is the set of actions from s)

ˆ Q

ˆ Q (s,a)! r + " max ˆ Q (s ' ,a')

a)

29V. Lesser CS683 F2004

QQ Learning for Deterministic Worlds Learning for Deterministic Worlds

• For each s,a initialize table entry

• Observe current state s

• Do forever:

– Select an action a and execute it

– Receive immediate reward r

– Observe the new state s)

– Update the table entry for as follows:

– s-s)

ˆ Q (s,a)! 0

ˆ Q (s,a)

ˆ Q (s,a)! r + " max ˆ Q (s ' ,a')

a)

30V. Lesser CS683 F2004

UpdatingUpdating
ˆ Q

31V. Lesser CS683 F2004

Nondeterministic Nondeterministic QQ learning learning CaseCase

What if reward and next state are non-
deterministic?

We redefine V,Q by taking expected values

V!(s)+E[rt+$rt+1+$rt+2+…]

 +E[$irt+i]

Q(s,a)+E[r(s, a) + $V*(*(s,a))]

 i=0

!
"

32V. Lesser CS683 F2004

Nondeterministic Case, contNondeterministic Case, cont’’dd

Q learning generalizes to non-deterministic

worlds
Alter training rule to

Where

Can still prove convergence of to Q

[Watkins and Dayan, 1992]

 n
ˆ Q (s,a)! (1" n#) n"1

ˆ Q (s ,a) + n# [r + max n"1
ˆ Q (s ' ,a')]

a)

n! =

1

1+ nvisits (s,a)

ˆ Q

33V. Lesser CS683 F2004

Q- Temporal Difference LearningQ- Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

Two step time difference:

N step time difference:

Blend all of these:

1

Q (ts , ta) ! tr + " max ˆ Q (t+1s ,a)
a

2

Q (ts , ta) ! tr + " t+1r + 2" max ˆ Q (t+2s ,a)
a

n

Q (ts , ta) ! tr + " t+1r + ...+ (n#1)" t+ n#1r + n" max ˆ Q (t+ ns ,a)
a

!

Q (ts , ta) " (1# !)[1
Q (ts , ta) + ! (2)

Q (ts , ta) + 2
!

(3)
Q (ts , ta)...]

The closer lamda is to the 1 the more important later differences
34V. Lesser CS683 F2004

Q- Temporal Difference Learning,Q- Temporal Difference Learning,

contcont

!

Q (ts , ta) " (1# !)[1
Q (ts , ta) + ! 2

Q (ts , ta) 2
+!

3
Q (ts , ta)...]

Equivalent expression:

TD (() algorithm uses above training rule

- Sometimes converges faster than Q learning
- converges for learning V* for any 0 ! (!1 (Dayan,

1992)

- Tesauro’s TD-Gammon uses this algorithm

!

Q (ts , ta) = tr + " [(1# !)maxQ(ts , ta) + ! !
Q (t+1s , t+1a)]

35V. Lesser CS683 F2004

Q-learning cont.Q-learning cont.

• Is it better to learn a model and a utility function,

or to learn an action-value function with no

model?

• This is a fundamental question in AI where much

of the research is based on a knowledge-based

approach.

• Some researchers claim that the availability of

model free methods such as Q-learning means

that the KB approach is unnecessary (or too

complex).

36V. Lesser CS683 F2004

What actions to choose?What actions to choose?

• Problem: choosing actions with the highest
expected utility ignores their contribution to
learning.

• Tradeoff between immediate good and long-
term good (exploration vs. exploitation).

– A random-walk agent learns faster but never
uses that knowledge.

– A greedy agent learns very slowly and acts
based on current, inaccurate knowledge.

37V. Lesser CS683 F2004

WhatWhat’’s the best exploration policy?s the best exploration policy?

