
Lecture 20: Learning -4Lecture 20: Learning -4

Victor Lesser

CMPSCI 683

Fall 2004

2V. Lesser CS683 F2004

TodayToday’’s Lectures Lecture

• Review of Neural Networks

• Markov-Decision Processes

• Reinforcement learning

3V. Lesser CS683 F2004

Back-propagationBack-propagation

• Gradient descent over network weight vector

• Easily generalizes to any directed graph

• Will find a local, not necessarily global error

minimum

• Minimizes error over training examples — will it

generalize well to subsequent examples?

• Training is slow — can take thousands of

iterations.

• Using network after training is very fast

4V. Lesser CS683 F2004

Applicability of Neural NetworksApplicability of Neural Networks

• Instances are represented by many attribute-
value pairs

• The target function output may be discrete-
valued, real-valued, or a vector of several real-
or discrete-valued attributes

• The training examples may contain errors

• Long training times are acceptable

• Fast evaluation of the learned target function
may be required

• The ability of humans to understand the
learned target function is not important

5V. Lesser CS683 F2004

Problem with Supervised LearningProblem with Supervised Learning

• Supervised learning is sometimes unrealistic:
where will correct answers come from?

• In many cases, the agent will only receive a
single reward, after a long sequence of
actions.

• Environments change, and so the agent must
adjust its action choices.
– On-line issue

6V. Lesser CS683 F2004

Reinforcement LearningReinforcement Learning

• Using feedback/rewards to learn a
successful agent function.

• Rewards may be provided following
each action, or only when the agent
reaches a terminal state.

• Rewards can be components of the
actual utility function or they can be
hints (“nice move”, “bad dog”, etc.).

7V. Lesser CS683 F2004

Supervised LearningSupervised Learning

Supervised Learning

System
Inputs Outputs

Training Info = desired (target) outputs

Objective: Minimize Error = (target output – actual output)

8V. Lesser CS683 F2004

Reinforcement LearningReinforcement Learning

RL

System
Inputs Outputs (“actions”)

Training Info = evaluations (“rewards” / “penalties”)

Objective: get as much reward as possible

9V. Lesser CS683 F2004

Reinforcement LearningReinforcement Learning

Perception/reward

action

Environment

Utility(reward) depends on a sequence of decisions

Agent

How to learn best action (maximize expected

reward) to take at each state of Agent
10V. Lesser CS683 F2004

The Agent-Environment InterfaceThe Agent-Environment Interface

Agent and environment interact at discrete time steps : t = 0,1, 2, K

 Agent observes state at step t : s
t
!S

 produces action at step t : a
t
! A(s

t
)

 gets resulting reward : r
t+1 !"

 and resulting next state: s
t+1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

11V. Lesser CS683 F2004

Markov decision processesMarkov decision processes

• S - finite set of domain states

• A - finite set of actions

• P(s!|s,a) - state transition function

• r(s,a) - reward function

• S0 - initial state

• The Markov assumption:

P(st | st-1,st-2,…,s1,a) = P(st | st-1,a)

12V. Lesser CS683 F2004

Partially Observable MDPsPartially Observable MDPs

Augmenting the completely observable MDP
with the following elements:

• O - set of observations

• P(o|s!,a) - observation function

• Discrete probability distribution over
starting states.

• Can be mapped into MDP

– Explodes state space

13V. Lesser CS683 F2004

Performance CriteriaPerformance Criteria

• Specify how to combine rewards over
multiple time steps.

• Finite-horizon and infinite-horizon
problems.

• Additive utility = sum of rewards

• Using a discount factor

• Utility as average-reward per time step

14V. Lesser CS683 F2004

Goals and RewardsGoals and Rewards

• Is a scalar reward signal an adequate notion

of a goal?—maybe not, but it is surprisingly

flexible.

• A goal should specify what we want to

achieve, not how we want to achieve it.

• A goal must be outside the agent’s direct

control—thus outside the agent.

• The agent must be able to measure

success:

– explicitly;

– frequently during its lifespan.

15V. Lesser CS683 F2004

Returns/Utility of State/Reward to GoReturns/Utility of State/Reward to Go

Suppose the sequence of rewards after step t is :

 r
t+1, rt+ 2 , r

t+ 3, K

What do we want to maximize?

