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TodayToday’’s lectures lecture

• Alternative Models of Dealing with

Uncertainty Information/Evidence

– Dempster-Shaffer Theory of Evidence

– Fuzzy logic

– Logical ways of dealing with uncertainty
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DempsterDempster-Shafer Theory-Shafer Theory

• Designed to Deal with the distinction between
uncertainty and ignorance

– Rather than computing the probability of a proposition it
computes the probability that evidence supports the
proposition

• Applicability of D-S

– assume lack of sufficient data to accurately
estimate the prior and conditional probabilities
to use Bayes rule

– incomplete model ! rather than estimating
probabilities it uses belief intervals to estimate
how close the evidence is to determining the
truth of a hypothesis
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DempsterDempster-Shafer Theory-Shafer Theory

Allows representation of ignorance about
support provided by evidence
– allows reasoning system to be skeptical

For example, suppose we are informed that one of
three terrorist groups, A, B or C has planted a bomb
in a building.
We may have some evidence the group C is guilty, P ( C ) =0.8

We would not want to say the probability of the other two groups
being guilty is .1

In traditional theory, forced to regard belief and disbelief as
functional opposites p(a) + p(not a) = 1 and to distribute an
equal amount of the remaining probability to each group

D-S allows you to leave relative beliefs unspecified
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Belief SubsetsBelief Subsets

Suppose that the evidence supports {red,green} to the degree .6.  The remaining

support will be assigned to {red,green,blue} while a Bayesian model assumes that

the remaining support is assigned to the negation of the hypothesis (or its

complement) {blue}.

{Red,Green,Blue}

{Red,Green} {Red,Blue} {Green,Blue}

{Red} {Green} {Blue}

0.6

0.4
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DempsterDempster-Shafer theory-Shafer theory

• Given a population F =(blue,red, green) of mutually
exclusive elements, exactly one of which (f) is true,
a basic probability assignment (m) assigns a number
in [0,1] to every subset of F such that the sum of the
numbers is 1.
– Mass as a representation of evidence support

• There are 2|F| propositions, corresponding to “the
true value of f is in subset A”.
– (blue),(red),(green),(blue, red),

(blue,green),(red,green),(red,blue,green),(empty set)

• A belief in a subset entails belief in subsets
containing that subset.
– Belief in (red) entails Belief in

(red,green),(red,blue),(red,blue,green)
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Interpretation of m(X)Interpretation of m(X)

• Random switch model:  Think of the evidence as a

switch that oscillates randomly between two or more

positions. The function m represents the fraction of

the time spent by the switch in each position.

• Voting model:  m represents the proportion of votes

cast for each of several results of the evidence

(possibly including that the evidence is inconclusive).

• Envelope model:  Think of the evidence as a sealed

envelope, and m as a probability distribution on what

the contents may be.
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Belief and PlausibilityBelief and Plausibility

• Belief (or possibility) is the probability that B is

provable (supported) by the evidence.

– Bel(A) = " {B in A} m(B)     (Support committed to A)
– Bel ((red,blue)) = m((red))+m((blue))+m((red,blue))

• Plausibility is the probability that B is

compatible with the available evidence (cannot

be disproved).

– Upper belief limit on the proposition A

• Pl(A) = " {B # A $ {}} m(B) Support that can move into A
– Pl((red,blue)) = m((red))+m((blue))+m((red,blue))+m((red,green))+ m((red,blue,green))+m((blue,green))

• Pl(A) = 1-Bel(¬ A)
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Confidence IntervalConfidence Interval

• Belief Interval [Bel(A),Pl(A)], confidence in A
– Interval width is good aid in deciding when you need

more evidence

• [0,1] no belief in support of proposition
– total ignorance

• [0,0] belief the proposition is false

• [1,1] belief the proposition is true

• [.3,1] partial belief in the proposition is true

• [0,.8] partial disbelief in the proposition is true

• [.2,.7] belief from evidence both for and against
propostion
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DS's Rule of CombinationDS's Rule of Combination

