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TodayToday’’s Lectures Lecture

• Review of Neural Networks

• Markov-Decision Processes

• Reinforcement learning

3V. Lesser CS683 F2004

Back-propagationBack-propagation

• Gradient descent over network weight vector

• Easily generalizes to any directed graph

• Will find a local, not necessarily global error

minimum

• Minimizes error over training examples — will it

generalize well to subsequent examples?

• Training is slow — can take thousands of

iterations.

• Using network after training is very fast
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Applicability of Neural NetworksApplicability of Neural Networks

• Instances are represented by many attribute-
value pairs

• The target function output may be discrete-
valued, real-valued, or a vector of several real-
or discrete-valued attributes

• The training examples may contain errors

• Long training times are acceptable

• Fast evaluation of the learned target function
may be required

• The ability of humans to understand the
learned target function is not important
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Problem with Supervised LearningProblem with Supervised Learning

• Supervised learning is sometimes unrealistic:
where will correct answers come from?

• In many cases, the agent will only receive a
single reward, after a long sequence of
actions.

• Environments change, and so the agent must
adjust its action choices.
– On-line issue
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Reinforcement LearningReinforcement Learning

• Using feedback/rewards to learn a
successful agent function.

• Rewards may be provided following
each action, or only when the agent
reaches a terminal state.

• Rewards can be components of the
actual utility function or they can be
hints (“nice move”, “bad dog”, etc.).
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Supervised LearningSupervised Learning

Supervised Learning 

System
Inputs Outputs

Training Info  =  desired (target) outputs

Objective: Minimize Error  =  (target output – actual output)
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Reinforcement LearningReinforcement Learning

RL

System
Inputs Outputs (“actions”)

Training Info  =  evaluations (“rewards” / “penalties”)

Objective:  get as much reward as possible
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Reinforcement LearningReinforcement Learning

Perception/reward

action

Environment

Utility(reward) depends on a sequence of decisions

Agent

How to learn best action (maximize expected

reward)  to take at each state of Agent
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The Agent-Environment InterfaceThe Agent-Environment Interface

  

Agent and environment interact at discrete time steps :   t = 0,1, 2, K

     Agent observes state at step t :     s
t
!S

     produces action at step t :   a
t
! A(s

t
)

     gets resulting reward :     r
t+1 !"

     and resulting next state:   s
t+1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

11V. Lesser CS683 F2004

Markov decision processesMarkov decision processes

• S - finite set of domain states

• A - finite set of actions

• P(s!|s,a) - state transition function

• r(s,a) - reward function

• S0 - initial state

• The Markov assumption:

P(st | st-1,st-2,…,s1,a) = P(st | st-1,a)
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Partially Observable MDPsPartially Observable MDPs

Augmenting the completely observable MDP
with the following elements:

• O - set of observations

• P(o|s!,a) - observation function

• Discrete probability distribution over
starting states.

• Can be mapped into MDP

– Explodes state space
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Performance CriteriaPerformance Criteria

• Specify how to combine rewards over
multiple time steps.

• Finite-horizon and infinite-horizon
problems.

• Additive utility = sum of rewards

• Using a discount factor

• Utility as average-reward per time step
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Goals and RewardsGoals and Rewards

• Is a scalar reward signal an adequate notion

of a goal?—maybe not, but it is surprisingly

flexible.

• A goal should specify what we want to

achieve, not how we want to achieve it.

• A goal must be outside the agent’s direct

control—thus outside the agent.

• The agent must be able to measure

success:

– explicitly;

– frequently during its lifespan.
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Returns/Utility of State/Reward to GoReturns/Utility of State/Reward to Go

  

Suppose the sequence of rewards after step t is :

                         r
t+1, rt+ 2 , r

t+ 3, K

What do we want to maximize?

In general,  

we want to maximize the expected return,  E R
t{ },  for each step t.

Episodic tasks: interaction breaks naturally into

episodes, e.g., plays of a game, trips through a maze.

  
R
t
= r

t+1 + rt+2 +L + r
T
,

where T is a final time step at which a terminal state is reached,

ending an episode.
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Returns for Continuing TasksReturns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes

•Expected Return becomes infinite.  

Discounted return:

  

            R
t
= r

t+1
+! r

t+ 2
+ ! 2

r
t+3
+L = ! k

r
t+ k+1

,
k =0

"

#

where ! , 0 $ ! $ 1, is the discount rate.

shortsighted  0!" # 1  farsighted



17V. Lesser CS683 F2004

An ExampleAn Example

Avoid failure: the pole falling beyond

a critical angle or the cart hitting end of

track.

reward  = +1 for each step before failure

!   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:

reward  = !1 upon failure; 0 otherwise

"   return is related to  ! # k,  for k steps before failure

In either case, return is maximized by 

avoiding failure for as long as possible.
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Another ExampleAnother Example

Get to the top of the hill

as quickly as possible. 

reward  = !1 for each step where not at top of hill

"   return =  ! number of steps before reaching top of hill

Return is maximized by minimizing 

number of steps reach the top of the hill. 
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Example: An Optimal PolicyExample: An Optimal Policy

+1

"1

.812 +1

"1.762

.705

.868 .912

.660

.655 .611 .388

Actions succeed with probability 0.8 and move at right angles
with probability 0.1 (remain in the same position when

there is a wall). Actions incur a small cost (0.04).

