## : Lecture 15: Uncertainty - 6 Victor Lesser CMPSCI 683 Fall 2004

### The value of information

- Example 1: You consider buying a program to manage your finances that costs \$100. There is a prior probability of 0.7 that the program is suitable in which case it will have a positive effect on your work worth \$500. There is a probability of 0.3 that the program is not suitable in which case it will have no effect.
- What is the value of knowing whether the program is suitable before buying it?



- Expected utility given information

   [0.7\*(500-100)+0.3(0)]
- Expected utility not given information
   [0.7(500-100)+0.3(0-100)]
- Value of Information

V Lesser CS683 E2004

- [0.7\*(500-100)+0.3(0)] - [0.7(500-100)+0.3(0-100)] = 280 - 250 = \$30

## Value of Perfect Information

- The general case: We assume that exact evidence can be obtained about the value of some random variable E<sub>i</sub>.
- The agent's current knowledge is E.
- The value of the current best action  $\alpha$  is defined by:

 $EU(\alpha|E) = \max_{A} \sum_{i} P(Result_{i}(A)|Do(A),E)$  $U(Result_{i}(A))$ 

Lesser CS683 E2004

V. Lesser CS683 F200

# VPI cont.

- With the information, the value of the new best action will be: EU(α<sub>Ej</sub>|E,E<sub>j</sub>) = max<sub>A</sub> ∑<sub>i</sub> P(Result<sub>i</sub>(A) | Do(A),E,E<sub>j</sub>) U(Result<sub>i</sub>(A))
- But E<sub>j</sub> is a random variable whose value is currently unknown, so we must average over all possible values e<sub>jk</sub> using our current belief: VPI<sub>E</sub> (E<sub>j</sub>) =

 $(\sum_{k} \underline{\mathsf{P}(\mathsf{E}_{\underline{j}} = \mathbf{e}_{\underline{j}\underline{k}} \mid \mathsf{E})} \mathsf{EU}(\alpha_{\mathsf{e}_{\underline{j}}\underline{k}} \mid \mathsf{E}, \, \mathsf{E}_{\underline{j}} = \mathbf{e}_{\underline{j}\underline{k}}) ) - \mathsf{EU}(\alpha \mid \mathsf{E})$ 



Decision Trees

V. Lesser CS683 F200

- Decision Networks
- Markov Decision Processes (MDPs)

Decision Trees

- A decision tree is an explicit representation of all the possible scenarios from a given state.
- Each path corresponds to decisions made by the agent, actions taken, possible observations, state changes, and a final outcome node.
- Similar to a game played against "nature"





- There are two candidate cars C<sub>1</sub> and C<sub>2</sub>, each can be of good quality (+) or bad quality (-).
- There are two possible tests, T<sub>1</sub> on C<sub>1</sub> (costs \$50) and T<sub>2</sub> on C<sub>2</sub> (costs \$20).
- C<sub>1</sub> costs \$1500 (\$500 below market value) but if it is of bad quality repair cost is \$700.
  - 500 gain or 200 lost
- C<sub>2</sub> costs \$1150 (\$250 below market value) but if it is of bad quality repair cost is \$150.
  - 250 gain or 100 gain

V. Lesser CS683 F2004

• Buyer must buy one of the cars and can perform at most one test. -- What other information?

### Example 2: Buying a car cont.

- The chances that the cars are of good quality are 0.70 for C<sub>1</sub> and 0.80 for C<sub>2</sub>.
- Test T<sub>1</sub> will confirm good quality with probability 0.80 and will confirm bad quality with probability 0.65.
- Test T<sub>2</sub> will confirm good quality with probability 0.75 and will confirm bad quality with probability 0.70.

V. Lesser CS683 F200







## Evaluating decision trees

- 1. Traverse the tree in a depth-first manner:
  - (a) Assign a value to each leaf node based on the outcome
  - (b) Calculate the average utility at each chance node
  - (c) Calculate the maximum utility at each decision node, while marking the maximum branch
- 2. Trace back the marked branches, from the root node down to find the desired optimal (conditional) plan.
- Finding the value of (perfect or imperfect ) information in a decision tree.



