Today's lecture

- Alternative Models of Dealing with Uncertainty Information/Evidence
-Dempster-Shaffer Theory of Evidence
-Fuzzy logic
-Logical ways of dealing with uncertainty
Fall 2004

Dempster-Shafer Theory

- Designed to Deal with the distinction between uncertainty and ignorance
- Rather than computing the probability of a proposition it computes the probability that evidence supports the proposition
- Applicability of D-S
- assume lack of sufficient data to accurately estimate the prior and conditional probabilities to use Bayes rule
- incomplete model \Rightarrow rather than estimating probabilities it uses belief intervals to estimate how close the evidence is to determining the truth of a hypothesis

Belief Subsets

Suppose that the evidence supports \{red,green\} to the degree .6. The remaining support will be assigned to \{red,green,blue\} while a Bayesian model assumes that the remaining support is assigned to the negation of the hypothesis (or its complement) \{blue\}.

Interpretation of $m(X)$

- Random switch model: Think of the evidence as a switch that oscillates randomly between two or more positions. The function m represents the fraction of the time spent by the switch in each position.
- Voting model: m represents the proportion of votes cast for each of several results of the evidence (possibly including that the evidence is inconclusive).
- Envelope model: Think of the evidence as a sealed envelope, and m as a probability distribution on what the contents may be.

Dempster-Shafer theory

- Given a population $\mathrm{F}=$ (blue,red, green) of mutually exclusive elements, exactly one of which (f) is true, a basic probability assignment (m) assigns a number in $[0,1]$ to every subset of F such that the sum of the numbers is 1 .
- Mass as a representation of evidence support
- There are $2^{|F|}$ propositions, corresponding to "the true value of f is in subset $A^{\prime \prime}$.
- (blue),(red),(green),(blue, red),
(blue,green),(red,green),(red,blue,green),(empty set)
- A belief in a subset entails belief in subsets containing that subset.
- Belief in (red) entails Belief in (red,green),(red,blue),(red,blue,green)

Belief and Plausibility

- Belief (or possibility) is the probability that B is provable (supported) by the evidence.
$-\operatorname{Bel}(A)=\Sigma_{\{B \text { in } A\}} m(B) \quad$ (Support committed to A)
- Plausibility is the probability that B is compatible with the available evidence (cannot be disproved).
- Upper belief limit on the proposition A
- $\operatorname{Pl}(A)=\Sigma_{\{B \cap A \neq\{ \}\}} m(B)$ Support that can move into A
- $\operatorname{Pl}(A)=1-\operatorname{Bel}(\neg A)$

Confidence Interval

DS's Rule of Combination

- Belief Interval [Bel(A), Pl(A)], confidence in A
- Interval width is good aid in deciding when you need more evidence
- $[0,1]$ no belief in support of proposition - total ignorance
- $[0,0]$ belief the proposition is false
- [1,1] belief the proposition is true
- [.3,1] partial belief in the proposition is true
- [0,.8] partial disbelief in the proposition is true
- [.2,.7] belief from evidence both for and against propostion

Example of Rule Combination

- Suppose that $m_{1}(D)=.8$ and $m_{2}(D)=.9$

		$\{D\} .9$	$\{\neg D\} 0$	$\{D, \neg D\} .1$	
$\{D\}$.8	$\{D\} .72$	$\}$	0	$\{D\}$
$\{\neg D\}$	0	$\}$	0	$\{\neg D\} 0$	$\{\neg D\}$
$\{D, \neg D\} .0$					
	$\{D\} .18$	$\{\neg D\} 0$	$\{D, \neg D\} .02$		

- $\mathrm{m}_{12}(\mathrm{D})=.72+.18+.08=.98 \mathrm{~m}_{12}(\neg \mathrm{D})=0$ $m_{12}(D, \neg D)=.02$
- Using intervals: $[.8,1]$ and $[.9,1]=[.98,1]$
- Given two basic probability assignment functions m_{1} and m_{2} how to combine them
- Two different sources of evidence
$-\mathbf{P}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}} \mid \mathbf{d}\right)=\mathbf{P}\left(\mathrm{s}_{\mathrm{i}} \mid \mathbf{d}\right) \mathbf{P}\left(\mathrm{s}_{\mathrm{j}} \mid \mathbf{d}\right)$; assume conditional independence
- $\operatorname{Bel}(C)=\operatorname{Sum}\left(m_{1}\left(A_{i}\right) m_{2}\left(B_{j}\right)\right)$ where A_{i} intersect $B_{j}=C$
- Normalized by amount of non-zero mass left after intersection Sum $\left(m_{1}\left(A_{i}\right) m_{2}\left(B_{j}\right)\right)$ where A_{i} intersect B_{j} not empty

DS's Rule of Combination cont.