• Given two basic probability assignment functions m1

and m2 how to combine them

– Two different sources of evidence

– P(si,sj|d) = P(si|d) P(sj|d); assume conditional independence

• Bel (C) = Sum (m1(Ai) m2(Bj)) where Ai intersect Bj = C

• Normalized by amount of non-zero mass left after

intersection Sum (m1(Ai) m2(Bj)) where Ai intersect Bj

not empty
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Example of Rule CombinationExample of Rule Combination

• Suppose that m1(D)=.8 and m2(D)=.9

{D} .9 {¬D} 0 {D,¬D} .1

{D}       .8 {D} .72 {}      0 {D}       .08

{¬D}     0 {}    0 {¬D} 0 {¬D}     0

{D,¬D} .2 {D} .18 {¬D} 0 {D,¬D} .02

• m12(D) = .72+.18+.08=.98  m12(¬D)=0
m12(D,¬D)=.02

• Using intervals: [.8,1] and [.9,1] = [.98,1]
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DS's Rule of Combination cont.DS's Rule of Combination cont.

• Suppose that m1(D)=.8 and m2(¬D)=.9

{D} 0 {¬D} .9 {D,¬D} .1

{D}       .8 {D} 0 {}      .72 {D}       .08

{¬D}     0 {}    0 {¬D}  0 {¬D}     0

{D,¬D} .2 {D} 0 {¬D} .18 {D,¬D} .02

• Need to normalize (.18+.08+.02) by .72:
m12(D) = .29   m12(¬D)=.64

m12(D,¬D)=.07

• Using intervals: [.8,1] and [0,.1] = [.29,.36]
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DempsterDempster-Shafer Example-Shafer Example

Let %  be:
All :  allergy
Flu :  flu
Cold :  cold
Pneu : pneumonia

When we begin, with no information m  is:

{%  } (1.0)

suppose m1 corresponds to our belief after observing fever:

{Flu, Cold, Pneu } (0.6)
{% }     (0.4)

Suppose m2 corresponds to our belief after observing a runny
nose:
{All, Flu, Cold}  (0.8)
 %  (0.2)
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DempsterDempster-Shafer Example (cont-Shafer Example (cont’’d)d)

Then we can combine m1 and m2:

So we produce a new, combined m3;

{Flu,Cold } (0.48)
{All,Flu,Cold } (0.32)

{Flu,Cold,Pneu } (0.12)

% (0.08)

Suppose m4 corresponds to our belief that the problem goes away on
trips and thus is associated with an allergy:

{All} (0.9)

% (0.1)

{A ,F,C }  (0.8) ! (0.2)

{F,C,P } (0.6) {F,C }  (0.48) {F,C,P} (0.12)

!           (0.4) {A ,F,C }  (0.32) ! (0.08)
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DempsterDempster-Shafer Example (cont-Shafer Example (cont’’d)d)

Applying the numerator of the combination rule yields:

Normalizing to get rid of the belief of 0.54 associated with {} gives m5:

{Flu,Cold } (0.104)=.048/.46

{Allergy,Flu,Cold } (0.0696)= .032/.46

{Flu,Cold,Pneu } (0.026)= .012/.46

{Allergy } (0.782)=(.288+.072)/.46

% (0.017)=.008 /.46

What is the [belief, possibility] of Allergy?

{A} (0.9) % (0.1)

{F,C} (0.48) {} (.432) {F,C} (0.048)
{A,F,C} (0.32) {A} (0.288) {A,F,C} (0.032)
{F,C,P} (0.12) {} (.108) {F,C,P} (0.012)

% (0.08) {A} (0.072) % (0.008)
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DempsterDempster-Shafer Pros-Shafer Pros

• Addresses questions about necessity
and possibility that Bayesian approach
cannot answer.

• Prior probabilities not required, but
uniform distribution cannot be used
when priors are unknown.

• Useful for reasoning in rule-based
systems
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DempsterDempster-Shafer Cons-Shafer Cons

• Source of evidence not independent; can lead to

misleading and counter-intuitive results

• The normalization in Dempster's Rule loses some meta-

information, and this treatment of conflicting evidence is

controversial.