13

### **Additional Information**

Buyer knows car  $c_1$  is good quality 70% P( $c_1$ =good) = .7 Buyer knows car  $c_2$  is good quality 80% P( $c_2$ =good) = .8 Test  $t_1$  check quality of car  $c_1$ P( $t_1$ =pass/ $c_1$ =good) = .8 P( $t_1$ =pass/ $c_1$ =bad) = .35 Test of  $t_2$  check quality of car  $c_2$ P( $t_2$ =pass/ $c_2$ =good) = .75 P( $t_2$ =pass/ $c_2$ =bad) = .3

Details of Example

#### Case 1

V. Lesser CS683 F2004

- P(c1=good/t2=fail)=p(c1=good)=.7
- Utility = 2000-1500-20 =480

#### Case 2

- P(c1=bad/t2=fail) = p(c1=bad) = 1- p(c1=good) = .3
- Utility = 2000-1500-700-20 = -220
- Expected Utility of Chance Node of 1&2
  - .7 x480 +.3x-220 = 270





#### Case 3

V. Lesser CS683 F2004

- P(c2=good/t2=fail) =
- P(t2=fail/c2=good) P(c2=good)/P(t2=fail) =
- (.25x.8=.2)/ P(t2=fail) =
- Normalize .2/.34, .14/.34 (over c2 bad)
- .59
- Utility = 1400-1150-20= 230
- Case 4
  - P(c2=bad/t2=fail) =
  - P(t2=fail/c2=bad) P(c2=bad)/P(t2=fail) =
  - (.7x.2=.14) / P(t2=fail) =
  - .41
  - Utility = 1400-1150-20-150= 80
- Expected Utility of Chance Node of 3&4
  - .59 x230 +.41x80 =168.5

T2-fail C1 C2 (100) + - + 230 80



### Details of Example cont

- What is the decision if
  - Decide to do test t2
  - It comes out false
  - Do you buy c1 or c2?
    - E(c1/test t2=fail) = Expected Utility of Chance Node of 1&2 = 270
    - E(c2/test t2=fail) = Expected Utility of Chance Node of 3&4 = 168.5



## Markov Decision Problems

- A model of sequential decision-making developed in operations research in the 1950's.
- Allows reasoning about actions with uncertain outcomes.
- MDPs have been adopted by the Al community as a framework for:
  - Decision-theoretic planning (e.g., [Dean et al., 1995])
  - Reinforcement learning (e.g., [Barto et al., 1995])

Markov decision processes

- S finite set of domain states
- A finite set of actions
- P(*s*'|*s*,*a*) state transition function
- r(s,a) reward function; can get reward at any point
- S<sub>0</sub> initial state
- The Markov assumption:

$$P(s_t | s_{t-1}, s_{t-2}, \dots, s_1, a) = P(s_t | s_{t-1}, a)$$

Example: An Optimal Policy

A policy is a choice of what action to choose at each state

An Optimal Policy is a policy where you are always choosing the action that maximizes the "return"/"utility" of the current state



V. Lesser CS683 F200

V Lesser CS683 E2004

| n"/"utility" of the current state |      |      |      |      |
|-----------------------------------|------|------|------|------|
|                                   | .812 | .868 | .912 | +1   |
|                                   | .762 |      | .660 | -1   |
|                                   | .705 | .655 | .611 | .388 |

Actions succeed with probability 0.8 and move at right angles with probability 0.1 (remain in the same position when there is a wall). Actions incur a small cost (0.04).

V. Lesser CS683 F2004

## Possible Policy Structures



### **Decision Networks/Influence Diagrams**

- Decision networks or influence diagrams are an extension of belief networks that allow for reasoning about actions and utility.
- The network represents information about the agent's current state, its possible actions, the possible outcome of those actions, and their utility.

Influence Diagrams

#### Decision trees are not convenient for representing domain knowledge

- Requires tremendous amount of storage
  - Multiple decisions nodes -- expands tree
  - Duplication of knowledge along different paths
     Joint Probability Distribution vs Bayes Net

## Generate decision tree on the fly from more economical forms of knowledge

Depth-first expansion of tree for computing optimal decision





Parameters: P(Rain), P(WeatherReport|Rain), P(WeatherReport|¬Rain), Utility(Rain,Umbrella)

V. Lesser CS683 F2004

V. Lesser CS683 F2004

### Nodes in a Decision Network

- **Chance nodes** (ovals) have CPTs (conditional probability tables) that depend on the states of the parent nodes (chance or decision).
- **Decision nodes** (squares) represent options available to the decision maker.
- Utility nodes (Diamonds) or value nodes represent the overall utility based on the states of the parent nodes.