In general,

we want to maximize the expected return, E R
t{ }, for each step t.

Episodic tasks: interaction breaks naturally into

episodes, e.g., plays of a game, trips through a maze.

R
t
= r

t+1 + rt+2 +L + r
T
,

where T is a final time step at which a terminal state is reached,

ending an episode.

16V. Lesser CS683 F2004

Returns for Continuing TasksReturns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes

•Expected Return becomes infinite.

Discounted return:

 R
t
= r

t+1
+! r

t+ 2
+ ! 2

r
t+3
+L = ! k

r
t+ k+1

,
k =0

"

#

where ! , 0 $! $ 1, is the discount rate.

shortsighted 0!" # 1 farsighted

17V. Lesser CS683 F2004

An ExampleAn Example

Avoid failure: the pole falling beyond

a critical angle or the cart hitting end of

track.

reward = +1 for each step before failure

! return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:

reward = !1 upon failure; 0 otherwise

" return is related to ! # k, for k steps before failure

In either case, return is maximized by

avoiding failure for as long as possible.

18V. Lesser CS683 F2004

Another ExampleAnother Example

Get to the top of the hill

as quickly as possible.

reward = !1 for each step where not at top of hill

" return = ! number of steps before reaching top of hill

Return is maximized by minimizing

number of steps reach the top of the hill.

19V. Lesser CS683 F2004

Example: An Optimal PolicyExample: An Optimal Policy

+1

"1

.812 +1

"1.762

.705

.868 .912

.660

.655 .611 .388

Actions succeed with probability 0.8 and move at right angles
with probability 0.1 (remain in the same position when

there is a wall). Actions incur a small cost (0.04).

• What happens when cost increases?

• Why move to .655 instead of .611

A policy is a choice of what action to choose at each state

An Optimal Policy is a policy where you are always choosing the
action that maximizes the “return”/”utility” of the current state

20V. Lesser CS683 F2004

Optimal Action Selection PoliciesOptimal Action Selection Policies

• Optimal policy defined by:

• Can be solved using dynamic programming

[Bellman, 1957]

– How to compute U(j) when it’s definition is

recursive

policy* (i) = argmax
a

P(s
j
| s

i
,a)U(j)

j

!

U(i) = R(i) +max
a

P(s
j
| s

i
,a)U(j)

j

!

21V. Lesser CS683 F2004

Value Iteration [Value Iteration [Bellman, 1957Bellman, 1957]]

repeat

 U!U'

 for each state i do

 U' [i]! R[i] +max
a

P(s
j
| s

i
,a)U(j)

j

"

 end

until CloseEnough(U,U')

22V. Lesser CS683 F2004

Value Iteration & Finite-horizonValue Iteration & Finite-horizon

MDPsMDPs

23V. Lesser CS683 F2004

Value Iteration ExampleValue Iteration Example

0 1 2

3 4 5

10 15 19

Final Version

24V. Lesser CS683 F2004

Issues with Value IterationIssues with Value Iteration

• Slow to converge

• Convergence occurs out from goal

• Information about shortcuts propagates

out from goal

• Greedy policy is optimal before values

completely settle.

• Optimal value function is a “fixed point”

of VI.

25V. Lesser CS683 F2004

Prioritized SweepingPrioritized Sweeping

• State value updates can be performed in any order in value

iteration. This suggests trying to decide what states to

update to maximize convergence speed.

• Prioritized sweeping is a variation of value iteration; more

computationally efficient (focused).

• Puts all states in a priority queue in order of how much we

think their values might change given a step of value

iteration.

• Very efficient in practice (Moore & Atkeson, 1993).

26V. Lesser CS683 F2004

Policy IterationPolicy Iteration

• Solve infinite-horizon discounted MDPs in finite
time.

– Start with value function V0.

– Let !1 be greedy policy for V0.

– Evaluate !1 and let V1 be the resulting value
function.

– Let !t+1 be greedy policy for Vt

– Let Vt+1 be value of !t+1.

• Each policy is an improvement until optimal
policy is reached (another fixed point).

