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TodayToday’’s Lectures Lecture

• Neural Networks
– Representing functions using networks of

simple arithmetic computing elements

– Learning such representations from examples
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Biological Inspiration Learning:Biological Inspiration Learning:
The BrainThe Brain

• Approximately 1011 neurons, 104 synapses
(connections) per neuron.

• Neuron “fires” when its inputs exceed a
threshold.

• Inputs are weighted and can have excitory or
inhibitory effect.

• Individual firing is slow (! .001 second) but
bandwidth is very high (! 1014 bits/sec).

• The brain performs many tasks much faster than
a computer (Scene recognition time ! .1
second).

• Learning and graceful degradation.
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What is ConnectionistWhat is Connectionist
Computation?Computation?

• Faithful to coarse neural constraints — not neural
models

• Large numbers of simple (neuron-like) processing
units interconnected through weighted links

• They do not compute by transmitting symbolically
coded messages
– Inhibitory and excitory signals

• “program” resides in the structure of the
interconnections

• “massive parallelism” and no centralized control

Computational architectures and cognitive models that 

are neurally-inspired:
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Some Properties of ConnectionistSome Properties of Connectionist

SystemsSystems

• Ability to bring large numbers of interacting
constraints to bear on problem solving (soft
constraints)

• Noise resistance, error tolerance, graceful
degradation

• Ability to do complex multi-layer recognition
with a large number of inputs/outputs (quickly)

• Learning with generalization

• Biological plausibility

• Potential for speed of processing through fine-
grained parallelism
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Applications of neural networksApplications of neural networks

• Automobile automatic guidance systems

• Credit application evaluation, mortgage

screening, real estate appraisal

• Object recognition (faces, characters)

• Speech recognition and voice synthesis

• Market forecasting, automatic bond trading

• Robot control, process control

• Breast cancer cell analysis

• Oil and gas exploration

• Image and data compression
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ALVINN drives 70 mph on highwaysALVINN drives 70 mph on highways
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Artificial Neural NetworksArtificial Neural Networks

•Compose of nodes/units connected by links

•Each link has a numeric weight associated with it

•Processing units compute weighted sum of their inputs, and then
apply a threshold function.

– Linear function combines inputs= sum (wj,I• aj …. wk,I• ak)

– Non-linear function transforms g combined input to activation value
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Sample GSample G’’s - activation functionss - activation functions
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Representation of BooleanRepresentation of Boolean

FunctionsFunctions

t=-0.5t=1.5 t=0.5

W=1
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Figure 19.6 Units with a step function for the activation function can act as logic gates, given

appropriate thresholds and weights.
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Neural Network LearningNeural Network Learning

• Robust approach to approximating
real-valued, discrete-value and
vector-valued target functions

• Learning the Weights (and
Connectivity)

– wj,i =  0 implies no connectivity among
nodes aj  and ai
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Network StructureNetwork Structure

• Feed-Forward Networks:
unidirectional links

– No cycles (DAG)

– No internal state other than weights

– Layered feed-forward

• Each unit is linked only to units in the
next layer

• Synchronized movement of information
from layer to layer

– Relatively understood
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Multi-Layer Network: Hidden UnitsMulti-Layer Network: Hidden Units

A very simple, two-layer, feed-forward network with two inputs, two hidden

nodes, and one output node.
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Network Structure cont.Network Structure cont.

• Recurrent Network: arbitrary links

– Activation is fed back to units that caused it

– Internal state stored in activation levels

– Can be unstable, oscillate etc.

– Can represent more complex functions

15V. Lesser CS683 F2004

Hopefield Hopefield NetworksNetworks

• Have bidirectional connections with symmetric weights

• All units are both input and output units

• Activation function is the sign function (can only be +1 or "

1).

• Functions as an associative memory: a new example will

cause the net to settle into a training pattern that most

closely resembles the new example.