• Give some weight to actions that were not
tried very often in a given state, but counter
that by knowledge that utility may be low.
– Key idea is that in early stages of learning,

estimations can be unrealistic low

• Similar to simulated annealing in that in the
early phase of search more willing to explore

38V. Lesser CS683 F2004

Practical issues - large State SetPractical issues - large State Set

• Too many states: Can define Q as a

weighted sum of state features, or a neural

net. Adjust the previous equations to update

weights rather than updating Q.

– Can have different neural networks for each

action

– This approach used very successfully in TD-

Gammon (neural network).

• Continuous state-space: Can discretize it.

Pole-balancing example (1968).

39V. Lesser CS683 F2004

Getting the Degree of Abstraction RightGetting the Degree of Abstraction Right

• Time steps need not refer to fixed

intervals of real time.

• Actions can be low level (e.g., voltages to

motors), or high level (e.g., accept a job

offer), “mental” (e.g., shift in focus of

attention), etc.

• States can be low-level “sensations”, or

they can be abstract, symbolic, based on

memory, or subjective (e.g., the state of

being “surprised” or “lost”).

40V. Lesser CS683 F2004

Memory-Based LearningMemory-Based Learning

• Encode specific experiences in memory
rather than abstractions

• Carry out generalizations at the retrieval time
rather than the storage time -- lazy learning.

• In their most general form:
– Based on partial match on a similarity metric, retrieve a

set of cases/instances most “relevant” to the present
context.

– Adapt the retrieved experiences to new situations. This
could be based on algorithms ranging from a simple k-
nearest neighbor classification to chains of reasoning.

41V. Lesser CS683 F2004

Instance-Based LearningInstance-Based Learning

• Key idea: just store all training examples .xi, f(xi)/

• Nearest neighbor:

– Given query instance xq, first locate nearest training example xn,

then estimate

• K- Nearest neighbor

– Given xq, take vote among its k nearest neighbors (if discrete-

valued target function)

– Take mean of f values of k nearest neighbors (if real-valued)

ˆ f (qx) ! f (nx)

ˆ f (qx) ! f (ixi=1

k")
 k

42V. Lesser CS683 F2004

Voronoi Voronoi DiagramsDiagrams

On left, Positive and Negative Training Examples

•Nearest neighbor yes for xq, 5-k classifies it as negative

On right, is decision surface for nearest neighbor, query in

region will have same value

43V. Lesser CS683 F2004

Distance-WeightedDistance-Weighted kkNNNN

• Might want weight nearer neighbors more

heavily…

• Where

• And d(xq, xi) is distance between xq, xi

• Note now it makes sense to use all training

examples instead of just k

– Classification much slower

ˆ f (qx) ! iw f (ixi=1

k")

 iw
i=1
k!

iw !
1

d q , ixx()
2

44V. Lesser CS683 F2004

Curse of DimensionalityCurse of Dimensionality

• Imagine instances described by 20 attributes,
but only 2 are relevant to target function

• Curse of dimensionality: nearest neighbor is
easily mislead when high-dimensional X
– Similar to overfitting

• One approach:
– Stretch jth axis by weight zj, where z1, …,zn chosen

to minimize prediction error
• Length the axes that correspond to the more relevant

attributes

– Use cross-validation to automatically choose weights
z1,…,zn

• Minimize error in classification

• Setting zj to zero eliminates this dimension all together

45V. Lesser CS683 F2004

When to Consider NearestWhen to Consider Nearest
NeighborNeighbor

• Instances map to points in ,n

– Continuous real values

• Less than 20 attributes per instance

• Lots of training data

• Advantages:
– Training is very fast

– Robust to noise training data

– Learn complex target functions

– Don’t lose information

• Disadvantages:
– Slow at query time

– Easily fooled by irrelevant attributes

46V. Lesser CS683 F2004

Locally Weighted Regression:Locally Weighted Regression:
Approximating Real-Valued FunctionApproximating Real-Valued Function

• Note kNN forms local approximation to f for each query point xq

• Why not form an explicit approximation for region

surrounding xq

– Fit linear function to k nearest neighbors

• F(x)= w0+w1a1+ …….. wnan

– Fit quadratic….

