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AnnouncementAnnouncement

• Homework due Tuesday at 5 on November 29
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TodayToday’’s Lectures Lecture

• Continuation of Decision-tree
Algorithms

• The Version Space Algorithm

• Neural Networks
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Hypothesis Space SearchHypothesis Space Search
in Decision Treein Decision Tree

• Complete space of finite discrete-valued
functions relative to available attributes

• Maintains only a single current
hypothesis (decision tree)

• Performs no backtracking in its search

• Uses all training examples at each step
in the search to make statistically-based
decisions regarding how to refine
current hypothesis
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Inductive Bias in Decision TreeInductive Bias in Decision Tree
ConstructionConstruction

• Selects in favor of shorter trees over
longer ones

• Selects trees that place the attributes
with highest information gain closest to
the root
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Overfitting Overfitting in Decision Treesin Decision Trees

A hypothesis overfits the training examples
if there is some other hypothesis that fits
the training examples less well, yet
actually performs better over the entire
distribution of instances

• Causes

– Noisy Data — construct tree to explain noisy data

– Lack of Examples — small number of examples

associated with leaf

• Coincidental irregularities cause the construction of more

detail tree than warranted
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AvoidingAvoiding Overfitting Overfitting

• Stop growing the tree earlier, before it
reaches the point where it perfectly classifies
the training data

• Post-prune the tree

– Use non-training instances to evaluate based on a

statistical test to estimate whether pruning a particular

node is likely to produce an improvement beyond the

training set
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Broadening the applicability -Broadening the applicability -
Missing DataMissing Data

• Add new attribute value - “unknown”

• Estimate missing value based on other examples
for which this attribute has a known value
– Assign value that is most common among training

examples at parent node

• Instantiated example with all possible values of
missing attribute but assign weights to each
instance based on likelihood of missing value being
a particular value given the distribution of examples
in the parent node
– Modify decision tree algorithm to take into account

weighting
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Broadening the applicability -Broadening the applicability -
Multi-valued AttributesMulti-valued Attributes

• Handling multivalued (large) attributes
and classification

– Need another measure of information
gain

– Information gain measure gives
inappropriate indication of attributed
usefulness because of likelihood of
singleton values

– Gain ratio
• Gain over intrinsic information content
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Broadening the Applicability -Broadening the Applicability -
Continuous-Valued attributesContinuous-Valued attributes

• Continuous-valued attributes

– Discretize
• Example $, $$, $$$

– Preprocess to find out which ranges give
the most useful  information for
classification purposes
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Preprocessing for Continuous-Preprocessing for Continuous-

Valued AttributesValued Attributes

• Sort instances based on value of an
attribute (e.g. temperature)

• Identify adjacent examples that differ in
their target classification

• Generate a set of candidate thresholds
midway between corresponding
examples

• Use information gain to decide
appropriate threshold
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Decision Tree as a LogicalDecision Tree as a Logical

SentenceSentence

WillWait(r)  !

Patron(r,Some) "

(Patron(r,Full) # ¬Hungry(r) # Type(r,French))  "

(Patron(r,Full) # ¬Hungry(r) # Type(r,Thai) #  Fri/Sat(r)) "

(Patron(r,Full) # ¬Hungry(r)  #  Type(r,Burger))

Each example is a logical sentence:

Alt(r) # ¬Bar(r) # ¬Fri(r) # ...  $  WillWait(r)

A decision tree is consistent with the data iff the

corresponding KB is consistent.
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Inductive Learning : Incremental LearningInductive Learning : Incremental Learning
of Logical Expressionsof Logical Expressions

• Can use Simpler Approach than
Decision Tree Algorithm

– Assuming Complete Consistency

• Incrementally present examples

• Incrementally refine hypothesis
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Current-best Hypothesis inCurrent-best Hypothesis in
SearchSearch

• Maintain single hypothesis

• Adjust to new example in order to
maintain consistency
– An example can be consistent with the current

hypothesis, or it can be:

false negative if the hypothesis says it is negative but in
fact it is positive, or

false positive if the hypothesis says it is positive but in
fact it is negative.