– Difficult to develop theory of utility since Bel is not defined

precisely with respect to decision making

• Bayesian approach can also do something akin to

confidence interval by examining how much one’s belief

would change if more evidence acquired

– Implicit uncertainty associated with various possible changes
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Conflicting Evidence and NormalizationConflicting Evidence and Normalization

Problems withProblems with Dempster Dempster-Shafer Theory-Shafer Theory

Normalization process can produce strange
conclusions when conflicting evidence is involved:

 % = {A,B,C}

m1 = {A} (0.99), {B} (0.01)

m2 = {C} (0.99), {B} (0.01)

m1 + m2 = {B} (1.0)

• Certain of B even though neither piece of evidence
supported it well

• No representation of inconsistency and resulting
uncertainty/ ignorance
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Fuzzy Set Theory/LogicFuzzy Set Theory/Logic

• Method for reasoning with logical expressions describing fuzzy
set membership

– Knowledge representation based on degrees of membership
rather than a crisp membership of binary logic

• Rather than stochastic processes

– Degree of truth in proposition rather than degree of belief

• Logic of gradual properties as well as calculus for incomplete
information

– “precision in reasoning is costly and should not be pursued more
than necessary.”

• Application - Fuzzy Control Theory

– expert knowledge coded as fuzzy rules

• if the car’s speed is slow  then the braking force is light

– computer control of a wide range of devices

• washing machines, elevators, video cameras, etc.
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Representing Vagueness/FuzzinessRepresenting Vagueness/Fuzziness

• Fuzziness is a way of defining concepts or
categories that admit vagueness and
degree

– nothing to do with degree of belief in
something and need not be related to
probabilities

• we believe (.5) it will rain today

– example of “was it a rainy day” fuzziness
• misty all day long but never breaks into a shower

• rain for a few minutes and then sunny

• heavy showers all day long
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Example of Fuzzy Control RulesExample of Fuzzy Control Rules

Given two inputs:

E = difference between current temperature and target temperature
normalized by the target temperature.

dE = the time derivative of E (dE/dt)

Compute one output:

W = the change in heat (or cooling) source

Fuzzy variables: NB (neg big), NS, ZO, PS, PB

Example rule:  if E is ZO and dE is NS then W is PS

if E IS ZO and dE is PB then W is NB

……….

Significant Reduction in number of rules needed and handles noisy
sensors 
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Fuzzy LogicFuzzy Logic

• A different type of approximation related to

“vagueness” rather than “uncertainty.”

• Measures the “degree of membership” in

certain sets or categories such as:  age,

height, red, several, old, many,...

• Example: “Several” = {2/.3, 3/.5, 4/1, ..., 9/.1}

• Representation A = {u/a(u) | u ' U}

23V. Lesser CS683 F2004

Fuzzy VariableFuzzy Variable

• Fuzzy variable takes on a fuzzy set as a value

– A fuzzy set (class) A in X is characterized by a membership function

v/a that assigns each point x in X a real number between 0,1

• Height Example-- in the tall class

– v/a (x) = 1 for any person over 6 feet tall

– v/a (x) = 0 for any person under 5 feet tall

– v/a (x) in between for height > 5 and < 6

• Piecewise Linear Function for values in between

– vector/tall = (0/4, 0/5, 1/6, 1/ 7)

• Hedge

– systematic modification to a characteristic function to represent a

linguistic specialization

– “very tall” v/very tall (x) = (v/tall (x))2

Fig. 6.38Fig. 6.38

Fig. 6.38:

An example characteristic function for

a fuzzy set representing “tall people.”