– Produces “piecewise approximation” to f

• Several choices of error to minimize

– Squared error over k nearest to neighbors

– Distance-weighted squared error over all neighbors

– …

ˆ f (x)

E1 (xq) !

1

2x " (f (x) ! ˆ f (x))
2'

k nearest nbrs of xq

E2 (xq) !

1

2
(f (x) " ˆ f (x))

2

K (d (qx
x#D

$, x))

47V. Lesser CS683 F2004

Case-Based ReasoningCase-Based Reasoning

• Can apply instance-based learning even when

• Need different distance metric

• Case-Based Reasoning is instance-based learning

applied to instances with symbolic logic

descriptions

 X ! "
n

((user-complaint error53-on-shutdown)

 (cpu-model PowerPC)

 (operating-system Windows)

 (network-connection PCIA)

 (memory 48meg)

 (installed-applications Excel Netscape VirusScan

 (disk 1gig)

 (likely-cause ???))

48V. Lesser CS683 F2004

Ingredients of Problem-solving CBRIngredients of Problem-solving CBR

• Key elements of problem solving CBR are:

– Cases represented as solved problems

– Index cases under goals satisfied and planning

problems avoided

– Retrieve prior case sharing the most goals &

avoiding the most problems

– Adapt solution of prior case to solve a new case.

May require re-solving problems and/or repairing

solutions

– Index new case and solution under goals satisfied

and planning problems avoided

49V. Lesser CS683 F2004

Case-Based Reasoning in CADETCase-Based Reasoning in CADET

• CADET: 75 stored examples of mechanical

devices

– Each training example: [qualitative function,

mechanical structure]

– New query: desired function

– Target value: mechanical structure for this function

• Distance metric: match qualitative function

descriptions

– Size of largest subgraph between two function graphs

50V. Lesser CS683 F2004

Case-Based Reasoning inCase-Based Reasoning in

CADETCADET

51V. Lesser CS683 F2004

Case-Based Reasoning in ChefCase-Based Reasoning in Chef

• CHEF consists of six processes:

– Problem anticipation: the planner anticipates planning problems by
noticing features in the current input that have previously participated in
past planning problems

– Plan retrieval: The planner searches for a plan that satisfies as many of
its current goals as possible while avoiding the problems that it has
predicted

– Plan modification: The planner alerts the plans it has found to satisfy
any goals from the input that are not already achieved

– Plan repair: When a plan fails, the planner fixes the faculty plan by
building up a casual explanation of why the failure has occurred and
using it to find the different strategies for repairing it

– Credit assignment: Along with repairing a failed plan, the planner wants
to repair the characterization of the world that allowed it to create the
failed plan in the first place. It does this by using the casual explanation
of why the failure occurred to identify the features in the input that led to
the problem and then mark them as predictive of it

– Plan storage: The planner places successful plans in memory, indexed
by the goals that they satisfy and the problems that they avoid

52V. Lesser CS683 F2004

Beef-with-green-beansBeef-with-green-beans

• Chop the garlic into pieces the size of matchheads

• Shred the beef

• Marinate the beef in the garlic, sugar, corn starch, rice wine and soy sauce

• Stir fry the spices, rice wine and beef for one minute

• Add the green bean to the spices, rice wine and beef

• Stir fry the spices, rice wine, green bean and beef for three minutes

• Add the salt to the spices, rice wine, green bean and beef

A half pound of beef

Two tablespoons of soy sauce

One teaspoon of rice wine

A half tablespoon of corn starch

One teaspoon of sugar

A half pound of green bean

One teaspoon of salt

One chunk of garlic

53V. Lesser CS683 F2004

Request for a New RecipeRequest for a New Recipe

Recipe for BEEF-AND-BROCOLI

 Found nearest recipe is BEEF-WITH-GREEN-BEANS

Modifying recipe: BEEF-WITH-GREEN-BEANS
To satisfy: include broccoli in the dish

Placing some broccoli in recipe BEEF-WITH-GREEN-BEANS

-Considering ingredient-critic:
Before doing step: Stir fry the -Variable-

do: Chop the broccoli into pieces the size of chunks

-Ingredient critic applied

Chef alters old plans to satisfy new goals using a set of
modification rules and a set of new objects 54V. Lesser CS683 F2004