- Suppose that $m_{1}(D)=.8$ and $m_{2}(\neg D)=.9$

		$\{D\} 0$	$\{\neg D\} .9$	$\{D, \neg D\} .1$	
$\{D\}$.8	$\{D\} 0$	$\} .72$	$\{D\}$.08
$\{\neg D\}$	0	$\}$	0	$\{\neg D\} 0$	$\{\neg D\}$
$\{D, \neg D\} .2$	$\{D\} 0$	$\{\neg D\} .18$	$\{D, \neg D\} .02$		

- Need to normalize (.18+.08+.02) by .72:

$$
\mathrm{m}_{12}(\mathrm{D})=.29 \quad \mathrm{~m}_{12}(\neg \mathrm{D})=.64
$$

$$
\mathrm{m}_{12}(\mathrm{D}, \neg \mathrm{D})=.07
$$

- Using intervals: [.8,1] and [0,.1] = [.29,.36]

Dempster-Shafer Example

Let Θ be:
All : allergy
Flu: flu
Cold : cold
Pneu: pneumonia
When we begin, with no information m is:

$$
\{\Theta\}(1.0)
$$

suppose m_{l} corresponds to our belief after observing fever:

$$
\text { \{Flu, Cold, Pneu \} (0.6) }
$$

$\{\Theta\}$
(0.4)

Suppose \boldsymbol{m}_{2} corresponds to our belief after observing a runny nose:
\{All, Flu, Cold\} (0.8)
$\Theta \quad(0.2)$

Dempster-Shafer Example (cont'd)

Applying the numerator of the combination rule yields:

		$\{A\}$	(0.9)	Θ	(0.1)
$\{F, C\}$	(0.48)	$\}$	$(.432)$	$\{F, C\}$	(0.048)
$\{A, F, C\}$	(0.32)	$\{A\}$	(0.288)	$\{A, F, C\}$	(0.032)
$\{F, C, P\}$	(0.12)	$\}$	$(.108)$	$\{F, C, P\}$	(0.012)
Θ	(0.08)	$\{A\}$	(0.072)	Θ	(0.008)

Normalizing to get rid of the belief of 0.54 associated with $\left\}\right.$ gives \boldsymbol{m}_{5} :

\{Flu,Cold \}	$(0.104)=.048 / .46$
\{Allergy,Flu,Cold \}	$(0.0696)=.032 / .46$
\{Flu,Cold,Pneu \}	$(0.026)=.012 / .46$
\{Allergy \}	$(0.782)=(.288+.072) / .46$
Θ	$(0.017)=.008 I .46$

What is the [belief, possibility] of Allergy?

Dempster-Shafer Example (cont'd)

Then we can combine m_{1} and \boldsymbol{m}_{2} :

	$\{A, F, C\}$	(0.8)	Θ	(0.2)
$\{F, C, P\}(0.6)$	$\{F, C\}$	(0.48)	$\{F, C, P\}$	(0.12)
Θ	(0.4)	$\{A, F, C\}$	(0.32)	Θ

So we produce a new, combined m_{3};

$\{$ Flu,Cold $\}$	$(\mathbf{0 . 4 8})$
\{All,Flu,Cold $\}$	$\mathbf{(0 . 3 2)}$
$\{$ Flu,Cold,Pneu $\}$	$\mathbf{(0 . 1 2)}$
Θ	$\mathbf{(0 . 0 8)}$

Suppose m_{4} corresponds to our belief that the problem goes away on trips and thus is associated with an allergy:

$$
\{A l l\}
$$

(0.9)
Θ
(0.1)

Dempster-Shafer Pros

- Addresses questions about necessity and possibility that Bayesian approach cannot answer.
- Prior probabilities not required, but uniform distribution cannot be used when priors are unknown.
- Useful for reasoning in rule-based systems

Dempster-Shafer Cons

- Source of evidence not independent; can lead to misleading and counter-intuitive results
- The normalization in Dempster's Rule loses some metainformation, and this treatment of conflicting evidence is controversial.
- Difficult to develop theory of utility since Bel is not defined precisely with respect to decision making
- Bayesian approach can also do something akin to confidence interval by examining how much one's belief would change if more evidence acquired
- Implicit uncertainty associated with various possible changes