### Knowledge in an Influence Diagram

- Causal knowledge about how events influence each other in the domain
- Knowledge about what action sequences are feasible in any given set of circumstances
  - Lays out possible temporal ordering of decisions
- Normative knowledge about how desirable the consequences are

## Topology of decision networks

- 1. The directed graph has no cycles.
- 2. The utility nodes have no children.
- 3. There is a directed path that contains all of the decision nodes.
- 4. A CPT is attached to each chance node specifying P(A|parents(A)).
- 5. A real valued function over parents(U) is attached to each utility node.



- Links into decision nodes are called "information links," and they indicate that the state of the parent is known prior to the decision.
- The directed path that goes through all the decision nodes defines a temporal sequence of decisions.
- It also partitions the chance variables into sets: I<sub>0</sub> is the vars observed before any decision is made, I<sub>1</sub> is the vars observed after the first and before the second decision, etc. I<sub>n</sub> is the set of unobserved vars.
- The "no-forgetting" assumption is that the decision maker remembers all past observations and decisions. -- Non Markov Assumption

V. Lesser CS683 F2004

V. Lesser CS683 F2004

## Example 4: Airport Siting Problem



• P(cost=high/airportsite=Darien,airtraffic=low,litigation=high, construction=high)

### **Evaluating Decision Networks**

- 1. Set the evidence variables for the current state.
- 2. For each possible value of the decision node:
  - (a) Set the decision node to that value.
  - (b) Calculate the posterior probabilities for the parent nodes of the utility node.
  - (c) Calculate the expected utility for the action.
- 3. Return the action with the highest utility.

#### Similar to Cutset Conditioning of a Multiply Connected Belief Network

Example 5: Mildew

Two months before the harvest of a wheat field, the farmer observes the state Q of the crop, and he observes whether it has been attacked by mildew, M. If there is an attack, he will decide on a treatment with fungicides.

#### There are five variables:

- Q: fair (f), not too bad (n), average (a), good (g)
- M: no (no), little (l), moderate (m), severe (s)
- H: state of Q plus M: rotten (r),bad (b), poor (p)
- OQ: observation of Q; imperfect information on Q
- OM: observation of M; imperfect information on M

# Mildew decision model



V. Lesser CS683 F2004

29

V. Lesser CS683 F2004



- A single decision node *D* may have links to some chance nodes.
- A set of utility functions  $U_1, ..., U_n$  over domains  $X_1, ..., X_n$ .
- Goal: find the decision d that maximizes  $EU(D \mid e)$ :
- How to solve such problems using a standard Bayesian network package?

$$EU(D \mid e) = \sum_{X_1} U_1(X_1) P(X_1 \mid D, e) + \dots + \sum_{X_n} U_n(X_n) P(X_n \mid D, e)$$

## Multiple decisions -- Policy Generation



Need a more complex evaluation technique since generating a policy

## Options At Decision Node D

• If T=no test

V. Lesser CS683 F2004

- {Buy 1, Buy 2}
- If T=do test t1
  - if t1=pass Buy1 else if t1=fail Buy2
  - if t1=pass Buy2 else if t1=fail Buy1
  - Buy1
  - Buy2
- If T=do test t2
  - Same as above

#### A POLICY IS A SEQUENTIAL SET OF DECISIONS, EACH POTENTIALLY BASED ON THE OUTCOME OF PREVIOUS DECISIONS



Basic idea: (Ross Shachter) Perform a sequence of transformations to the diagram that preserve the optimal policy and its value, until only the UTILITY node remains.

- Similar to ideas of transformation into polytree

Four basic value/utility-preserving reductions:

- Barren node removal
- · Chance node removal (marginalization)
- Decision node removal (maximization)
- Arc reversal (Bayes' rule)

#### V. Lesser CS683 F2004

## Barren node reduction

- Let X<sub>j</sub> represent a subset of nodes of interest in an influence diagram.
- Let X<sub>k</sub> represent a subset of evidence nodes.
- We are interested in  $P(f(X_i) | X_k)$

V. Lesser CS683 F2004

- A node is "barren" if it has no successors and it is not a member of X<sub>j</sub> or X<sub>k</sub>.
- The elimination of barren nodes does not affect the value of P(f(X<sub>j</sub>) | X<sub>k</sub>)













 Given an influence diagram containing an arc from i to j, but no other directed path from i to j, it is possible to to transform the diagram to one with an arc from j to i. (If j is deterministic, then it becomes probabilistic.)

42