Check Whether New Recipe WorksCheck Whether New Recipe Works
via Simulationvia Simulation

• Chop the garlic into pieces the size of matchheads

• Shred the beef

• Marinate the beef in the garlic, sugar, corn starch, rice wine and soy sauce

• Chop the broccoli into pieces the size of chunks

• Stir fry the spices, rice wine and beef for one minute

• Add the broccoli to the spices, rice wine and beef

• Stir fry the spices, rice wine, broccoli and beef for three minutes

• Add the salt to the spices, rice wine, broccoli and beef

A half pound of beef One teaspoon of sugar

Two tablespoons of soy sauce A half pound of

broccoli

One teaspoon of rice wine One teaspoon of salt
A half tablespoon of corn starch One chunk of garlic

The beef is now tender. The dish now tastes salty.

The dish now tastes savory. The dish now tastes sweet.

The broccoli is not crisp. The dish now tastes like garlic.

55V. Lesser CS683 F2004

Plan RepairPlan Repair

• ALTER-PLAN:SIDE-EFFECT: Replace the step that causes the

violating condition with one that does not have the same side-

effect but achieves the same goal

• SLPIT-AND-REFORM: Split the step into two separate steps

and run them independently

• ADJUNT-PLAN:REMOVE: Add a new step to be run along with

a step that causes a side-effect that removes the side-effect as

it is created

56V. Lesser CS683 F2004

Plan StoragePlan Storage

Indexing BEEF-AND-BROCCOLI under goals and problems:

If this plan is successful, the following should be true:

The beef is now tender.

The broccoli is now crisp.

Include beef in the dish.
Include broccoli in the dish.

Make a stir-fry dish.

The plan avoids failure exemplified by the state

“The broccoli is now soggy” in recipe BEEF-AND-BROCCOLI.

57V. Lesser CS683 F2004

Problem AnticipationProblem Anticipation

Searching for plan that satisfies input goals-

Include chicken in the dish.

Include snow pea in the dish.

Make a stir-fry dish.

Collecting and activating tests.

Is the dish STYLE-STIR-FRY

Is the item a MEAT

Is the item a VEGETABLE

Is the TEXTURE of item CRISP

Chicken+Snow pea+Stir Frying= Failure

“Meat sweats when it is stir-fried.”

“Stir-frying in too much liquid makes crisp vegetables soggy.”

Reminded of a failure in the BEEF-AND-BROCCOLI plan.

Failure= “The vegetable is now soggy”
58V. Lesser CS683 F2004

Plan RetrievalPlan Retrieval

Driving down on: Make a stir-fry dish.

Succeeded-

Driving down on:

Avoid failure exemplified by the state “The broccoli is now soggy”

in recipe BEEF-AND-BROCCOLI

Succeeded

Driving down on: Include chicken in the dish

 Failed- Trying more general goal

 Driving down on: Include meat in the dish

 Succeeded

Driving down on: Include snow pea in the dish

 Failed-Trying more general goal

 Driving down on: Include vegetable in the dish.

 Succeeded

Found recipe# REC9 BEEF-AND-BROCCOLI

59V. Lesser CS683 F2004

Next LectureNext Lecture

• Analytical Learning (Explanation-Based

Learning)

– First work done at Umass on learning rules of

Baseball

• A Quick Overview of Planning

