

- Continuation of Decision-tree
 Algorithms
- The Version Space Algorithm
- Neural Networks

- Complete space of finite discrete-valued functions relative to available attributes
- Maintains only a single current hypothesis (decision tree)
- Performs no backtracking in its search
- Uses all training examples at each step in the search to make statistically-based decisions regarding how to refine current hypothesis

Inductive Bias in Decision Tree Construction

- Selects in favor of shorter trees over longer ones
- Selects trees that place the attributes with highest information gain closest to the root

Overfitting in Decision Trees

- A hypothesis *overfits* the training examples if there is some other hypothesis that fits the training examples less well, yet actually performs better over the entire distribution of instances
- Causes

V. Lesser CS683 F2004

V Lesser CS683 E2004

- Noisy Data construct tree to explain noisy data
- Lack of Examples small number of examples associated with leaf
 - Coincidental irregularities cause the construction of more detail tree than warranted

- Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data
- Post-prune the tree
 - Use non-training instances to evaluate based on a statistical test to estimate whether pruning a particular node is likely to produce an improvement beyond the training set

- · Add new attribute value "unknown"
- Estimate missing value based on other examples for which this attribute has a known value
 - Assign value that is most common among training examples at parent node
- Instantiated example with all possible values of missing attribute but assign weights to each instance based on likelihood of missing value being a particular value given the distribution of examples in the parent node
 - Modify decision tree algorithm to take into account weighting

Broadening the applicability -Multi-valued Attributes

- Handling multivalued (large) attributes
 and classification
 - -Need another measure of information gain
 - Information gain measure gives inappropriate indication of attributed usefulness because of likelihood of singleton values
 - -Gain ratio
 - Gain over intrinsic information content

Broadening the Applicability -Continuous-Valued attributes

- Continuous-valued attributes
 - DiscretizeExample \$, \$\$, \$\$\$
 - Preprocess to find out which ranges give the most useful information for classification purposes

Preprocessing for Continuous-Valued Attributes

- Sort instances based on value of an attribute (e.g. temperature)
- Identify adjacent examples that differ in their target classification
- Generate a set of candidate thresholds midway between corresponding examples
- Use information gain to decide appropriate threshold

WillWait(r) \Leftrightarrow

V. Lesser CS683 F200

V Lesser CS683 E2004

Patron(r,Some) \vee (Patron(r,Full) $\wedge \neg$ Hungry(r) \wedge Type(r,French)) \vee (Patron(r,Full) $\wedge \neg$ Hungry(r) \wedge Type(r,Thai) \wedge Fri/Sat(r)) \vee (Patron(r,Full) $\wedge \neg$ Hungry(r) \wedge Type(r,Burger)) Each example is a logical sentence: Alt(r) $\wedge \neg$ Bar(r) $\wedge \neg$ Fri(r) $\wedge ... \Rightarrow$ WillWait(r)

A decision tree is consistent with the data iff the corresponding KB is consistent.

Inductive Learning : Incremental Learning of Logical Expressions

 Can use Simpler Approach than Decision Tree Algorithm

- Assuming Complete Consistency

- Incrementally present examples
- Incrementally refine hypothesis

Current-best Hypothesis in Search

- Maintain single hypothesis
- Adjust to new example in order to maintain consistency
 - An example can be consistent with the current hypothesis, or it can be:
 - false negative if the hypothesis says it is negative but in fact it is positive, or
 - false positive if the hypothesis says it is positive but in fact it is negative.

Generalization/specialization

- Dropping conditions
- Adding conditions

Current-best-hypothesis search

Add Unknown Example (positive + or negative -) and adjust Current Hypothesis

Monotonic View of Evolution of Current Best Hypothesis, never modify to eliminate any example

function CURRENT-BEST-LEARNING(examples) returns a hypothesis

 $H \leftarrow$ any hypothesis consistent with the first example in *examples* for each remaining example in *examples* do

if *e* is false positive for *H* then

 $H \leftarrow$ **choose** a specialization of H consistent with *examples* else if e is false negative for H then

 $H \leftarrow$ **choose** a generalization of H consistent with *examples* if no consistent specialization/generalization can be found **then fail**

end

V. Lesser CS683 F2004

V. Lesser CS683 F2004

return H

Inducing Decision Trees from Examples

Example	Attributes										Goal
	Alı	Bat	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWa
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X 3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_+	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10_30	Yes
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X 6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	kalian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

V. Lesser CS683 F2004

Restaurant Dining Example

- X1 is positive. Alternate(X1) is true
 - H1: initial hypothesis Vx WillWait (x) = Alternate(x)
- X2 is negative, false positive
 - H2: WillWait (x) = Alternate(x) and Patrons(x,Some)
- X3 is positive, false negative
 - H3:WillWait (x) = Patrons(x,Some)
- X4 is positive, false negative
 - H4:WillWait (x) = Patrons(x,Some) v (Patrons(x,Full) and Fri/Sat(x))
- · Other Hypotheses

V. Lesser CS683 F200

- H4':WillWait (x) = Patrons(x,Some) v (Patrons(x,Full) and WaitEstimate(x,10-30))
- H4":WillWait (x) = not WaitEstimate(x,30-60))

- Very large search space
 - No good heuristics
 - Non-deterministic search
 - May need to backtrack
- Updating/checking hypothesis is expensive in terms of number of examples
 - Need to re-evaluate every modified hypothesis on all examples presented

The Version-Space Strategy

• A *least commitment* approach — keep all the hypotheses that are consistent with all the examples so far.

