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« Example 1: You consider buying a program to
manage your finances that costs $100. There is
a prior probability of 0.7 that the program is
suitable in which case it will have a positive effect
on your work worth $500. There is a probability
of 0.3 that the program is not suitable in which
case it will have no effect.

Victor Lesser

* What is the value of knowing whether the
program is suitable before buying it?

CMPSCI 683
Fall 2004
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» Expected utility given information * The general case: We assume that
—[0.7*(500-100)+0.3(0)] exact evidence can be obtained about
the value of some random variable E,.
» Expected utility not given information * The agent's current knowledge is E.
—[0.7(500-100)+0.3(0-100)] « The value of the current best action o is
defined by:
* Value of Information EU(c|E) = max, ¥, P(Result(A)|Do(A),E)
—[0.7*(500-100)+0.3(0)] - [0.7(500-100)+0.3(0- U(Result(A))

100)] = 280 - 250 = $30
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» With the information, the value of the new
best action will be: EU(og|E.E)) =
max, 2 P(Result(A) | Do(A),E,E;) U(Result(A))

- But E; is a random variable whose value is
currently unknown, so we must average over
all possible values e, using our current
belief: VPI¢ () =
(2« P(Ej=ey | E) EU(agy | E, Ej =€) ) - EU(a | E)

V. Lesser CS683 F2004

» A decision tree is an explicit representation
of all the possible scenarios from a given
state.

« Each path corresponds to decisions made
by the agent, actions taken, possible
observations, state changes, and a final
outcome node.

 Similar to a game played against “nature”

V. Lesser CS683 F2004

* Decision Trees

* Decision Networks

» Markov Decision Processes (MDPs)

V. Lesser CS683 F2004

O- Chance node

difficult P=0.7
reuse M\ minor changes P=0.4

$275K
major chanm simple P=0.2 $3 10K

complex P=0.8 —~$490K
minor changes P=0.7 $210K

o5 —$400K

Display
Software

major changes P

EU(make) = 0.3 = $380K + 0.7 = $450K = $429K; best choice
EU(reuse) = 0.4 = $275K + 0.6 * [0.2 = $310K + 0.8 = $490K] = $382.4K
EU(buy) = 0.7 = $210K + 0.3 = $400K = $267K
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Example 2: Buy Example*2: Buying a C e

There are two candidate cars C, and C,, each can be of
good quality (+) or bad quality (-).

There are two possible tests, T, on C, (costs $50) and T,
on C, (costs $20).

» The chances that the cars are of good
quality are 0.70 for C, and 0.80 for C,.

C, costs $1500 ($500 below market value) but if it is of * Test T1_ \_Ni” confirm QO_Od que_‘"ty with _
bad quality repair cost is $700. probability 0.80 and will confirm bad quality
_ 500 gain or 200 lost with probability 0.65.

C, costs $1150 ($250 below market value) but if it is of

bad quality repair cost is $150. « Test T, will confirm good quality with

— 250 gain or 100 gain probability 0.75 and will confirm bad quality
Buyer must buy one of the cars and can perform at most with probability 0.70.

one test. -- What other information?
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Examp,

Do Test T,; If T, fails buy C,

Decision else buy C, .
T2 TO
T1
Chance . . .
fail ass fail ass
P P c, c,
Decision . . . . . .
C,/\C, C,/\C, C,/\C, C,/\C, +/\= +/\~
Chance (") O O O O O O O O 6OOO
+\= +/\= +/\= +/\= +/\= +/\- +/\- +/\-
SZETOTSTOTGTETOTOROTSTLROXTL

V. Lesser CS68:
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- Evaluating deci

1. Traverse the tree in a depth-first manner: Buyer knows car ¢, is good quality

(a) Assign a value to each leaf node based on the () 70% P(c,=good) = .7
outcome T2-f4il

(b) Calculate the average utility at each chance
node

(c) Calculate the maximum utility at each decision
node, while marking the maximum branch

2. Trace back the marked branches, from the root () ()

Buyer knows car c, is good quality
80% P(c,=good) = .8

Test £, check quality of car c,
P(¢,=pass/c,=good) = .8
P(¢,=pass/c,=bad) = .35

node down to find the desired optimal +\= +

(conditional) plan. Test of ¢, check quality of car c,
Finding the value of (perfect or imperfect ) PP P(t,=pass/c,=good) = .75

