Victor Lesser

CMPSCI 683
Fall 2004

Review of Neural Networks

Markov-Decision Processes

Reinforcement learning

V. Lesser CS683 F2004

» Gradient descent over network weight vector

» Easily generalizes to any directed graph

» Will find a local, not necessarily global error
minimum

* Minimizes error over training examples — will it
generalize well to subsequent examples?

* Training is slow — can take thousands of
iterations.

» Using network after training is very fast

V. Lesser CS683 F2004

* Instances are represented by many attribute-
value pairs

» The target function output may be discrete-
valued, real-valued, or a vector of several real-
or discrete-valued attributes

* The training examples may contain errors
* Long training times are acceptable

» Fast evaluation of the learned target function
may be required

* The ability of humans to understand the
learned target function is not important

V. Lesser CS683 F2004

« Supervised learning is sometimes unrealistic: Using feedback/rewards to learn a

where will correct answers come from? successful agent function.

* In many cases, the agent will only receive a ’ Rewards. _— be prowded foIIowmg
single reward, after a long sequence of each action, Or_only when the agent
actions. reaches a terminal state.

_ * Rewards can be components of the

. Eg."'“t’f‘tme”tt.s change, and so the agent must actual utility function or they can be
agjust Its action cnoices. . “ "o« ”

e hints (“nice move”, “bad dog”, etc.).

V. Lesser CS683 F2004 5] V. Lesser CS683 F2004 6

Training Info = desired (target) outputs Training Info = evaluations (“rewards” / “penalties”)

¥ ¥

Supervised Learnin,; RL o e as
Inputs ’ P System i h Outputs Inputs - System h Outputs (“actions™)

Objective: Minimize Error = (target output — actual output) Objective: get as much reward as possible

V. Lesser CS683 F2004 7 V. Lesser CS683 F2004 8

QD Perception/reward
A/_d_\

Agent —<

action
Utility(reward) depends on a sequence of decisions

How to learn best action (maximize expected
reward) to take at each state of Agent

V. Lesser CS683 F2004 9

!

5., | Environment

I ’ .
1

Agent and environment interact at discrete time steps: 7=0,1,2,K

Agent observes state at step r: 5, €S
produces action at step?: a, € A(s,)
gets resulting reward: 1, ER

and resulting next state: s,,,

o rt+1 rt+2 rt+3_...
G G 41 G 42 G 43

V. Lesser CS683 F2004 10

e § - finite set of domain states
» A - finite set of actions
P(s'ls,a) - state transition function
r(s,a) - reward function
S, - initial state
The Markov assumption:
P(s,1's, 1,8, 5,...,8,,0) = P(s,| s, ,,a)

V. Lesser CS683 F2004 11

Augmenting the completely observable MDP
with the following elements:

O - set of observations
P(ols',a) - observation function

Discrete probability distribution over
starting states.

Can be mapped into MDP
— Explodes state space

V. Lesser CS683 F2004 12

Specify how to combine rewards over
multiple time steps.

Finite-horizon and infinite-horizon
problems.

Additive utility = sum of rewards

Using a discount factor

Utility as average-reward per time step

V. Lesser CS683 F2004

Suppose the sequence of rewards after step ¢ is:
K

‘What do we want to maximize?

r

r+1’r

t+2’r

t+3°

In general,

we want to maximize the expected return, E{R,}, for each step .

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r+r1, +L +1,

where T is a final time step at which a terminal state is reached,
ending an episode.

V. Lesser CS683 F2004

 Is a scalar reward signal an adequate notion
of a goal?—maybe not, but it is surprisingly
flexible.

* A goal should specify what we want to
achieve, not how we want to achieve it.

* A goal must be outside the agent’s direct
control—thus outside the agent.

* The agent must be able to measure
success:
— explicitly;
— frequently during its lifespan.

V. Lesser CS683 F2004 14

Continuing tasks: interaction does not have natural episodes
*Expected Return becomes infinite.