The function ƒA  indicates the degree to

which individuals of different heights

would be considered to be members of

the fuzzy set of tall persons.0

1

4 5 6 7

Generally true

Maybe true

Generally false

&
A

Height in feet

Fig. 6.39:

Three piecewise

linear characteristic

functions

4 5 6 7

0

1

TallMediumShort

Height in feet
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Possibility DistributionPossibility Distribution

• Express preferences on possible values of a variable where exact value

is not known

– “concept of medium”

– Used in reasoning in fuzzy rule sets

• Consistency of  a subset with respect to a concept “tall people”

– A={.5/Joe = 5.5, .9/Bob = 5.9, .6/Ray = 5.6}

– Possibility Measure )(A) 

•  )(A) max of v/tall over A * 1

• measure of the degree to which the set  “tall people” is possibly in A

• .9/Bob = 5.9 implies )(A) = .9

– Necessity Measure N(A)

• N(A) = 1-) (complement of A)

• measure of the degree to which the set “tall people” is necessary in A

• Complement of A={.5(1-.5)/Joe = 5.5, .1(1-.9)/Bob = 5.9, .4(1-.6)/Ray = 5.6}

• N(A)= 1-.5 = .5
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Fuzzy Set OperatorsFuzzy Set Operators

• Representation   A = {u/a(u) | u ' U}

• Set operators over same variable:

A ( B = {u/max(a(u), b(u)) | u ' U}

A # B = {u/min(a(u), b(u)) | u ' U}

 ¬ A  = {u/(1 - a(u)) | u ' U}

For example: Young and Rich (Y # R) . . .

cartesian product over two variables:

   A x B = {(u,v)/min(a(u), b(v)) | u ' U, v ' V}

Other set operators are sometimes used, for example:

A ( B = {u/(a(u) + b(u) - a(u) . b(u)) | u ' U }

A # B = {u/(a(u) . b(u)) | u ' U}

etc...
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Fuzzy Inference Fuzzy Inference (extension of modus (extension of modus ponensponens))

Let c, c´, d, d´, be fuzzy sets.  Then the “generalized modus ponens” states:

x is c´

if x is c then y is d;

y is d´
e.g.:

Visibility is very low

If visibility is low then condition is poor

Condition is very poor

How c is characterized by c’ effect how d is characterized by d’

The fuzzy inference is based on two concepts:

1)  fuzzy implication

2)  the compositional rule of inference

Fuzzy implication:  represented as:

a + b

a and b are fuzzy sets.
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Fuzzy RelationFuzzy Relation

• A fuzzy relation is represented by a matrix.

• A fuzzy relation R associated with the

implication

–  a + b is a fuzzy set of the cartesian product U x V:

– R = {(u, v)/m(u,v) | u ' U, v ' V}

• One of the most commonly used fuzzy implications

is based on the min op:

– mR(u,v) = min(a(u), b(v))
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The Compositional Rule of InferenceThe Compositional Rule of Inference

If R is a relation from A to B

   S is a relation from B to C

The composition of R and S is a relation from A to C denoted R ° S

R ° S = {(a,c)/max[min(mR(a,b), mS(b,c))]}

                         b

Similarly, can be used as rule of inference when:

R is a fuzzy relation from U to V

X is a fuzzy subset of U

Y is a fuzzy subset of V

Y is induced by X and R by: Y = X ° R; modus-ponens

Y = {v/max[min(mx(u), mR(u,v))] | u ' U}

              u

notice that when R = (a + b)

                   x  =  a

 then                  y  =  b
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Example of max-min inferenceExample of max-min inference

If speed is normal

then braking.force is medium.

speed:

Normal = (0/0, .1/20, .8/40, 1/60, .1/80, 0/100)

braking.force:

Medium = (0/0, .5/1, 1/2, 1/3, .2/4, 0/5)

When characteristic functions are piecewise linear, one way to carry

out max-min inference is to define a matrix for the composition. The

matrix M  for compositional inference is defined so that

mij = min(ai, bj)

The matrix for this example is as follows...