Fuzzy Set Theory/Logic

- Method for reasoning with logical expressions describing fuzzy set membership
- Knowledge representation based on degrees of membership
rather than a crisp membership of binary logic
- Rather than stochastic processes
- Degree of truth in proposition rather than degree of belief
- Logic of gradual properties as well as calculus for incomplete information
- "precision in reasoning is costly and should not be pursued more than necessary."
- Application - Fuzzy Control Theory
- expert knowledge coded as fuzzy rules
- if the car's speed is slow then the braking force is light
- computer control of a wide range of devices
- washing machines, elevators, video cameras, etc.

Conflicting Evidence and Normalization Problems with Dempster-Shafer Theory

Normalization process can produce strange conclusions when conflicting evidence is involved:
$\Theta=\{A, B, C\}$
$m_{1}=\{A\}(0.99),\{B\}(0.01)$
$m_{2}=\{C\}(0.99),\{B\}$ (0.01)
$m_{1}+m_{2}=\{B\}(1.0)$

- Certain of B even though neither piece of evidence supported it well
- No representation of inconsistency and resulting uncertainty/ ignorance

Representing Vagueness/Fuzziness

- Fuzziness is a way of defining concepts or categories that admit vagueness and degree
- nothing to do with degree of belief in something and need not be related to probabilities
- we believe (.5) it will rain today
- example of "was it a rainy day" fuzziness
- misty all day long but never breaks into a shower
- rain for a few minutes and then sunny
- heavy showers all day long

Example of Fuzzy Control Rules

Fuzzy Logic

Given two inputs:
$\mathrm{E}=$ difference between current temperature and target temperature normalized by the target temperature.
$d E=$ the time derivative of $E(d E / d t)$

Compute one output:
W = the change in heat (or cooling) source
Fuzzy variables: NB (neg big), NS, ZO, PS, PB
Example rule: if E is $Z O$ and $d E$ is $N S$ then W is $P S$
if E IS ZO and dE is PB then W is NB

Significant Reduction in number of rules needed and handles noisy sensors

Fuzzy Variable

- Fuzzy variable takes on a fuzzy set as a value
- A fuzzy set (class) A in X is characterized by a membership function v/a that assigns each point x in X a real number between 0,1
- Height Example-- in the tall class
- v/a $(x)=1$ for any person over 6 feet tall
- v/a $(x)=0$ for any person under 5 feet tall
- v/a (x) in between for height > 5 and < 6
- Piecewise Linear Function for values in between
- vector/tall $=(0 / 4,0 / 5,1 / 6,1 / 7)$

- Hedge

- systematic modification to a characteristic function to represent a linguistic specialization
- "very tall" v/very tall $(\mathrm{x})=(\mathrm{v} / \text { tall }(\mathrm{x}))^{2}$

Possibility Distribution

- Express preferences on possible values of a variable where exact value is not known
- "concept of medium"
- Used in reasoning in fuzzy rule sets

Consistency of a subset with respect to a concept "tall people"
$-\quad \mathrm{A}=\{.5 / \mathrm{Joe}=5.5, .9 / \mathrm{Bob}=5.9, .6 / \mathrm{Ray}=5.6\}$

- Possibility Measure $\Pi(A)$
- $\Pi(A)$ max of $v /$ tall over $A \leq 1$
- measure of the degree to which the set "tall people" is possibly in A
- . $9 / \mathrm{Bob}=5.9$ implies $\Pi(\mathrm{A})=.9$
- Necessity Measure N(A)
- $N(A)=1-\Pi$ (complement of $A)$
- measure of the degree to which the set "tall people" is necessary in A
- Complement of $\mathrm{A}=\{.5(1-.5) / \mathrm{Joe}=5.5, .1(1-.9) / \mathrm{Bob}=5.9, .4(1-6) / \mathrm{Ray}=5.6$
- $\mathrm{N}(\mathrm{A})=1-.5=.5$

FUZZy Inference (extension of modus ponens)
 $4 \rightarrow$ (extension of modus ponens)

Let c, c', d, d', be fuzzy sets. Then the "generalized modus ponens" states

$$
\mathrm{x} \text { is } \mathrm{c}^{\prime}
$$

if x is c then y is d ;
y is d
e.g.:

Visibility is very low
If visibility is low then condition is poor
Condition is very poor
How c is characterized by c' effect how d is characterized by d
The fuzzy inference is based on two concepts:

1) fuzzy implication
2) the compositional rule of inference

Fuzzy implication: represented as:
$a \rightarrow b$
a and b are fuzzy sets.

