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* Designed to Deal with the distinction between
uncertainty and ignorance
— Rather than computing the probability of a proposition it

computes the probability that evidence supports the
proposition

» Applicability of D-S

— assume lack of sufficient data to accurately
estimate the prior and conditional probabilities
to use Bayes rule

— incomplete model = rather than estimating
probabilities it uses belief intervals to estimate
how close the evidence is to determining the
truth of a hypothesis
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* Alternative Models of Dealing with
Uncertainty Information/Evidence

—Dempster-Shaffer Theory of Evidence
—Fuzzy logic

—Logical ways of dealing with uncertainty
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Allows representation of ignorance about
support provided by evidence
— allows reasoning system to be skeptical

For example, suppose we are informed that one of
three terrorist groups, A, B or C has planted a bomb
in a building.

We may have some evidence the group C is guilty, P (C ) =0.8

We would not want to say the probability of the other two groups
being guilty is .1
In traditional theory, forced to regard belief and disbelief as

functional opposites p(a) + p(not a) = 1 and to distribute an
equal amount of the remaining probability to each group

D-S allows you to leave relative beliefs unspecified
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0.4 {Red,Green,Blue}

0.6 {Red,Green} {Red,Blue} {Green,Blue}

{Red} {Green} {Blue}

Suppose that the evidence supports {red,green} to the degree .6. The remaining
support will be assigned to {red,green,blue} while a Bayesian model assumes that
the remaining support is assigned to the negation of the hypothesis (or its
complement) {blue}.
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* Random switch model: Think of the evidence as a
switch that oscillates randomly between two or more
positions. The function m represents the fraction of
the time spent by the switch in each position.

* Voting model: m represents the proportion of votes
cast for each of several results of the evidence
(possibly including that the evidence is inconclusive).

* Envelope model: Think of the evidence as a sealed
envelope, and m as a probability distribution on what
the contents may be.
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» Given a population F =(blue,red, green) of mutually
exclusive elements, exactly one of which (f) is true,
a basic probability assignment (m) assigns a number
in [0,1] to every subset of F such that the sum of the
numbers is 1.

— Mass as a representation of evidence support

* There are 2IFl propositions, corresponding to “the
true value of f is in subset A”.

— (blue),(red),(green),(blue, red),
(blue,green),(red,green),(red,blue,green),(empty set)

* A belief in a subset entails belief in subsets
containing that subset.
— Belief in (red) entails Belief in
(red,green),(red,blue),(red,blue,green)
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- Belief (or possibility) is the probability that B is
provable (supported) by the evidence.
— Bel(A) =X g, oyM(B)  (Support committed to A)

—  Bel ((red,blue)) = m((red))+m((blue))+m((red,blue))

+ Plausibility is the probability that B is
compatible with the available evidence (cannot
be disproved).

— Upper belief limit on the proposition A
* PI(A) =2 5 a . M(B) Support that can move into A

—  P((red,blue)) = m((red))+m((blue))+m((red,blue))+m((red,green))+ m((red,blue,green))+m((blue,green))

- PI(A) = 1-Bel(- A)
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Belief Interval [Bel(A),PI(A)], confidence in A
— Interval width is good aid in deciding when you need
more evidence

[0,1] no belief in support of proposition

— total ignorance

[0,0] belief the proposition is false

[1,1] belief the proposition is true

[.3,1] partial belief in the proposition is true
[0,.8] partial disbelief in the proposition is true

[.2,.7] belief from evidence both for and against
propostion

+ Suppose that m,(D)=.8 and m,(D)=.9

| D}.9 {(-D} 0 {D,-D} .1
D} 8 | {D}.72 0 0 (D} .08
{-b} o { O {-D}O0 {-D} O
{D,-D} 2 | {D}.18 {-D} 0 {D,~D} .02

* mMy,(D) =.72+.18+.08=.98 m,,(~D)=0
M,5(D,~D)=.02

+ Using intervals: [.8,1] and [.9,1] = [.98,1]
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+ Given two basic probability assignment functions m,
and m, how to combine them
— Two different sources of evidence
— P(s;s;ld) = P(s;ld) P(s;ld); assume conditional independence