31V. Lesser CS683 F2004

Example of max-min inference, p.2Example of max-min inference, p.2

mij = min(ai, bj)

The matrix for this example is as follows:
M = Brake

Speed 0 1 2 3 4 5

0 min(0,0) min(0,.5) min(0,1) min(0,1) min(0,.2) min(0,0)

20 min(.1,0) min(.1,.5) min(.1,1) min(.1,1) min(.1,.2) min(.1,0)

40 min(.8,0) min(.8,.5) min(.8,1) min(.8,1) min(.8,.2) min(.8,0)

60 min(1,0) min(1,.5) min(1,11) min(1,1) min(1,.2) min(1,0)

80 min(.1,0) min(.1,.5) min(.1,1) min(.1,1) min(.1,.2) min(.1,0)

100 min(0,0) min(0,.5) min(0,1) min(0,1) min(0,.2) min(0,0)

 0 0 0 0 0 0

0 .1 .1 .1 .1 0

0 .5 .8 .8 .2 0

0 .5 1 1 .2 0

0 .1 .1 .1 .1 0

0 0 0 0 0 0

Simplifying terms, we have the following:
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Example of Max-Min Inference, contExample of Max-Min Inference, cont’’dd

The braking force predicted by max-min inference is the fuzzy vector resulting from multiplying the

matrix M by the input speed S: = (0/0, 0/20, .8/40, 0/60, 0/80, 0/100)

braking.force = B = S ° M

The general term is given by:

bj = , [-(si mij)]

1 * i * n

Thus, for the given speed vector, we have:

b0 = max[min(0,0),min(0,0),min(.8,0), min(0,0), min(0,0), min(0,0)] = 0

b1 = max[min(0,0),min(0,.1),min(.8,.5), min(0,.5), min(0,.1), min(0,0)] = .5

b2 = max[min(0,0),min(0, .1),min(.8,.8), min(0,1), min(0,.1), min(0,0)] = .8

b3 = max[min(0,0),min(0, .1),min(.8,.8), min(0,1), min(0,.1), min(0,0)] = .8

b4 = max[min(0,0),min(0, .1),min(.8,.2), min(0,.2), min(0,.1), min(0,0)] = .2

b5 = max[min(0,0),min(0,0),min(.8 ,0), min(0,0), min(0,0), min(0,0)] = 0

B= (0, .5, .8, .8, .2, 0)

Equivalently, in the vector notation we have the following fuzzy representation for the braking
force to be applied:         B = (0/0, .5/1, .8/2, .8/3, .2/4, 0/5)   Induced fuzzy set

 0100

.180

 160

.840

.120

 00

 .. 2 ..Speed

BrakeM=
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The effects of max-min inferenceThe effects of max-min inference

Given speed (.8/40)
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Two approaches to Two approaches to DefuzzificationDefuzzification

How to decide what to do -- what breaking force to apply?
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Fuzzy ControlFuzzy Control

Given two inputs:

E = difference between current temperature and target
temperature normalized by the target temperature.

dE = the time derivative of E (dE/dt)

Compute one output:

W = the change in heat (or cooling) source

Fuzzy variables: NB (neg big), NS, ZO, PS, PB

Example rule:  if E is ZO and dE is NS then W is PS

    if E IS ZO and dE is PB then W is NB

……….
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Control rules determine the outputControl rules determine the output

dE

NB NS ZO PS PB

NB PB 6

NS PS 7

 E ZO PB 1 PS 2 ZO 3 NS 4 NB 5

PS NS 8

PB NB 9

NB

1-1
0

0

1
NS ZO PS PB

Table

Representing

All 9 Rules

Definition of

Variables

associated

with rules
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Computing the Output ValueComputing the Output Value

• Suppose that E=.75 and dE=0

• Hence E is PB with degree .5

E is PS with degree .5

dE is ZO with degree 1

• Two rules are applicable:

.8 = mPB(E) - mZO(dE) = .5 - 1= .5

.9 = mPS(E) - mZO(dE) = .5 - 1= .5

• m8(W) = .8 - mNS(W)

m9(W) = .9 - mNB(W)
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Computing the Output Value, Computing the Output Value, contcont’’dd

• Defuzzification: translating a fuzzy category to a precise output.

• Defuzzification using the center of gravity.

• Why is fuzzy logic so successful?

1-1
0

0

1
mNS(W)

.5

mNB(W)

W
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Why is fuzzy logic so successful?Why is fuzzy logic so successful?

– Easily and succinctly represent expert system

rules that involve continuous variables

– Model environment variables in terms of piece-

wise linear characteristic functions
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Next LectureNext Lecture

• More on Logical Reasoning about

Uncertainty

• Learning