Fuzzy Relation

- A fuzzy relation is represented by a matrix.
- A fuzzy relation R associated with the implication
$-\mathrm{a} \rightarrow \mathrm{b}$ is a fuzzy set of the cartesian product U x V :
$-\mathbf{R}=\{(\mathbf{u}, \mathrm{v}) / \mathrm{m}(\mathrm{u}, \mathrm{v}) \mid \mathbf{u} \in \mathbf{U}, \mathbf{v} \in \mathbf{V}\}$
- One of the most commonly used fuzzy implications is based on the min op:
$-m_{R}(u, v)=\min (a(u), b(v))$

The Compositional Rule of Inference

If R is a relation from A to B

S is a relation from B to C
The composition of R and S is a relation from A to C denoted $R \cdot S$

$$
\mathrm{R} \cdot \mathrm{~S}=\left\{(\mathrm{a}, \mathrm{c}) / \max \left[\min \left(\mathrm{m}_{\mathrm{R}}(\mathrm{a}, \mathrm{~b}), \mathrm{m}_{\mathrm{s}}(\mathrm{~b}, \mathrm{c})\right]\right]\right\}
$$

b
Similarly, can be used as rule of inference when:
R is a fuzzy relation from U to V
X is a fuzzy subset of U
Y is a fuzzy subset of V
Y is induced by X and R by: $\mathrm{Y}=\mathrm{X} \cdot \mathrm{R}$; modus-ponens
$\mathrm{Y}=\left\{\mathrm{v} / \max \left[\min \left(\mathrm{m}_{\mathrm{x}}(\mathrm{u}), \mathrm{m}_{\mathrm{R}}(\mathrm{u}, \mathrm{v})\right)\right] \mid \mathrm{u} \in \mathrm{U}\right\}$
u
notice that when $R=(a \rightarrow b)$

$$
\text { then } \quad \begin{array}{ll}
x=a \\
y=b
\end{array}
$$

Example of max-min inference, $p .2$

$$
m_{i j}=\min \left(a_{i}, b_{j}\right)
$$

The matrix for this example is as follows:

$M=$	Brake					
Speed	0	1	2	3	4	5
0	$\boldsymbol{\operatorname { m i n }}(0,0)$	$\min (0,5)$	$\min (\mathbf{0 , 1})$	$\boldsymbol{\operatorname { m i n }}(\mathbf{0 , 1})$	$\boldsymbol{\operatorname { m i n }}(0,2)$	$\min (\mathbf{0 , 0)}$
20	$\min (.1,0)$	$\boldsymbol{\operatorname { m i n }}(.1, .5)$	$\min (1,1)$	$\boldsymbol{\operatorname { m i n }}(.1,1)$	$\min (.1,2)$	$\min (\mathbf{1 , 0})$
40	$\min (.8,0)$	$\min (.8,5)$	$\min (.8,1)$	$\min (.8,1)$	$\min (.8,2)$	$\min (.8,0)$
60	$\boldsymbol{\operatorname { m i n } (1 , 0)}$	$\min (1,5)$	$\boldsymbol{m i n}(1,11)$	$\boldsymbol{\operatorname { m i n } (1 , 1)}$	$\boldsymbol{\operatorname { m i n }}(1,2)$	$\boldsymbol{m i n}(1,0)$
80	$\min (.1,0)$	$\min (.1,5)$	$\mathbf{m i n}(.1,1)$	$\min (.1,1)$	$\boldsymbol{\operatorname { m i n }}(.1,2)$	$\min (.1,0)$
100	$\min (0,0)$	$\min (0,5)$	$\boldsymbol{\operatorname { m i n }}(\mathbf{0}, 1)$	$\min (0,1)$	$\min (0,2)$	$\min (0,0)$

[^0]
Example of max-min inference

If speed is normal
then braking.force is medium.
speed:
Normal $=(0 / 0, .1 / 20, .8 / 40,1 / 60, .1 / 80,0 / 100)$
braking.force:
Medium $=(0 / 0, .5 / 1,1 / 2,1 / 3, .2 / 4,0 / 5)$
When characteristic functions are piecewise linear, one way to carry out max-min inference is to define a matrix for the composition. The matrix M for compositional inference is defined so that

$$
m_{i j}=\min \left(a_{i}, b_{j}\right)
$$

The matrix for this example is as follows..