No backtracking

• Problem: how to represent the current set of remaining hypotheses (the version space) efficiently ?

Using boundary sets:

- S-set = most specific (consistent) hypotheses
 - every member of S is consistent with all observations so far and there are no consistent hypotheses that are more specific
- G-set = most general (consistent) hypotheses
 - every member of G is consistent with all observations so far and there are no consistent hypotheses that are more general

V. Lesser CS683 F2004

19

The Version-Space Algorithm

- Initialize the sets *S* and *G* to the sets of maximally specific and maximally general hypothesis that are consistent with the first observed positive training instance.
- G -- set of hypotheses that represent disjunction of each single attribute/value pair
- S -- the hypothesis which is the conjunction of the attribute/value pairs in the training instance

For each subsequent instance, *i*, do

The Version-Space Algorithm cont.

If *i* is negative

- Remove from S the hypotheses which match i
 False positive for Si, too general
- Make hypotheses in *G* that match *i* more specific, only to the extent required so that they no longer match *i*
 - False positive for Gk, too general
- Remove from *G* any element that is no longer more general than some member of *S*
- Remove from *G* any element that is more specific than some other member in *G*

The Version-Space Algorithm cont.

If *i* is positive

V. Lesser CS683 F200

V Lesser CS683 E2004

- Remove from G the hypotheses which do not match i
 False negative for G_k, too specific
- Make hypotheses in *S* that do not match *i* more general, only to the extent required so that they match *i*
 - False negative for Sj, too specific, replace by immediate generalizations
- Remove from *S* any element that is no longer more specific than some member of *G*
- Remove from *S* any element that is more general than some other member in *S*

22

Version-Space Algorithm cont.

Termination:

- One hypothesis is left in the version space indicating that it is the desired concept definition.
- The version space collapses with either *S* or *G* becoming empty indicating that there are no consistent hypothesis for the given training set.
- The algorithm runs out of examples with more than one hypothesis left — can use the result for classification (if all agree fine, otherwise can use majority vote).

A Version Space Example (Rich/Knight 1991)

- $E += \{(Japan, Honda, Blue, 1980, Economy)\}$ $G = \{(x_1, x_2, x_3, x_4, x_5)\}$ $S = \{(Japan, Honda, Blue, 1980, Economy)\}$
- E- = {(*Japan*, *Toyota*, *Green*, 1970, *Sport*)} G = {(x_1 , *Honda*, x_3 , x_4 , x_5), (x_1 , x_2 , *Blue*, x_4 , x_5),
- $(x_1, x_2, x_3, 1980, x_5), (x_1, x_2, x_3, x_4, Economy)$ } Note did not include {(Japan, x_2, x_3, x_4, x_5)} $S = \{(Japan, Honda, Blue, 1980, Economy)\}$

E+ = {(*Japan, Toyota, Blue*, 1990, *Economy*)}

• $G = \{(x_1, x_2, Blue, x_4, x_5), (x_1, x_2, x_3, x_4, Economy)\}$ $S = \{(Japan, x_2, Blue, x_4, Economy)\}$

Positive and Negative Examples of the Concept "Japanese economy car"

origin: Japan	origin: Japan		origin: Japan	
mfr: Honda	mfr: Toyota		mfr: Toyota	
color: blue	color: g	reen	color: blue	
decade: 1980	decade: 1970		<i>decade</i> : 1990	
type: Economy	type: Sports		type: Economy	
(+)	(-)		(+)	
origii	n: USA	origin	: Japan	
mfr:	Chrysler	mfr: Honda		
color	: blue	<i>color: white</i> <i>decade</i> : 1980		
decad	de: 1980			
type:	Economy	type: 1	Economy	
	(-)		(+)	

- $G = \{(x_1, x_2, Blue, x_4, x_5), (x_1, x_2, x_3, x_4, Economy)\}$
- $S = \{(Japan, x_2, Blue, x_4, Economy)\}$
- E- = {(USA, Chrysler, Blue, 1980, Economy)}
- $G = \{(Japan, x_2, Blue, x_4, x_5), (Japan, x_2, x_3, x_4, Economy)\}$
- $S = \{(Japan, x_2, Blue, x_4, Economy)\}$
- E+ ={(Japan, Honda, White, 1980, Economy)}
- G = {(Japan, x₂, x₃, x₄, Economy)}
- S = {(Japan, x₂, x₃, x₄, Economy)}