* Bel (C) = Sum (m,(A;) my(B;)) where A; intersectB;= C

* Normalized by amount of non-zero mass left after
intersection Sum (m,(A;) m,(B;)) where A, intersect B,
not empty
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+ Suppose that m,(D)=.8 and m,(-D)=.9

| {D}O {-D}.9 {D,-D} .1
Dy 8 | {DjO 072 ([} 08
{-D} 0 [ {} O {-D} O {-D} O
{D,-D}.2 | {D}O {-D}.18  {D,~D}.02

* Need to normalize (.18+.08+.02) by .72:
m12(D,_'D)=07
* Using intervals: [.8,1] and [0,.1] = [.29,.36]
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Let © be: Then we can combine m; and m,:

All : allergy

Flu : flu

Cold : cold {A,F,C} (0.8) ) 0.2)

Pneu : pneumonia {F,C,P} (0.6) {II:%}C (8,;12) {F,C,P} (8'(1)?
When we begin, with no information m is: e 04 AFCY 0.32) S (0.08)

So we produce a new, combined m,;

{6 }(L0) (Flu,Cold } (0.48)
{(AlLFIuCold}  (0.32)
{Flu,Cold,Pneu} (0.12)
{Flu, Cold, Pneu } (0.6) (C] (0.08)
{6} (0.4)

suppose m; corresponds to our belief after observing fever:

Suppose m, corresponds to our belief that the problem goes away on

. . trips and thus is associated with an allergy:
Suppose m, corresponds to our belief after observing a runny P ust ! W gy

nose: {All} 0.9)
{All, Flu, Cold} (0.8) e (0.1)
e (0.2)
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Applying the numerator of the combination rule yields:

7y 09) @ oD « Addresses questions about necessity
{F.C} ((8'3‘3)) o (432) (F.C} (0.04318) and possibility that Bayesian approach
{AF,C} 5 {A} (0.288) {AF,C} (0.032)
{F,C,P} 0.12) |42 (.108) {F,C,P} 0.012) cannot answer.
e (0.08) |{A} (0.072) e (0.008)

Normalizing to get rid of the belief of 0.54 associated with {} gives ms:

* Prior probabilities not required, but
uniform distribution cannot be used

{Flu,Cold } (0.104)=.048/.46 h ; k

{Allergy,Flu,Cold } (0.0696)= .032/.46 when pI‘IOI’S are unknown.
{Flu,Cold,Pneu } (0.026)= .012/.46

g‘"e'gy } :g';ﬁ;i(bﬁsfjgz)/ 46 « Useful for reasoning in rule-based

systems
What is the [belief, possibility] of Allergy? y
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» Source of ewdence not mdependent can Iead to
misleading and counter-intuitive results

* The normalization in Dempster's Rule loses some meta-
information, and this treatment of conflicting evidence is
controversial.

— Difficult to develop theory of utility since Bel is not defined
precisely with respect to decision making

» Bayesian approach can also do something akin to
confidence interval by examining how much one’s belief
would change if more evidence acquired

— Implicit uncertainty associated with various possible changes
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Normalization process can produce strange
conclusions when conflicting evidence is involved:

©={A,B,C}
m, = {A} (0.99), {B} (0.01)

= {C} (0.99), {B} (0.01)
m, + m, = {B} (1.0)

+ Certain of B even though neither piece of evidence
supported it well

* No representation of inconsistency and resulting
uncertainty/ ignorance
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* Method for reasoning with logical expressions describing fuzzy
set membership

— Knowledge representation based on degrees of membership
rather than a crisp membership of binary logic
» Rather than stochastic processes
— Degree of truth in proposition rather than degree of belief

» Logic of gradual properties as well as calculus for incomplete
information

— “precision in reasoning is costly and should not be pursued more
than necessary.”

» Application - Fuzzy Control Theory
— expert knowledge coded as fuzzy rules
« if the car’s speed is slow then the braking force is light
— computer control of a wide range of devices
» washing machines, elevators, video cameras, etc.
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* Fuzziness is a way of defining concepts or
categories that admit vagueness and
degree

— nothing to do with degree of belief in
something and need not be related to
probabilities

» we believe (.5) it will rain today

— example of “was it a rainy day” fuzziness
» misty all day long but never breaks into a shower
+ rain for a few minutes and then sunny
* heavy showers all day long
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Given two inputs:

E = difference between current temperature and target temperature
normalized by the target temperature.

dE = the time derivative of E (dE/dt)

Compute one output:
W = the change in heat (or cooling) source

Fuzzy variables: NB (neg big), NS, ZO, PS, PB
Example rule: if E is ZO and dE is NS then W is PS
if EIS ZO and dE is PB then W is NB