• Generalization/specialization

– Dropping conditions

– Adding conditions
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Current-best-hypothesis searchCurrent-best-hypothesis search
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(a)               (b)                (c)               (d)                (e)

Add Unknown Example (positive + or negative -) and adjust Current Hypothesis

Monotonic View of Evolution of Current Best Hypothesis, never modify to
eliminate any example
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Current-best-hypothesis cont.Current-best-hypothesis cont.
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Inducing Decision Trees fromInducing Decision Trees from

ExamplesExamples
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Restaurant Dining ExampleRestaurant Dining Example

• X1 is positive. Alternate(X1) is true

– H1: initial hypothesis Vx WillWait (x) = Alternate(x)

• X2 is negative, false positive

– H2: WillWait (x) = Alternate(x)  and Patrons(x,Some)

• X3 is positive, false negative

– H3:WillWait (x) = Patrons(x,Some)

• X4 is positive, false negative

– H4:WillWait (x) = Patrons(x,Some) v (Patrons(x,Full) and

Fri/Sat(x))

• Other Hypotheses

– H4’:WillWait (x) = Patrons(x,Some) v (Patrons(x,Full) and

WaitEstimate(x,10-30))

– H4’’:WillWait (x) = not WaitEstimate(x,30-60))
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Problems with Current-bestProblems with Current-best
HypothesisHypothesis

• Very large search space
– No good heuristics

– Non-deterministic search

– May need to backtrack

• Updating/checking hypothesis is
expensive in terms of number of
examples

– Need to re-evaluate every modified
hypothesis on all examples presented
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The Version-Space StrategyThe Version-Space Strategy

• A least commitment approach — keep all the hypotheses

that are consistent with all the examples so far.

– No backtracking

• Problem: how to represent the current set of remaining

hypotheses (the version space) efficiently ?

Using boundary sets:

• S-set = most specific (consistent) hypotheses

– every member of S is consistent with all observations so far
and there are no consistent hypotheses that are more specific

• G-set = most general (consistent) hypotheses

– every member of G is consistent with all observations so far
and there are no consistent hypotheses that are more general
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The Version-Space AlgorithmThe Version-Space Algorithm

Initialize the sets S and G to the sets of maximally
specific and maximally general hypothesis that
are consistent with the first observed positive
training instance.

• G -- set of hypotheses that represent disjunction
of each single attribute/value pair

• S -- the hypothesis which is the conjunction of the
attribute/value pairs in the training instance

For each subsequent instance, i, do
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The Version-Space Algorithm cont.The Version-Space Algorithm cont.

If i is negative

• Remove from S the hypotheses which match i

– False positive for Sj, too general

• Make hypotheses in G that match i more specific, only

to the extent required so that they no longer match i

– False positive for Gk, too general

• Remove from G any element that is no longer more

general than some member of S

• Remove from G any element that is more specific than

some other member in G
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If i is positive

• Remove from G the hypotheses which do not match i

– False negative for Gk, too specific

• Make hypotheses in S that do not match i more

general, only to the extent required so that they match i

– False negative for Sj, too specific, replace by immediate
generalizations

• Remove from S any element that is no longer more

specific than some member of G

• Remove from S any element that is more general than

some other member in S

The Version-Space Algorithm cont.The Version-Space Algorithm cont.
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Version-Space Algorithm cont.Version-Space Algorithm cont.

Termination:

• One hypothesis is left in the version space

indicating that it is the desired concept definition.

• The version space collapses with either S or G

becoming empty indicating that there are no

consistent hypothesis for the given training set.