• What happens when cost increases?

• Why move to .655 instead of .611

A policy is a choice of what action to choose at each state

An Optimal Policy is a policy where you are always choosing the
action that maximizes the “return”/”utility” of the current state
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Optimal Action Selection PoliciesOptimal Action Selection Policies

• Optimal policy defined by:

• Can be solved using dynamic programming

[Bellman, 1957]

– How to compute U(j) when it’s definition is

recursive

policy* (i) = argmax
a

P(s
j
| s

i
,a)U( j)

j

!

U(i) = R(i) +max
a

P(s
j
| s

i
,a)U( j)

j

!
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Value Iteration [Value Iteration [Bellman, 1957Bellman, 1957]]

repeat

   U!U'

   for each state i do

      U' [i]! R[i] +max
a

P(s
j
| s

i
,a)U( j)

j

"

   end

until CloseEnough(U,U' )
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Value Iteration & Finite-horizonValue Iteration & Finite-horizon

MDPsMDPs
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Value Iteration ExampleValue Iteration Example

0 1 2

3 4 5

10 15 19

Final Version
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Issues with Value IterationIssues with Value Iteration

• Slow to converge

• Convergence occurs out from goal

• Information about shortcuts propagates

out from goal

• Greedy policy is optimal before values

completely settle.

• Optimal value function is a “fixed point”

of VI.
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Prioritized SweepingPrioritized Sweeping

• State value updates can be performed in any order in value

iteration. This suggests trying to decide what states to

update to maximize convergence speed.

• Prioritized sweeping is a variation of value iteration; more

computationally efficient (focused).

• Puts all states in a priority queue in order of how much we

think their values might change given a step of value

iteration.

• Very efficient in practice (Moore & Atkeson, 1993).
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Policy IterationPolicy Iteration

• Solve infinite-horizon discounted MDPs in finite
time.

– Start with value function V0.

– Let !1 be greedy policy for V0.

– Evaluate !1 and let V1 be the resulting value
function.

– Let !t+1 be greedy policy for Vt

– Let Vt+1 be value of !t+1.

• Each policy is an improvement until optimal
policy is reached (another fixed point).

• Since finite set of policies, convergence in finite
time.
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Policy IterationPolicy Iteration

  !1 "V
!
1 "!

2
" V

!
2 " L !

*

"V
*

"!
*

Policy 

Evaluation

 step

“Greedification”

 step

Improvement

is monotonic

Generalized Policy Iteration:
Intermix the two steps at a finer scale:

state by state, action by action, etc.
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Policy iteration [Policy iteration [Howard, 1960Howard, 1960]]

repeat

   ! "!'

   U "ValueDetermination(!)

   for each state i do

      ! '[i ] " argmax
a

P(s j | si ,a)U( j)
j

#

   end

until ! =!'
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Value determinationValue determination

Can be implemented using:

Value Iteration :

Ut+1 = R(i) + P(s j | si ,!(i))Ut ( j)
j

"

or

Dynamic Programming :

U(i) = R(i) + P(sj | si ,!(i))U( j)
j

"

30V. Lesser CS683 F2004

Simulated PI ExampleSimulated PI Example
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Reinforcement LearningReinforcement Learning

• Learning Model of Markov Decision

Process

• Learning Optimal Policy
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Key Features of ReinforcementKey Features of Reinforcement

LearningLearning

• Learner is not told which actions to take

• Trial-and-Error search

• Possibility of delayed reward

– Sacrifice short-term gains for greater long-term
gains

• The need to explore and exploit

• Considers the whole problem of a goal-
directed agent interacting with an
uncertain environment
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What is Reinforcement Learning?What is Reinforcement Learning?

• Learning from interaction

• Learning about, from, and while
interacting with an external
environment

• Learning what to do

– how to map situations to actions so as to
maximize a numerical reward signal

• A collection of methods for
approximating the solutions of
stochastic optimal control problems
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Elements of RLElements of RL

• Policy: what to do

• Reward: what is good

• Value: what is good because it predicts
reward

• Model: what follows what

Policy

Reward

Value
Model of

environment
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Two basic designsTwo basic designs

The agent may learn:

• Utility function on states (or histories)
which can be used in order to select
actions.

– Requires a model of the environment.

• Action-value function for each state (also
called Q-learning)

– Does not require a model of the
environment.
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Passive versus Active learningPassive versus Active learning

• A passive learner simply watches the
world going by, and tries to learn the
utility of being in various states.