V. Lesser CS683 F2004

Conclusions on Version Space

- Elegant Algorithm
- Limited Applicability
 - There are no errors in the training examples
 - Will remove correct hypothesis from set as soon as encounters false negative hypothesis
 - Does not handle unlimited disjunctions in hypothesis space
 - · Extensions allow limited forms of disjunction
 - Generalization Hieararchy or more general predicates (that represent disjunction)

Why does Learning Work — Computational Learning Theory

- How do we know the hypothesis *h* is close to the target function *f* if we don't know what *f* is?
 - Sample Complexity -- Can we decide how many examples we need to train on
- Underlying principle:

V. Lesser CS683 F200

- An *h* that is seriously wrong will almost certainly be "found out" with high probability after a small number of examples
- An *h* that is consistent with a large set of training examples is unlikely to be seriously wrong
- Probably Approximately Correct (PAC) Learning:
 - Stationary assumption: training and test data drawn randomly from same population of examples using same distribution

Schematic Diagram of Hypothesis Space

• Hypothesis space, showing the "∈-ball" around the true function *f*.

What is the Probability of a Hypothesis Agreeing with all of <u>M</u> examples? cont.

To guarantee that \hat{F} is PAC

$$|H|(1-\epsilon)^m \le \delta$$

Because $\in \delta$, |H| are known, can solve for M (Blumer et al)

$$M \ge \frac{1}{\epsilon} (LN \frac{1}{\delta} + LN |H|)$$
 Given $(1 - \epsilon) \le \epsilon^{-\epsilon}$

Any $h \in H$ consistent with M examples, $M \ge \cdots$, is PAC!!

By looking at H for various representations, can determine corresponding M_1 giving bound on sample complexity for PAC learning.

Decision Tress an PAC

- Space of H is 2^{2exp(n)}, n attributes
- Sample complexity of space grows as 2ⁿ
- Number of examples is at most 2ⁿ
- Learning algorithm will no better than a lookup table in terms of PAC
- Problems occurs because of worst-case complexity analysis and size of H
 - Do not necessarily reflect the average-case sample complexity
- Can we reduce the size of H and still learn reasonable Boolean functions

V. Lesser CS683 F2004

V. Lesser CS683 F2004

What is the Probability of a Hypothesis Agreeing with all of <u>M</u> examples?

Space of possible

hypotheses

Assume worst case – All $h \in H = \{h_{bad} = H\}$

 $P(h_{h} agrees with M examples) \le (1-\epsilon)^{M}$

hypothesis with M examples) $\leq |H| \cdot (1 - \Theta)^M$

For |H| hypotheses, probability of some $h \in H$ being

Have Error $> \in$

Upper bound is:

consistent with all M examples $P(h_{bad} \text{ contains a consistent})$

- Series of Tests, each with conjunction of literals
 - Patrons(x,Some) ----> yes
 - Patrons(x,full) and Fri/Sat(x) ----> yes
 - Nil ---> no
- *k*-DL, restrict size of test to *k* literals
 - More expressive power than depth k decision tree
- PAC-learn in a reasonable number of examples for small *k*

Biological Inspiration Learning: The Brain

- Approximately 10¹¹ neurons, 10⁴ synapses (connections) per neuron.
- Neuron "fires" when its inputs exceed a threshold.
- Inputs are weighted and can have excitory or inhibitory effect.
- Individual firing is slow (≈ .001 second) but bandwidth is very high (≈ 10¹⁴ bits/sec).
- The brain performs many tasks much faster than a computer (Scene recognition time ≈ .1 second).
- Learning and graceful degradation.

V. Lesser CS683 F2004

V Lesser CS683 E2004

What is Connectionist Computation?

Computational architectures and cognitive models that are neurally-inspired:

- Faithful to coarse neural constraints not neural models
- Large numbers of simple (neuron-like) processing units interconnected through weighted links
- They do not compute by transmitting symbolically coded messages
- "program" resides in the structure of the interconnections
- "massive parallelism" and no centralized control

Some Properties of Connectionist Systems

- Ability to bring large numbers of interacting constraints to bear on problem solving (soft constraints)
- Noise resistance, error tolerance, graceful degradation
- Ability to do complex multi-layer recognition with a large number of inputs/outputs (quickly)
- Learning with generalization
- Biological plausibility
- Potential for speed of processing through finegrained parallelism

Applications of neural networks

- Automobile automatic guidance systems
- Credit application evaluation, mortgage screening, real estate appraisal
- Object recognition (faces, characters)
- · Speech recognition and voice synthesis
- · Market forecasting, automatic bond trading
- Robot control, process control
- Breast cancer cell analysis
- · Oil and gas exploration

apply a threshold function.

Image and data compression

Artificial Neural Networks

Processing units compute weighted sum of their inputs, and then

ALVINN drives 70 mph on highways

Sample activation functions

V. Lesser CS683 F2004

V. Lesser CS683 F2004

Representation of Boolean Functions

<section-header>

46