information in a decision tree. P(¢,=pass/c,=bad) = .3

V. Lesser CS683 F2004 13 V. Lesser CS683 F2004 14

 Case 3
+ Case1 — P(c2=good/t2=fail) = @
— P(c1=good/t2=fail)=p(c1=good)=.7 . — P(t2=fail/c2=good) P(c2=good)/P(t2=fail) =
— Utility = 2000-1500-20 =480 ; — (.25x.8=.2)/ P(t2=fail) = T2-fail
T2-f4il — Normalize .2/.34, .14/.34 (over c2 bad)
+ Case 2 _ 59
— P(c1=bad/t2=fail) = p(c1=bad) = — Utility = 1400-1150-20= 230
1- p(c1=good) = .3  Case4
— Utility = 2000-1500-700-20 = -220 — P(c2=bad/t2=fail) = oG
. Expected Utility of Chance - P(t2=f_a||/c2=bad) P(c2=bad)/P(t2=fail) =
— (.7x.2=.14) | P(t2=fail) = +/\- +
Node of 1&2 +h- 4 Y
— .7 x480 +.3x-220 = 270 — Utility = 1400-1150-20-150= 80 D>
OB G » Expected Utility of Chance Node of v
v 3&4 230 80

480 220 — .59 x230 +.41x80 =168.5
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‘Markoy’Decision Problems .
 What is the decision if O « A model of sequential decision-making
_ Decide to do test t2 :I;\slgloped in operations research in the
’S.

— It comes out false
— Do you buy ¢1 or c2? . . + Allows feasoning about actions with
« E(c1/test t2=fail) = Expected Utility of 1 2 uncertain outcomes.
Chance Node of 162 =270 O ©  MDPs have been adopted by the Al
community as a framework for:
» E(c2/test t2=fail) = Expected Utility of

Chance Node of 384 = 168 5 DB G — Decision-theoretic planning (e.g., [Dean et al., 1995])
' — Reinforcement learning (e.g., [Barto et al., 1995])
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Examp

o T

A policy is a choice of what action to choose at each state

e S - finite set of domain states An Optimal Policy is a policy where you are always choosing the
o . action that maximizes the “return”/’utility” of the current state
e A - finite set of actlo.n.s | Y N N el ara il
* P(s'ls,a) - state transition function
, 4 . + -1 762 .660[—1
 r(s,a) - reward function; can get reward at
any point T “— | «— | «— .705 .611|.388
* S, - initial state
« The Markov assumption: Agtlons sucgged with propaplllty 0.8 and move at right angles
with probability 0.1 (remain in the same position when
P(s,1's, 1,8, 5,...,8,,0) = P(s,| s, ,a) there is a wall). Actions incur a small cost (0.04).
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» Decision networks or influence diagrams are an
extension of belief networks that allow for

reasoning about actions and utility.
0-0-0-0 Q. a
* The network represents information about the

Solution is a agent’s current state, its possible actions, the
simple path Solution is an Solution is a possible outcome of those actions, and their
deterministic acyclic graph cyclic graph i

Non-deterministic Allows for infinite Utlllty'

Based on action sequence of

outcomes action

V. Lesser CS683 F2004 21 V. Lesser CS683 F2004 22
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Examp

* Decision trees are not convenient for )
representing domain knowledge Rain

— Requires tremendous amount of storage
» Multiple decisions nodes -- expands tree

+ Duplication of knowledge along different paths WeatherReport O Q

— Joint Probability Distribution vs Bayes Net

Utility

* Generate decision tree on the fly from more
economical forms of knowledge Umbrella

— Depth-first expansion of tree for computing optimal
decision

Parameters: P(Rain), P(WeatherReport|Rain),
P(WeatherReport|-Rain), Utility(Rain,Umbrella)

V. Lesser CS683 F2004 23 V. Lesser CS683 F2004 24



« Chance nodes (ovals) have CPTs (conditional » Causal knowledge about how events

probability tables) that depend on the states of influence each other in the domain
the parent nodes (chance or decision).
* Decision nodes (squares) represent options + Knowledge about what action sequences
available to the decision maker. are feasible in any given set of
+ Utility nodes (Diamonds) or value nodes circumstances
represent the overall utility based on the states of — Lays out possible temporal ordering of decisions

the parent nodes.

* Normative knowledge about how desirable
the consequences are

V. Lesser ©S683 F2004 25 V. Lesser CS683 F2004 26

e Links into decision nodes are called “information

1. The directed graph has no cyc|es_ links,” and they indicate that the state of the parent is
. i known prior to the decision.
2. The utility nodes have no children.
3. There is a directed path that contains » The directed path that goes through all the decision
’ . nodes defines a temporal sequence of decisions.

all of the decision nodes.

4. A CPT is attached to each chance - It also partitions the chance variables into sets: |, is

o the vars observed before any decision is made, |, is

node specifying P(A|parents(A)). the vars observed after the first and before the

5. A real valued function over second decision, etc. |, is the set of unobserved vars.

parents(U) is attached to each Ut'hty * The “no-forgetting” assumption is that the decision

node. maker remembers all past observations and
decisions. -- Non Markov Assumption

V. Lesser CS683 F2004 27 V. Lesser CS683 F2004 28
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1. Set the evidence variables for the current state.