• Since finite set of policies, convergence in finite
time.

27V. Lesser CS683 F2004

Policy IterationPolicy Iteration

 !1 "V
!
1 "!

2
" V

!
2 " L !

*

"V
*

"!
*

Policy

Evaluation

 step

“Greedification”

 step

Improvement

is monotonic

Generalized Policy Iteration:
Intermix the two steps at a finer scale:

state by state, action by action, etc.

28V. Lesser CS683 F2004

Policy iteration [Policy iteration [Howard, 1960Howard, 1960]]

repeat

 ! "!'

 U "ValueDetermination(!)

 for each state i do

 ! '[i] " argmax
a

P(s j | si ,a)U(j)
j

#

 end

until ! =!'

29V. Lesser CS683 F2004

Value determinationValue determination

Can be implemented using:

Value Iteration :

Ut+1 = R(i) + P(s j | si ,!(i))Ut (j)
j

"

or

Dynamic Programming :

U(i) = R(i) + P(sj | si ,!(i))U(j)
j

"

30V. Lesser CS683 F2004

Simulated PI ExampleSimulated PI Example

31V. Lesser CS683 F2004

Reinforcement LearningReinforcement Learning

• Learning Model of Markov Decision

Process

• Learning Optimal Policy

32V. Lesser CS683 F2004

Key Features of ReinforcementKey Features of Reinforcement

LearningLearning

• Learner is not told which actions to take

• Trial-and-Error search

• Possibility of delayed reward

– Sacrifice short-term gains for greater long-term
gains

• The need to explore and exploit

• Considers the whole problem of a goal-
directed agent interacting with an
uncertain environment

33V. Lesser CS683 F2004

What is Reinforcement Learning?What is Reinforcement Learning?

• Learning from interaction

• Learning about, from, and while
interacting with an external
environment

• Learning what to do

– how to map situations to actions so as to
maximize a numerical reward signal

• A collection of methods for
approximating the solutions of
stochastic optimal control problems

34V. Lesser CS683 F2004

Elements of RLElements of RL

• Policy: what to do

• Reward: what is good

• Value: what is good because it predicts
reward

• Model: what follows what

Policy

Reward

Value
Model of

environment

35V. Lesser CS683 F2004

Two basic designsTwo basic designs

The agent may learn:

• Utility function on states (or histories)
which can be used in order to select
actions.

– Requires a model of the environment.

• Action-value function for each state (also
called Q-learning)

– Does not require a model of the
environment.

36V. Lesser CS683 F2004

Passive versus Active learningPassive versus Active learning

• A passive learner simply watches the
world going by, and tries to learn the
utility of being in various states.

• An active learner must also act using
the learned information, and can use its
problem generator to suggest
explorations of unknown portions of the
environment.

37V. Lesser CS683 F2004

Passive Learning in A Passive Learning in A KnownKnown
EnvironmentEnvironment

Given:

• A Markov model of the environment.

• States, with probabilistic actions.

• Terminal states have rewards/utilities.

Problem:

• Learn expected utility of each state.

38V. Lesser CS683 F2004

Markov Decision Processes (MDPs)Markov Decision Processes (MDPs)

In RL, the environment is usually modeled as an
MDP, defined by

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

S – set of states of the environment

A(s) – set of actions possible in state s #S

P(s,s',a) – probability of transition from s to s' given a

R(s,s',a) – expected reward on transition s to s' given a
$ – discount rate for delayed reward

 discrete time, t = 0, 1, 2, . . .

39V. Lesser CS683 F2004

The Objective is to Maximize Long-termThe Objective is to Maximize Long-term

Total Discounted RewardTotal Discounted Reward

These are called value functions (cf. evaluation functions in AI)

Find a policy % : s# S & a# A(s) (could be stochastic)

 that maximizes the value/utility (expected future reward) of each s :

and each s,a pair:

V (s) = E {r + $ r + $ r + s =s, % }

rewards

t +1 t +2 t +3 t
. . .