• Training set of photographs

– Each weight is a partial encoding of all photographs

– New stimulus small piece of one of the trained photographs

• Activation levels of neural units will reflect correct photograph
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PerceptronPerceptron

• Single-layered feed-forward networks

studied in the late 1950’s.
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Decision Surface of a Decision Surface of a PerceptronPerceptron

• Represents some useful functions

– linearly separable

• But some functions not representable

– XOR
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Problem EncodingProblem Encoding

• Local encoding

– Each attributed single input value

– Pick appropriate number of  distinct values to

correspond to distinct symbolic attributed value

• Distributed encoding

– One input value for each value of the attribute

– Value is one or zero whether value has that attribute
• X between 0 and 3; 4 distinct inputs y1,y2,y3,y4;

• X=3; y1=0,y2=0,y3=0,y4=1
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Perceptron Perceptron LearningLearning

Perceptron learning rule:

wi# wi + $(t"o)xi; reduce difference between observed 
and predicted values in small increments

where:

•  t is the target value of training example

•  o is the perceptron output

•  $ is a small constant (e.g., .1) called   
the learning rate

•  xi   is either 1 or -1

Start out with randomly assigned weights between
[-0.5,0.5]
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Perceptron Perceptron Convergence TheoremConvergence Theorem

The perceptron learning rule will converge to
a set of weights that correctly represents
the examples, as long as the examples
represent a “linearly separable” function
and $ is sufficiently small.

Why does it work?  Perceptron is doing gradient
descent in weight space that has no local
minima.
– Optimization in the weight space based on sum of squared errors
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Learning the majority function of 11 inputs
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Learning the WillWait predicate
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Gradient Descent and the Delta RuleGradient Descent and the Delta Rule

• Delta Rule: wi# wi + $!D (td"od)xid

– D is set of entire training examples

– If training examples are not linearly separable, Delta
rule converges towards best-fit approximation to target
concept

– Use gradient descent search to search hypothesis
space of possible weight vectors to find the weights
that best fit the training example

• Arbitrary initial weight vector

– At each step, weight vector is altered in the direction
that produces the steep descent along error surface
until global minimum error is reached

• least mean square error over all training examples
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Error Surface of DifferentError Surface of Different
HypothesesHypotheses

25

For a linear unit with two weights, the hypothesis space H is the w0, w1 plane. The vertical axis

indicates the error of the corresponding weight vector hypothesis, relative to a fixed set of

training examples. The arrow shows the negated gradient at one particular point, indicating

the direction in the w0, w1 plane producing steepest descent along the error surface.
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Delta Rule continuedDelta Rule continued

• Convergence guaranteed for perceptron since
error surface contains only a single global
minimum and learning rate sufficiently small
– large number of iterations

• Larger learning rate
– Possibly overshoot minimum in the error surface

– Can use larger learning rate if gradually reduce value
of learning rate over time

• Similar to simulated annealing

26V. Lesser CS683 F2004

Stochastic Approximation toStochastic Approximation to
Gradient DescentGradient Descent

• Incremental gradient descent by updating
weights per example
– w

i
# w

i + $(t"o’)x
i

• Looks similar to perceptron rule
– O’ not thresholded perceptron ( no g) output rather

thresholded linear combinations of inputs w x

• Reduces cost of each update cycle

• Needs smaller learning rate
– More update cycles than gradient descent
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Multilayer networksMultilayer networks

• Problem with Perceptrons is coverage:
many functions cannot be represented as
a network.

– sum threshold function

• But with one “hidden layer” and the
sigmoid threshold function, can represent
any continuous function.

– Choosing the right number of hidden units
is still not well understood

• With two hidden layers, can represent any
discontinuous function.
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Learning in Multi-Layered Feed-ForwardLearning in Multi-Layered Feed-Forward
NetworksNetworks

• Back-Propagation Learning

– How to assess the blame for an error and

divide it among the contributing weights

at the same and different layers

– Gradient descent over network weight

vector
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Hidden layersHidden layers

Oi=g(! wj,iaj)

aj=g(! wk,jIk)
Ik
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2-Layer Stochastic Back-2-Layer Stochastic Back-
PropagationPropagation

• Provides a way of dividing the calculation of

gradient among the units, so that change in each

weight can be calculated by the unit to which the

weight is attached, using only local information

• Based on minimizing
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Back-Propagation, cont.Back-Propagation, cont.