Discounted return:

e
2 k
R=ry 41+ 7+l = > vin .,
k=0

where y,0 <y <1, is the discount rate.

shortsighted 0 <=y — 1 farsighted

V. Lesser CS683 F2004 16

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
— — track.

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure
= return = number of steps before failure
As a continuing task with discounted return:
reward = -1 upon failure; 0 otherwise

= return is related to — y*, fork steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

V. Lesser CS683 F2004 17

A policy is a choice of what action to choose at each state

An Optimal Policy is a policy where you are always choosing the
action that maximizes the “return”/’utility” of the current state

—|—=|—|+1 .812|.868[.912|+1
4 . + -1 762 660| —1
t |||« .705|:655|.611|.388

Actions succeed with probability 0.8 and move at right angles
with probability 0.1 (remain in the same position when
there is a wall). Actions incur a small cost (0.04).

* What happens when cost increases?
* Why move to .655 instead of .611

V. Lesser CS683 F2004 19

Get to the top of the hill
y as quickly as possible.
78
reward = -1 for each step where not at top of hill
= return = - number of steps before reaching top of hill

Return is maximized by minimizing
number of steps reach the top of the hill.

V. Lesser CS683 F2004 18

. Optimal /

» Optimal policy defined by:
policy * (i) = arg max E P(s, |s,,a)U(}))
U(i) = R(i) + max 2 P(s, ls,a)U(j)

» Can be solved using dynamic programming

[Bellman, 1957]

— How to compute U(j) when it’s definition is
recursive

V. Lesser CS683 F2004 20

repeat
U<U
for each state i do
U'[i] < R[i] + max E P(s, |s,a)U(}))

end
until CloseEnough(U,U")

V. Lesser CS683 F2004 21

D.DDD| ooaa| oaoa| +1 [o —D.ﬁ(nvaEn -}Fl 003 | o.sen| pasz| + 1
1 — F B
aa i L | ~0E | B sa -1
o Do E () } noan| — 1 -0 i 1 H IRERE 1 k 2 | a8 =2 |
; x =
o] Gonn I-\:J.uun UMD -0 i-D.-.'M ~.3a | airna RO E) I Sncs b ooooed ong |
l ' [| +1
o.s0z| drael o ess| -F L 257 oA ason + L fosasl ogasl gora|
A - 1 L i
-0.12 3 3 oszzl -1 II casof 4 Joean| L | navzf 5 -L ueas| =1
i—n.lz [—I’J-_I.;'. 0.3ls -|:|.|‘1] i_-»:;-_]ﬁ LR T R EE Y RO Lala D1a2 ._'1|.1]I1491 0,185
— I. — ; —~|—
n.smgl 0 BA .}_n;u}-l Poloszfosss|asis + 1 sz naagnaial +1
: = i 5] T
awsali 10 Heowman] -1 |- |ews1 i 15 Josen -1 - leTazli 19 || osso) -1
| ! iR et
— "
-) el | oS3 | oeces | ooaTa | a7osi« & 0. 38
joardnssolus ",}‘-'-351 2 i 0 TN eSS0 ||E.- 3::.8'
Final Version

V. Lesser CS683 F2004 23

We can think of VI as maximizing our utility over some
fixed horizon h. We will calculate V,(s), the maximum
value attainable in h steps starting in state s (for all states
§). We proceed backwards,

+ Vy(s) = 0:no utility for taking no steps (or final val).
* V(1) = mzx R(s, a): with anly one step, simply

choose the action with the highest utility.
* V) = max (\ R(s.a) +§Pr(1'|x,a)v_.(s')): take

the action with the highest ht]iity including the utility
of the resulting state,

MEPE) Panrig Uds: Lrewiaing APdd el vy LULIE]

V. Lesser CS683 F2004 22

» Slow to converge
» Convergence occurs out from goal

* Information about shortcuts propagates
out from goal

» Greedy policy is optimal before values
completely settle.

» Optimal value function is a “fixed point”
of VI.