• The algorithm runs out of examples with more

than one hypothesis left — can use the result for

classification (if all agree fine, otherwise can use

majority vote).
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Positive and Negative Examples of thePositive and Negative Examples of the
Concept Concept ““Japanese economy carJapanese economy car””

origin: Japan origin: Japan origin: Japan

mfr: Honda mfr: Toyota mfr: Toyota

color: blue color: green color: blue

decade: 1980 decade: 1970 decade: 1990

type: Economy    type: Sports type: Economy

origin: USA origin: Japan

mfr: Chrysler mfr: Honda

color: blue color: white

decade: 1980 decade: 1980

type: Economy type: Economy

(+)

(+)(-)

(+)(-)
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A Version Space ExampleA Version Space Example
(Rich/Knight 1991)(Rich/Knight 1991)

E += {(Japan, Honda, Blue, 1980, Economy)} 

G = {(x1, x2, x3, x4, x5)}

S = {(Japan, Honda, Blue, 1980, Economy)}

E- = {(Japan, Toyota,Green, 1970, Sport)} 

G = {(x1, Honda, x3, x4, x5), (x1, x2, Blue, x4, x5),

         (x1, x2, x3, 1980, x5), (x1, x2, x3, x4, Economy)}

Note  did not include {( Japan, x2, x3, x4, x5)}

S = {(Japan, Honda, Blue, 1980, Economy)}

E+ = {(Japan, Toyota, Blue, 1990, Economy)} 

G = {(x1, x2, Blue, x4, x5), (x1, x2, x3, x4, Economy)}

S = {(Japan, x2, Blue, x4, Economy)}
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Example ContinuedExample Continued

• G = {(x1, x2, Blue, x4, x5), (x1, x2, x3, x4, Economy)}

• S = {(Japan, x2, Blue, x4, Economy)}

• E- = {(USA, Chrysler, Blue, 1980, Economy)}

• G = {(Japan, x2, Blue, x4, x5), (Japan, x2, x3, x4,
Economy)}

• S = {(Japan, x2, Blue, x4, Economy)}

• E+ ={(Japan, Honda, White, 1980, Economy)}

• G = {(Japan, x2, x3, x4, Economy)}

• S = {(Japan, x2, x3, x4, Economy)}
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Conclusions on Version SpaceConclusions on Version Space

• Elegant Algorithm

• Limited Applicability

– There are no errors in the training examples

• Will remove correct hypothesis from set as soon as

encounters  false negative hypothesis

– Does not handle unlimited disjunctions in hypothesis

space

• Extensions allow limited forms of disjunction

• Generalization Hieararchy or more general predicates (that

represent disjunction)
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Why does Learning Work Why does Learning Work ——
Computational Learning TheoryComputational Learning Theory

• How do we know the hypothesis h is close to the
target function f if we don’t know what f is?

– Sample Complexity -- Can we decide how many examples
we need to train on

• Underlying principle:

– An h that is seriously wrong will almost certainly be “found
out” with high probability after a small number of examples

– An h that is consistent with a large set of training
examples is unlikely to be seriously wrong

• Probably Approximately Correct (PAC) Learning:

– Stationary assumption: training and test data drawn
randomly from same population of examples using same
distribution

31V. Lesser CS683 F2004

How Good is a Hypothesis?How Good is a Hypothesis?

Compare Hypothesis  F

To correct concept F

Probability of misclassifying an instance =

Probability of instance being in

                 F      F ; F(x) not equal F(x)

Hypothesis is good to extent it classifies instances correctly

F F
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How Good is a Hypothesis? cont.How Good is a Hypothesis? cont.

Hypothesis F approximately correct

IF

    u !F "FP(u ) #!

Accuracy parameter

(Valiant)

Hypothesis F Probably Approximately Correct

IF

    P(u !F "FP(u) >!) < #

Confidence parameter

(PAC)

,

,



33V. Lesser CS683 F2004

Schematic Diagram of Hypothesis SpaceSchematic Diagram of Hypothesis Space

H

Hbad

f
&

• Hypothesis space, showing the “&-ball” around the
true function ƒ.
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What is the Probability of a HypothesisWhat is the Probability of a Hypothesis
Agreeing with all of Agreeing with all of MM examples? examples?