• First level of Back propagation to hidden
layer

• Second level of Back propagation to input
layer

– Summing the error terms for each output unit
influence by wkj thru aj, weighting each by the wji;; the
degree to which hidden unit is “responsible for” error
in output
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Steps in Back-PropagationSteps in Back-Propagation

• Compute the delta values for the output

units using the observed error

• Starting with output layer, repeat the

following for each layer in the network

– Propagate delta values back to previous layer

– Update the weights between the two layers
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Back-Propagation, cont.Back-Propagation, cont.

Typically use sigmoid function :  g(x) =
1

1+ e! x

Nice proprty :  
dg(x)

dx
= g(x)(1! g(x))
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Back-Propagation AlgorithmBack-Propagation Algorithm

Initialize all weights to small random numbers

Repeat until satisfied:  For each training example:

1. Compute the network outputs

2. For each output unit k :  !
k
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Learning the WillWait predicate
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Hypothesis SpaceHypothesis Space

• N-dimensional Euclidean Space of

network weights

• Continuous

– Contrast with discrete space of decision tree

• Error Measure is differentiable with

respect to continous parameters

– Results in well-defined error gradient that

provides a useful structure for organizing the

search for the best hypothesis
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Network Implicitly GeneralizesNetwork Implicitly Generalizes

• Smooth Interpolation between data points

– Smoothly varying decision regions

• Tend to label points in between positive

examples as positive examples if no negative

examples
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Overfitting and Stopping CriteriaOverfitting and Stopping Criteria

• Backprop is susceptible to overfitting
– After initial learning weights are being tuned to fit

idiosyncrasies of training examples and noise

– Overly complex decision surfaces constructed

• Weight Decay -- decrease weight by some
small factor during each iteration thru data
– Keep weight values small to bias learning against

complex decision surfaces

• Exploit Validation Set
– Keep track of error in validation set during search

– Use weight setting that minimizes error

– Use as stopping criteria

39

overfitting

local minimum

Can’t use

validation

set to

define

stopping
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ConvergenceConvergence

• Error Surface can have multiple local

minimum

– Guaranteed to converge only to local minimum

• Momentum model

– Weight update partially dependent on the n-1 iteration

– %wji(n)=& 'j xji + $% wji (n-1)

– Helps not to get stuck in local minimum

– Gradually increasing the step size of the search in regions

where the gradient is unchanging
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Learned Hidden Layer Representation:Learned Hidden Layer Representation:
New FeaturesNew Features

Figure 4.7 Learned Hidden Layer Representation.  This 8 x 3 x 8 network was trained to learn the

identity function, using the eight training examples shown.  After 5000 training epochs, the three hidden

unit values encode the eight district inputs using the encoding shown on the right.  Notice if the encoded

values are rounded zero or one, the result is the standard binary encoding for eight distinct values.
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Back-propagationBack-propagation

• Gradient descent over network weight vector

• Easily generalizes to any directed graph

• Will find a local, not necessarily global error

minimum

• Minimizes error over training examples — will it

generalize well to subsequent examples?

• Training is slow — can take thousands of

iterations.

• Using network after training is very fast
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Applicability of Neural NetworksApplicability of Neural Networks

• Instances are represented by many attribute-
value pairs

• The target function output may be discrete-
valued, real-valued, or a vector of several real-
or discrete-valued attributes

• The training examples may contain errors

• Long training times are acceptable

• Fast evaluation of the learned target function
may be required

• The ability of humans to understand the
learned target function is not important
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Next LectureNext Lecture

• Reinforcement Learning