V. Lesser CS683 F2004 24

» State value updates can be performed in any order in value
iteration. This suggests trying to decide what states to
update to maximize convergence speed.

» Prioritized sweeping is a variation of value iteration; more
computationally efficient (focused).

» Puts all states in a priority queue in order of how much we
think their values might change given a step of value
iteration.

» Very efficient in practice (Moore & Atkeson, 1993).

V. Lesser CS683 F2004

)

* * *
—-La -V —=ax

/ \ Improvement

Policy “Greedification” Is monotonic
Evaluation step
step

=V =g, —

Generalized Policy lteration:
Intermix the two steps at a finer scale:
state by state, action by action, etc.

V. Lesser CS683 F2004

25

27

» Solve infinite-horizon discounted MDPs in finite
time.

— Start with value function V.
— Let 7, be greedy policy for V,,.

— Evaluate 7, and /et V, be the resulting value
function.

— Let m7,,, be greedy policy for V,
— Let V,,, be value of 77,,,,.

» Each policy is an improvement until optimal
policy is reached (another fixed point).

» Since finite set of policies, convergence in finite
time.

V. Lesser CS683 F2004 26

repeat
II <1IT

U < ValueDetermination(I1)

for each state i do
IT'i] < argmaxEP(sj I's,,a)U(j)
a J

end
until IT=1T'

V. Lesser CS683 F2004 28

' ru‘n w -

Can be implemented using:
Value lteration:

U, = R(i)+ E P(s, 1s,, I U, (j)

or
Dynamic Programming :

U(i) = RG) + E P(s; s, TI()U())

V. Lesser CS683 F2004 29

» Learning Model of Markov Decision
Process

* Learning Optimal Policy

V. Lesser CS683 F2004 31

e _:‘lrﬁ:'__' e ol v,

—_

L‘ e ;EjjJ

Tj-h- #1| ‘...._..__.__|+1 i_...i!_.__!+ 1
BRI Nan: oE
ALIRIE ‘-‘I-'|""|+ Vi d| -l

Fewer iterations than VI, but each iteration more
expensive.

Source of disagreement among practioners: Pl vs. VI,

V. Lesser CS683 F2004 30

Learner is not told which actions to take

Trial-and-Error search

Possibility of delayed reward

— Sacrifice short-term gains for greater long-term
gains

The need to explore and exploit

Considers the whole problem of a goal-

directed agent interacting with an

uncertain environment

V. Lesser CS683 F2004 32

i X

. What'is,

» Learning from interaction

» Learning about, from, and while
interacting with an external
environment

* Learning what to do
— how to map situations to actions so as to
maximize a numerical reward signal
* A collection of methods for
approximating the solutions of
stochastic optimal control problems

V. Lesser CS683 F2004 33

The agent may learn:

« Utility function on states (or histories)
which can be used in order to select
actions.

— Requires a model of the environment.

» Action-value function for each state (also
called Q-learning)

— Does not require a model of the
environment.

V. Lesser CS683 F2004 35

Model of
environment

Policy: what to do
* Reward: what is good

Value: what is good because it predicts
reward

Model: what follows what

V. Lesser CS683 F2004 34

* A passive learner simply watches the
world going by, and tries to learn the
utility of being in various states.

» An active learner must also act using
the learned information, and can use its
problem generator to suggest
explorations of unknown portions of the
environment.

V. Lesser CS683 F2004 36

| Markoy, C Jé' [

Given:

* A Markov model of the environment.

» States, with probabilistic actions.
 Terminal states have rewards/utilities.

Problem:
» Learn expected utility of each state.