Significant Reduction in number of rules needed and handles noisy
sensors
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* Fuzzy variable takes on a fuzzy set as a value

— A fuzzy set (class) A in X is characterized by a membership function
v/a that assigns each point x in X a real number between 0,1

* Height Example-- in the tall class
— v/a (x) = 1 for any person over 6 feet tall
— v/a (x) = 0 for any person under 5 feet tall
— v/a (x) in between for height >5 and <6

* Piecewise Linear Function for values in between
— vector/tall = (0/4, 0/5, 1/6, 1/ 7)
* Hedge
— systematic modification to a characteristic function to represent a
linguistic specialization
— “very tall” vivery tall (x) = (v/tall (x))?
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A different type of approximation related to
“vagueness” rather than “uncertainty.”

* Measures the “degree of membership” in
certain sets or categories such as: age,
height, red, several, old, many,...

+ Example: “Several” = {2/.3, 3/.5, 4/1, ..., 9/.1}

* Representation A = {u/a(u) | u € U}
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<— Generally true
Va

<+— Maybe true

<+—— Generally false
0 1 1 1 :
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Fig. 6.38:

An example characteristic function for
a fuzzy set representing “tall people.”
The function f, indicates the degree to
which individuals of different heights
would be considered to be members of
the fuzzy set of tall persons.

Short Medium

Tall

Fig. 6.39:

Three piecewise
linear characteristic
functions

Height in feet



» Express preferences on possible values of a variable where exact value
is not known

— “concept of medium”
— Used in reasoning in fuzzy rule sets
+ Consistency of a subset with respect to a concept “tall people”
— A={.5/Joe = 5.5, .9/Bob = 5.9, .6/Ray = 5.6}
— Possibility Measure []J(A)
[1(A) max of v/tall over A <1

» measure of the degree to which the set “tall people” is possibly in A
* .9/Bob = 5.9 implies [[(A)=.9

— Necessity Measure N(A)
* N(A) = 1-[] (complement of A)
« measure of the degree to which the set “tall people” is necessary in A

« Complement of A={.5(1-.5)/Joe = 5.5, .1(1-.9)/Bob = 5.9, .4(1-.6)/Ray = 5.6}
. NA)=1-5=.5
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Fuzzy

* Representation A ={u/a(u) |u € U}
» Set operators over same variable:

A U B = {u/max(a(u), b(u)) | u € U}

A N B ={u/min(a(u), b(u)) | u € U}

= A ={u/(1-a(u))|ue U}

For example: Young and Rich (YN R) ...
cartesian product over two variables:
A x B = {(u,v)/min(a(u), b(v)) [lu€ U, v €V}
Other set operators are sometimes used, for example:
AU B = {u/(a(u) + b(u) - a(u) - b(u)) Ju€ U }

A N B ={u/(a(u) - b(u)) | u € U}
efc...
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Letc, c’, d, d’, be fuzzy sets. Then the “generalized modus ponens” states:

xisc’
if xis c theny is d;
yisd’

e.g.:
Visibility is very low
If visibility is low then condition is poor
Condition is very poor

How c is characterized by c’ effect how d is characterized by d’
The fuzzy inference is based on two concepts:

1) fuzzy implication

2) the compositional rule of inference

Fuzzy implication: represented as:
a—b
a and b are fuzzy sets.
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* A fuzzy relation is represented by a matrix.

* A fuzzy relation R associated with the
implication

— a—bis a fuzzy set of the cartesian product U x V:
- R={(u, v))im(u,v) Jlue Uy, veV}

* One of the most commonly used fuzzy implications
is based on the min op:
— mg(u,v) = min(a(u), b(v))
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If R is a relation from A to B
S is a relation from B to C

The composition of R and S is a relation from A to C denoted R - S
R - S = {(a,c)/max[min(mg(a,b), mg(b,c))]}
b

Similarly, can be used as rule of inference when:

R is a fuzzy relation from U to V

X is a fuzzy subset of U

Y is a fuzzy subset of V
Y is induced by X and R by: Y = X - R; modus-ponens
Y = {v/Imax[min(m,(u), mg(u,v))] | u € U}

u
notice that when R = (a —b)
X =a
then y=»b
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m;; = mm(ai, b;)
The matrix for this example is as follows:
M= Brake
Speed 0 1 2 3 4 5
min(0,0) min(0,.5) min0,1) min(0,1) min(0,.2) min(0,0)
20 |min(.1,0) min(.1,,5) min(.1,1) min(.1,1) min(.1,.2) min(.1,0)
40 [ min(.8,0) min(.8,.5) min(.8,1) min(.8,1) min(.8,.2) min(.8,0)
60 [min(1,0) min(1,5) min(1,11) min(1,]) min(1,2) min(1,0)
80 [ min(.1,0) min(.1,,5) min(.1,1) min(.1,1) min(.1,2) min(.1,0)
100 [ min(0,0) min(0,.5) min(0,1) min(0,1) min(0,.2) min(0,0)

<

Simplifying terms, we have the following:

0 0 0 0 0 0
0 1 all all 1 0
0 8 8 8 2 0
0 5 1 1 2 0
0 oll 1 oll 1 0
0 0 0 0 0 0
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If speed is normal
then braking.force is medium.

speed:
Normal = (0/0, .1/20, .8/40, 1/60, .1/80, 0/100)

braking.force:
Medium = (0/0, .5/1, 1/2, 1/3, .2/4, 0/5)

When characteristic functions are piecewise linear, one way to carry
out max-min inference is to define a matrix for the composition. The
matrix M for compositional inference is defined so that

m;; = min(a;, b;)

The matrix for this example is as follows...
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The braking force predicted by max-min inference is the fuzzy vector resulting from multiplying the
matrix M by the input speed S: = (0/0, 0/20, .8/40, 0/60, 0/80, 0/100)

braking.force=B =S ° M M= Brake
The general term is given by: Speed | | 2,
bj=Vv [A(s; m;)] o| o
. 20 A
l<i=zn
) . 40 .8
Thus, for the given speed vector, we have:
b,=max[min(0,0),min(0,0),min(.8,0), min(0,0), min(0,0), min(0,0)] =0 60 1
b, = max[min(0,0),min(0,.1),min(.8,.5), min(0,.5), min(0,.1), min(0,0)] = .5 80 A
b,=max[min(0,0),min(0, .1),min(.8,.8), min(0,1), min(0,.1), min(0,0)] = .8 100 0

b;=max[min(0,0),min(0, .1),min(.8,.8), min(0,1), min(0,.1), min(0,0)] = .8
b,=max[min(0,0),min(0, .1),min(.8,.2), min(0,.2), min(0,.1), min(0,0)] = .2
bs=max[min(0,0),min(0,0),min(.8 ,0), min(0,0), min(0,0), min(0,0)] =

B=(0,.5,.8,.8 .2,0)

Equivalently, in the vector notation we have the following fuzzy representation for the braking
force to be applied: B =(0/0, .5/1, .8/2, .8/3, .2/4, 0/5) Induced fuzzy set
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Normal Medium

speed brake force 1T Fuzzy centroid

Fuzzy maximum

|

54 54
Clipped
brake

0 T 1 0 IT 1

0 20 40 60 80 100 0 1 2 3 4 5

Given speed (.8/40)
How to decide what to do -- what breaking force to apply?
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I ru
. . Table
Given two inputs: Representing " s gg o o
E = difference between current temperature and target All 9 Rules NB B
temperature normalized by the target temperature. oo st psr bos nse nse
dE = the time derivative of E (dE/dt) P Eg:

Compute one output:
W = the change in heat (or cooling) source

(NB NS 70 PS  PB
Definition of
Fuzzy variables: NB (neg big), NS, ZO, PS, PB ommeno
Example rule: if E is ZO and dE is NS then W is PS associated
if EIS ZO and dE is PB then W is NB with rules 0
=il 0
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* Suppose that E=.75 and dE=0
* Hence E is PB with degree .5
E is PS with degree .5
dE is ZO with degree 1
* Two rules are applicable:
g = Mpg(E) A myo(dE) =.5A1=.5
09 = Mpg(E) A myo(dE) =.5A1=.5
© mg(W) = g A myg(W)
mg(W) = ag A myg(W)
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mlNB(W) Myg(W)

0

1w 0 1

» Defuzzification: translating a fuzzy category to a precise output.
» Defuzzification using the center of gravity.

*  Why is fuzzy logic so successful?
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— Easily and succinctly represent expert system
rules that involve continuous variables

— Model environment variables in terms of piece-
wise linear characteristic functions
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* More on Logical Reasoning about
Uncertainty

 Learning
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