2. For each possible value of the decision node:
(a) Set the decision node to that value.

(b) Calculate the posterior probabilities for the parent
nodes of the utility node.

(c) Calculate the expected utility for the action.

\ 3. Return the action with the highest utility.
_ ’ Similar to Cutset Conditioning of a Multiply

Connected Belief Network

Utility (deaths,noise,cost)

P(cost=high/airportsite=Darien,airtraffic=low,litigation=high,
construction=high)

V. Lesser CS683 F2004 29 V. Lesser CS683 F2004 30

Two months before the harvest of a wheat field, the
farmer observes the state Q of the crop, and he

observes whether it has been attacked by mildew, M.
If there is an attack, he will decide on a treatment e o

with fungicides.

There are five variables:

- Q: fair (f), not too bad (n), average (a), good (g)
- M: no (no), little (I), moderate (m), severe (s) @
- H: state of Q plus M: rotten (r),bad (b), poor (p)

- 0Q: observation of Q; imperfect information on Q
- OM: observation of M; imperfect information on M

V. Lesser CS683 F2004 31 V. Lesser CS683 F2004 32



* A single decision node D may have links to some chance
nodes.

» A set of utility functions U,...,U, over domains X,,...,X,.
* Goal: find the decision d that maximizes EU(D | e):

* How to solve such problems using a standard Bayesian
network package?

EU(De) = EUI(XI)P(XI |D,e) + +E U,(X,)P(X, |D,e)

X, X

n
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e If T=no test
— {Buy 1, Buy 2}

* If T=do test t1
— if t1=pass Buy1 else if t1=fail Buy2
— if t1=pass Buy?2 else if t1=fail Buy1
— Buy1
— Buy2

* If T=do test t2
— Same as above

A POLICY IS A SEQUENTIAL SET OF
DECISIONS, EACH POTENTIALLY BASED ON
THE OUTCOME OF PREVIOUS DECISIONS

V. Lesser CS683 F2004 35

Need a more complex evaluation technique since
generating a policy

V. Lesser CS683 F2004 34

Basic idea: (Ross Shachter) Perform a sequence of transformations to
the diagram that preserve the optimal policy and its value, until only
the UTILITY node remains.

— Similar to ideas of transformation into polytree

Four basic value/utility-preserving reductions:

» Barren node removal
» Chance node removal (marginalization)
+ Decision node removal (maximization)

» Arc reversal (Bayes'’ rule)

V. Lesser CS683 F2004 36
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* Let X; represent a subset of nodes of
interest in an influence diagram.

 Let X, represent a subset of evidence
nodes.

* We are interested in P(f(X)) | Xj)

* A node is “barren” if it has no
successors and it is not a member of X
or X,.

* The elimination of barren nodes does not
affect the value of P(f(X)) | Xj)

V. Lesser CS683 F2004 37

Node i directly linked to
utility node v

nodes connected to
[C(i) \ C(V)] [C(i) n C(V)] E(v)\C(i)\{iﬂ v but not to 1 and

not i
nodes connected
to1butnottov

[C(i)\C(V)] [C(i) N C(v)] %(v)\C(i)\{iﬂ

V. Lesser CS683 F2004 39
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[C(i) \ C(V)] [I(i) N C(V)] \
Assume null
I()) N C(v)

V. Lesser CS683 F2004 40
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1 Barren Node Removal
(A) ()
B—>OC>~D — 9@
ZDP(A,B,C,D) =P(A)P(BIA)P(CI B,A)ZEP(D 1C)

1 Removal into Value Node (by Expectation)

5 — B0

V(D) = Z VX, D)*P(X)

L v

Summer Institute on Probablility in AI 1934 Inference 1 21
AL o 41

Ovﬂ

[ C@)\ CG) ] [C(i) N C(j)] [C(j)\C(i)\{i}]

N
A

[ C()\ C() ] [C(i) N C(j)] %G)\C(i)\{i}]
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* Given an influence diagram
containing an arc from i to j, but no
other directed path fromiitoj, it is
possible to to transform the diagram
to one with an arc from jtoi. (Ifjis
deterministic, then it becomes
probabilistic.)

V. Lesser CS683 F2004 42

/ Arc Reversal \

Cjcé Q{ <z >
X =Pa(A)\Pa(b) Y =Pz(A)vPa(b) X =Pa(B)\Pa(A)

(&) (B)

S XS Xy I

P(AIBXY,Z) = P(BIAY,Z)*P(A I X,Y)/P(B | X,Y,Z)

\P\a=Parents Pa(A)\Pa(B) parents of A who are not parents of/B/

Summer Tnstitute on Probablility in AI 1594 Trfaranse 170
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Decision Example

1

1 Removal of X by Expectation into V

1 Reverse X-Y Arc

1 Removal of D by maximization into V
1 gives you the optimal policy for D given Y

'&Ew@\y

gummer Institute on Probablility in AT 1894

V. Let
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