Example of Max-Min Inference, cont'd

The braking force predicted by max-min inference is the fuzzy vector resulting from multiplying the matrix M by the input speed $S:=(0 / 0,0 / 20, .8 / 40,0 / 60,0 / 80,0 / 100)$

$$
\text { braking.force }=\mathrm{B}=\mathrm{S}^{\circ} \mathrm{M}
$$

The general term is given by:

$$
\mathbf{b}_{j}=\mathrm{V}\left[\Lambda\left(\mathbf{s}_{i} \mathbf{m}_{i j}\right)\right]
$$

$$
1 \leq i \leq n
$$

Thus, for the given speed vector, we have:
$b_{0}=\max [\min (0,0), \min (0,0), \min (.8,0), \min (0,0), \min (0,0), \min (0,0)]=0$
$b_{l}=\max [\min (0,0), \min (0, .1), \min (.8, .5), \min (0, .5), \min (0, .1), \min (0,0)]=.5$
$b_{2}=\max [\min (0,0), \min (0, .1), \min (.8, .8), \min (0,1), \min (0,1), \min (0,0)]=.8$
$b_{3}=\max [\min (0,0), \min (0, .1), \min (.8, .8), \min (0,1), \min (0, .1), \min (0,0)]=.8$

$M=$	Brake
Speed	$. .2 .$.
0	0
20	.1
40	.8
60	1
80	.1
100	0

$b_{4}=\max [\min (0,0), \min (0, .1), \min (.8, .2), \min (0, .2), \min (0, .1), \min (0,0)]=.2$
$b_{5}=\max [\min (0,0), \min (0,0), \min (.8,0), \min (0,0), \min (0,0), \min (0,0)]=0$
$B=(0, .5, .8, .8, .2,0)$
Equivalently, in the vector notation we have the following fuzzy representation for the braking force to be applied: $\quad B=(0 / 0,5 / 1,8 / 2,8 / 3,2 / 4,0 / 5)$

Induced fuzzy set

The effects of max-min inference

Two approaches to Defuzzification

Given speed (.8/40)

Given two inputs:
$\mathrm{E}=$ difference between current temperature and target temperature normalized by the target temperature.
$\mathrm{dE}=$ the time derivative of $\mathrm{E}(\mathrm{dE} / \mathrm{dt})$
Compute one output:
W = the change in heat (or cooling) source
Fuzzy variables: NB (neg big), NS, ZO, PS, PB
Example rule: if E is $Z O$ and $d E$ is $N S$ then W is $P S$
if E IS ZO and $d E$ is PB then W is NB

\qquad

Control rules determine the output

Computing the Output Value

- Suppose that $\mathrm{E}=.75$ and $\mathrm{dE}=0$
- Hence E is PB with degree . 5 E is PS with degree .5 dE is ZO with degree 1
- Two rules are applicable:
$\alpha_{8}=m_{P B}(E) \wedge m_{z o}(d E)=.5 \wedge 1=.5$
$\alpha_{9}=m_{\text {Ps }}(E) \wedge m_{z o}(d E)=.5 \wedge 1=.5$
- $m_{8}(W)=\alpha_{8} \wedge m_{N S}(W)$
$m_{9}(W)=\alpha_{9} \wedge m_{N B}(W)$

Why is fuzzy logic so successful?

- Easily and succinctly represent expert system rules that involve continuous variables
- Model environment variables in terms of piecewise linear characteristic functions

- Defuzzification: translating a fuzzy category to a precise output.
- Defuzzification using the center of gravity.
- Why is fuzzy logic so successful?
- More on Logical Reasoning about Uncertainty
- Learning

[^0]: Simplifying terms, we have the following:

 | 0 | 0 | 0 | 0 | 0 | 0 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | 0 | .1 | .1 | .1 | .1 | 0 |
 | 0 | .5 | .8 | .8 | .2 | 0 |
 | 0 | .5 | 1 | 1 | .2 | 0 |
 | 0 | .1 | .1 | .1 | .1 | 0 |
 | 0 | 0 | 0 | 0 | 0 | 0 |