• An active learner must also act using
the learned information, and can use its
problem generator to suggest
explorations of unknown portions of the
environment.
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Passive Learning in A Passive Learning in A KnownKnown
EnvironmentEnvironment

Given:

• A Markov model of the environment.

• States, with probabilistic actions.

• Terminal states have rewards/utilities.

Problem:

• Learn expected utility of each state.
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Markov Decision Processes (MDPs)Markov Decision Processes (MDPs)

In RL, the environment is usually modeled as an
MDP, defined by

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

S  – set of states of the environment

A(s) – set of actions possible in state s #S

P(s,s',a) – probability of transition from s  to s'  given a

R(s,s',a) – expected reward on transition s  to s'  given a
$  – discount rate for delayed reward

 discrete time, t = 0, 1, 2, . . .
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The Objective is to Maximize  Long-termThe Objective is to Maximize  Long-term

Total Discounted RewardTotal Discounted Reward

These are called value functions  (cf. evaluation functions in AI)

Find a policy % :  s# S & a# A(s)   (could be stochastic)

 that maximizes the value/utility (expected future reward) of each s :

and each s,a  pair:

V (s) = E {r     + $ r     + $  r     +        s  =s, % }

rewards

t +1          t +2            t +3                 t
. . .

2
%

Q (s,a) = E {r    + $ r     + $  r    +       s  =s, a =a, % }
t +1         t +2           t +3               t            t

. . .
2%
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Optimal Value Functions andOptimal Value Functions and
PoliciesPolicies

There exist optimal value functions:

And corresponding optimal policies:

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

%*  is the greedy policy with respect to Q*
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What Many RL Algorithms DoWhat Many RL Algorithms Do

Experience
Build

Value
Function

Policy• Continual, online

• Simultaneous acting and learning

Select 
V &V*
Q &Q*

% &%*

Predictions

. . .

Actions 
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RL Interaction of Policy andRL Interaction of Policy and
ValueValue

Policy
Value

Function

policy
evaluation

policy
improvement

value 
learning

“greedification”

%

V*,  Q*

V, Q

%*
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Passive Learning in a KnownPassive Learning in a Known
EnvironmentEnvironment

Given:

• A Markov model of the environment.

• States, with probabilistic actions.

• Terminal states have rewards/utilities.

Problem:

• Learn expected utility of each state.
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ExampleExample

S

Percepts tell you:

[State, Reward, Terminal?]

+1

"1
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Learning Utility FunctionsLearning Utility Functions

• A training sequence is an instance of

world transitions from an initial state to a

terminal state.

• The additive utility assumption: utility of

a sequence is the sum of the rewards over

the states of the sequence.

• Under this assumption, the utility of a state

is the expected reward-to-go of that state.
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NaNaïïve Updatingve Updating

• Developed in the late 1950's in the area of
adaptive control theory.

• Just keep a running average of rewards for each
state.

• For each training sequence, compute the reward-
to-go for each state in the  sequence and update
the utilities.
– Accumulate reward as you go back

• Generates utility estimates that minimize the
mean square error (LMS-update).
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Problems with LMS-updateProblems with LMS-update

Converges very slowly because it ignores

the relationship between neighboring states:

New

U=?

Old

U=-.8

-1

+1

p=.9

p=.1

Si
Sj
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Adaptive Dynamic ProgrammingAdaptive Dynamic Programming

Utilities of neighboring states are mutually
constrained:

U(i) = R(i) + 'j Mij U(j)

Can apply dynamic programming to solve the
system of equations (one eq. per state).

Can use value iteration: initialize utilities based
on the rewards and update all values based on
the above equation.
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Temporal Difference LearningTemporal Difference Learning

Approximate the constraint equations without

solving them for all states.

Modify U(i) whenever we see a transition from i to j

using the following rule:

V(i) = V(i) + ( (R(i) + V(j) " V(i))

The modification moves V(i) closer to satisfying the

original equation.
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Rewriting the TD Equation withRewriting the TD Equation with
Discount FactorDiscount Factor

to get:

Rewrite this

V(s)! (1" # )V (s) + # r +$ V( % s )[ ]

TD error 

V(s)!V (s) + " r + #V( $ s ) % V (s)[ ]
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Temporal Difference (TD) LearningTemporal Difference (TD) Learning

T T T TT

T T T T T

! s 
r

s

V(s)! (1" # )V (s) + # r +$V ( % s )[ ] Sutton, 1988

After each

action

update

the state s
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Simple Monte CarloSimple Monte Carlo

T T T TT

T T T T T

V(s)! (1" # )V (s) + # REWARD( path)

s
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Adaptive/Stochastic DynamicAdaptive/Stochastic Dynamic
ProgrammingProgramming

T T T TT

T T T T T

V(s)! E r +"V(succssor of sundera)
s

r

! s 

54V. Lesser CS683 F2004

Next LectureNext Lecture

• Q based Reinforecement Learning

• Additional Topics in Machine Learning