Assume worst case –  All
  
h!H = hbad = H{ }

Space of possible

hypotheses

Upper bound is:

P(hb agrees with M examples)     
M

!(1"#)

Have Error > &

        For |H| hypotheses, probability of some h & H being
consistent with all M examples

    
! H "(1# $)

M
P(hbad contains a consistent

hypothesis with M examples)
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What is the Probability of a HypothesisWhat is the Probability of a Hypothesis
Agreeing with all of Agreeing with all of MM examples? cont. examples? cont.

To guarantee that F is PAC

Because              are known, can solve for M (Blumer et al)

Any            consistent with M examples,                    , is PAC!!

By looking at  H  for various representations, can determine

corresponding M1 giving bound on sample complexity for PAC

learning.

    H (1% &)
m
'(

    
!," , H

    
M !

1

"
(LN

1

#
+ LN H )

  h!H     M ! - - - -

Given (1- &) <= & - &
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Decision Tress an PACDecision Tress an PAC

• Space of H is 22exp(n), n attributes

• Sample complexity of space grows as 2n

• Number of examples is at most 2n

• Learning algorithm will no better than a lookup table
in terms of PAC

• Problems occurs because of worst-case complexity
analysis and size of H

– Do not necessarily reflect the average-case sample complexity

• Can we reduce the size of H and still learn reasonable
Boolean functions
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Decision ListsDecision Lists

• Series of Tests, each with conjunction of
literals
– Patrons(x,Some) ----> yes

– Patrons(x,full) and Fri/Sat(x) ----> yes

– Nil ---> no

• k-DL, restrict size of test to k  literals
– More expressive power than depth k decision tree

• PAC-learn in a reasonable number of
examples for small k
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Biological Inspiration Learning:Biological Inspiration Learning:
The BrainThe Brain

• Approximately 1011 neurons, 104 synapses
(connections) per neuron.

• Neuron “fires” when its inputs exceed a
threshold.

• Inputs are weighted and can have excitory or
inhibitory effect.

• Individual firing is slow (! .001 second) but
bandwidth is very high (! 1014 bits/sec).

• The brain performs many tasks much faster than
a computer (Scene recognition time ! .1
second).

• Learning and graceful degradation.
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What is ConnectionistWhat is Connectionist
Computation?Computation?

• Faithful to coarse neural constraints — not neural
models

• Large numbers of simple (neuron-like) processing
units interconnected through weighted links

• They do not compute by transmitting symbolically
coded messages

• “program” resides in the structure of the
interconnections

• “massive parallelism” and no centralized control

Computational architectures and cognitive models that 

are neurally-inspired:
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Some Properties of ConnectionistSome Properties of Connectionist

SystemsSystems

• Ability to bring large numbers of interacting
constraints to bear on problem solving (soft
constraints)

• Noise resistance, error tolerance, graceful
degradation

• Ability to do complex multi-layer recognition
with a large number of inputs/outputs (quickly)

• Learning with generalization

• Biological plausibility

• Potential for speed of processing through fine-
grained parallelism
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Applications of neural networksApplications of neural networks

• Automobile automatic guidance systems

• Credit application evaluation, mortgage

screening, real estate appraisal

• Object recognition (faces, characters)

• Speech recognition and voice synthesis

• Market forecasting, automatic bond trading

• Robot control, process control

• Breast cancer cell analysis

• Oil and gas exploration

• Image and data compression
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ALVINN drives 70 mph on highwaysALVINN drives 70 mph on highways
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Artificial Neural NetworksArtificial Neural Networks

Processing units compute weighted sum of their inputs, and then
apply a threshold function.

output

links

aj

:

ak

input

links
g)

Input   Activation  Output

function   function

Wj,i

ai
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Sample activation functionsSample activation functions

+1
ai

ini

+1
ai

ini

+1
ai

ini

%1

(a) Step function      (b) Sign function      (c) Sigmoid function
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Representation of BooleanRepresentation of Boolean

FunctionsFunctions

t=-0.5t=1.5 t=0.5

W=1

W=1

W=1

W=1

W=-1

Figure 19.6 Units with a step function for the activation function can act as logic gates, given

appropriate thresholds and weights.
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> XOR requires multi-layer network
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Next LectureNext Lecture

• Continuation of Neural Networks