2
%

Q (s,a) = E {r + $ r + $ r + s =s, a =a, % }
t +1 t +2 t +3 t t

. . .
2%

40V. Lesser CS683 F2004

Optimal Value Functions andOptimal Value Functions and
PoliciesPolicies

There exist optimal value functions:

And corresponding optimal policies:

V
*
(s) = max

!
V

!
(s) Q

*
(s,a) = max

!
Q

!
(s,a)

!
*
(s) = argmax

a
Q
*
(s,a)

%* is the greedy policy with respect to Q*

41V. Lesser CS683 F2004

What Many RL Algorithms DoWhat Many RL Algorithms Do

Experience
Build

Value
Function

Policy• Continual, online

• Simultaneous acting and learning

Select
V &V*
Q &Q*

% &%*

Predictions

. . .

Actions

42V. Lesser CS683 F2004

RL Interaction of Policy andRL Interaction of Policy and
ValueValue

Policy
Value

Function

policy
evaluation

policy
improvement

value
learning

“greedification”

%

V*, Q*

V, Q

%*

43V. Lesser CS683 F2004

Passive Learning in a KnownPassive Learning in a Known
EnvironmentEnvironment

Given:

• A Markov model of the environment.

• States, with probabilistic actions.

• Terminal states have rewards/utilities.

Problem:

• Learn expected utility of each state.

44V. Lesser CS683 F2004

ExampleExample

S

Percepts tell you:

[State, Reward, Terminal?]

+1

"1

45V. Lesser CS683 F2004

Learning Utility FunctionsLearning Utility Functions

• A training sequence is an instance of

world transitions from an initial state to a

terminal state.

• The additive utility assumption: utility of

a sequence is the sum of the rewards over

the states of the sequence.

• Under this assumption, the utility of a state

is the expected reward-to-go of that state.

46V. Lesser CS683 F2004

NaNaïïve Updatingve Updating

• Developed in the late 1950's in the area of
adaptive control theory.

• Just keep a running average of rewards for each
state.

• For each training sequence, compute the reward-
to-go for each state in the sequence and update
the utilities.
– Accumulate reward as you go back

• Generates utility estimates that minimize the
mean square error (LMS-update).

47V. Lesser CS683 F2004

Problems with LMS-updateProblems with LMS-update

Converges very slowly because it ignores

the relationship between neighboring states:

New

U=?

Old

U=-.8

-1

+1

p=.9

p=.1

Si
Sj

48V. Lesser CS683 F2004

Adaptive Dynamic ProgrammingAdaptive Dynamic Programming

Utilities of neighboring states are mutually
constrained:

U(i) = R(i) + 'j Mij U(j)

Can apply dynamic programming to solve the
system of equations (one eq. per state).

Can use value iteration: initialize utilities based
on the rewards and update all values based on
the above equation.

49V. Lesser CS683 F2004

Temporal Difference LearningTemporal Difference Learning

Approximate the constraint equations without

solving them for all states.

Modify U(i) whenever we see a transition from i to j

using the following rule:

V(i) = V(i) + ((R(i) + V(j) " V(i))

The modification moves V(i) closer to satisfying the

original equation.

50V. Lesser CS683 F2004

Rewriting the TD Equation withRewriting the TD Equation with
Discount FactorDiscount Factor

to get:

Rewrite this

V(s)! (1" #)V (s) + # r +$ V(% s)[]

TD error

V(s)!V (s) + " r + #V($ s) % V (s)[]

51V. Lesser CS683 F2004

Temporal Difference (TD) LearningTemporal Difference (TD) Learning

T T T TT

T T T T T

! s
r

s

V(s)! (1" #)V (s) + # r +$V (% s)[] Sutton, 1988

After each

action

update

the state s

52V. Lesser CS683 F2004

Simple Monte CarloSimple Monte Carlo

T T T TT

T T T T T

V(s)! (1" #)V (s) + # REWARD(path)

s

53V. Lesser CS683 F2004

Adaptive/Stochastic DynamicAdaptive/Stochastic Dynamic
ProgrammingProgramming

T T T TT

T T T T T

V(s)! E r +"V(succssor of sundera)
s

r

! s

54V. Lesser CS683 F2004

Next LectureNext Lecture

• Q based Reinforecement Learning

• Additional Topics in Machine Learning