V. Lesser CS683 F2004 37

.—-\.'ﬂ— JAIJ—' QUJ

In RL, the environment is usually modeled as an
MDP, defined by

S - set of states of the environment

A(S) — set of actions possible in state S €S

P(s,s',a) — probability of transition from S to s’ given @
R(s,s’,a) — expected reward on transition S to s’ given @
Y — discount rate for delayed reward

discrete time, [= 0, 1, 2, C.

a4 G 41)} 4 43

V. Lesser CS683 F2004 38

Find a policy 7T : s&€ S — aEA(S) (could be stochastic)

that maximizes the value/utility (expected future reward) of each S :

V(s) E{t+l t+2+y2rt+3+ “'|St=s’ﬂ}

and each s,a pair: rewards

JT
Fea=E{,+ o+ rht ls=sazax}

These are called value functions (cf. evaluation functions in Al)

V. Lesser CS683 F2004 39

There exist optimal value functions:
V' (s) = max V*(s) Q' (s,a) = max 0" (s,a)
And corresponding optimal policies:

7' (s) = argmax Q' (s,a)

* is the greedy policy with respectto O~

V. Lesser CS683 F2004 40

v

J,J_E_l / KL

Jfﬁ».;[J'JF,ﬁ_)J‘iﬁ‘/ ar
“Value « .

Wha ﬁ

O—o—O—o—O—o—O P
Experience

Build
Predictions

Value
Function
V —=V*
Q —0*

» Continual, online
« Simultaneous acting and learning

V. Lesser CS683 F2004

Passive

Given:

* A Markov model of the environment.

» States, with probabilistic actions.

* Terminal states have rewards/utilities.

Problem:
» Learn expected utility of each state.

V. Lesser CS683 F2004

policy
evaluation

value
learning

Value
Function

V.0

Policy

policy
improvement

“greedification”

Select .
Actions

L]

e E—— ’

41 V. Lesser CS683 F2004 42

Policy
T =

n_m=lit

5 5
5

Percepts tell you:
[State, Reward, Terminal?]

43 V. Lesser CS683 F2004 44

A training sequence is an instance of
world transitions from an initial state to a
terminal state.

» The additive utility assumption: utility of
a sequence is the sum of the rewards over
the states of the sequence.

» Under this assumption, the utility of a state
is the expected reward-to-go of that state.

V. Lesser CS683 F2004

» Developed in the late 1950's in the area of
adaptive control theory.

» Just keep a running average of rewards for each
state.

* For each training sequence, compute the reward-
to-go for each state in the sequence and update
the utilities.

— Accumulate reward as you go back

» Generates utility estimates that minimize the
mean square error (LMS-update).

45 V. Lesser CS683 F2004 46

1¢

na

Converges very slowly because it ignores
the relationship between neighboring states:

V. Lesser CS683 F2004

Utilities of neighboring states are mutually
constrained:

UG) = RG) + =, M, UG)

Can apply dynamic programming to solve the
system of equations (one eq. per state).

Can use value iteration: initialize utilities based
on the rewards and update all values based on
the above equation.

47 V. Lesser CS683 F2004 48

Approximate the constraint equations without
solving them for all states.

Modify U(i) whenever we see a transition fromi to j |
using the following rule:

Rewrite this

V(s) <= V(s)+al[r+yV(s)- V(]
\ \

TD error

V(i) = V(@) + o (R(1) + V() - V()

The modification moves V(i) closer to satisfying the V(s) < (1= a)V(s) + afr +y V(s")]
original equation.

to get:

V. Lesser CS683 F2004 49 V. Lesser CS683 F2004 50

r—.v it

T Amoof i
V(s) <= (1- a)V(s) + afr +yV(s))] Sutton, 1988 V(s) < (1- a)V(s) + « REWARD(path)
After each
action
update
the state s
Q 0 0 0
® OO0 O ® 0 OO0 ®0 O @ @ O ® ® ® O
Q) O 000 QOO0 O®d®O O d Q Q

A N | I V2 Y Y A I
A /N A S R A

~~

L=
~—

N

_-

V. Lesser CS683 F2004 51 V. Lesser CS683 F2004 52

to é*m ruJ o'D) ,n
CDyr

Hf Jﬁ’:ﬂﬁmmr g

V(s) < Er +yV(succssor of sundera)) * Q based Reinforecement Learning

+ Additional Topics in Machine Learning

V. Lesser CS683 F2004 53 V. Lesser CS683 F2004 54

