Mid Term Exam

Lecture 14: Uncertainty - 5

Victor Lesser

CMPSCI 683
Fall 2004

3SAT Phase Transition

- Easy -- Sastifiable problems where many solutions
- Hard -- Sastifiable problems where few solutions
- Easy -- Few Satisfiable problems

More clauses for the same number of variables more constraints

Ratio of clauses-to-variables
Fig. 2 Fraction of unsatisfiable 3 SAT problerns

Assumes concurrent search in the satisfiable space and the non-satisfiable space (negation of proposition)

- November 2 -- Tuesday; in class
- Open book but no computers
- Covering only material through chapter 14.5
- No material on utility theory or decision trees
- Style of questions
- Mix of Short essay and Technique
- Homework 3 is a good example

- Review of Homework 1
- Making decisions under uncertainty using utility theory. --chapter 16
- The value of information.
- Decision Trees

Review of Homework \#1

1. [25\%] Consistency, Monotonicity, Admissibility: (AIMA2 4.7):

Prove that if a heuristic is consistent (i.e. monotonic), it must be admissible. Construct and demonstrate an admissible heuristic that is not consistent.
2. [25\%] Would bi-directional A* search be a good idea? If so, under what conditions would it be applicable, when not? Describe the algorithm's workings, and space time requirement.

Review of Homework \#1 cont

4. [25\%] Heuristic Selection Selection

Suppose your A* search agent has several admissible \& monotone heuristics, $(h(n)$), available to it which vary greatly in both the cost/time to generate a score and the fidelity of the $h(n)$ score. The 'better' heuristics are more accurate (i.e. they underestimate by less) but they incur a much larger computational cost (e.g. the evaluation function generates and searches the almost entire space)
a) Describe in detail the decision procedure that your agent would use to select among these heuristics at each step in its search to minimize overall search time (or rather computational effort) to a (optimal?) solution, rather than focusing on the effective branching factor or number of nodes expanded.

Your decision procedure should take into account the following parameters. Heuristic computation time, node generation time, and number of nodes generated (i.e. the effective branching factor that that heuristic makes for A* on the space), and whatever else you think is necessary. Be explicit about any additional assumptions you make about the space.

[^0]
Review of Homework \#1 cont

3. [25\%] Island-Based Search

Island-Based search is a technique where instead of finding a path directly to the goal, one first identifies an "island" that is a node more or less halfway between the initial node and the goal node. The search then proceeds as follows: first an attempt is made to find an acceptable path to the goal that passes through this island. (This first step actuall then has two sub-parts: One first finds a path from start node to island and next searches for a path from island to goal.) If no acceptable path through an "island" can be found, we simply solve the original problem instead. It is assumed that search can only be performed forward here (i.e. towards the goal) unlike bidirectional search.
a) Assume that the time needed to search a tree with branching factor b and depth d is $k^{*} b^{\wedge} d$, (k is some arbitrary constant to maintain generality), that the time required to identify a suitable island is c, and the probability that the island is on an acceptable (not neccessarily optimal) path to the goal is p. Find the conditions on p and c such that the average (expected) time required by the island-driven approach will be less than the time needed by breadth-first search
b) Give an example of a search-problem where island-driven search is likely to save time
c) Discuss some possible extensions to the island search paradigm and their potential risks and benefits

Making Simple One-Shot Decisions

- Combining Beliefs and Desires Under Uncertainty

- Basis of Utility Theory

Maximum Expected Utility (MEU)

- The MEU principle says that a rational agent should choose an action that maximizes its expected utility in the current state (E)
$E U(\alpha \mid E)=\max _{A} \sum_{i} P\left(\operatorname{Result}_{i}(A) \mid \operatorname{Do}(A), E\right) U\left(\operatorname{Result}_{i}(A)\right)$
- Why isn't the MEU principle all we need in order to build "intelligent agents"?
- Is it Difficult to Computer P,E or U ?

The Foundation of Utility Theory

- Why make decisions based on average or expected utility?
- Why can one assume that utility functions exist?
- Can an agent act rationally by expressing preferences between states without giving them numeric values?
- Can every preference structure be captured by assigning a single number to every state?

MEU Computational Difficulties

- Knowing the current state of the world requires perception, learning, knowledge representation and inference.
- Computing $P\left({ }^{*}\right)$ requires a complete causal model of the world.
- Computing the utility of a state often requires search or planning (distinguish between explicit and implicit utility)
- Calculation of Utility of a particular state may require us to look at what utilities could be achieved from that state
- All of the above can be computationally intractable, hence one needs to distinguish between "perfect rationality" and "resource-bounded rationality" or "bounded-optimality".
- Also Need to consider more than one action (one-shot decisions versus sequential decisions).

Constraints on Rational Preferences

The MEU principle can be derived from a more basic set of assumptions.

- Lotteries are used to describe scenarios of choice with probabilistic outcomes.
- Key to the idea of formalizing preference structures and relating them to MEU
- Different outcomes correspond to different prizes. - $L=[p ; A ; 1-p, B]$.
- Can have any number of outcomes, an outcome of a lottery can be another lottery.
$-\mathrm{L}=\left[\mathrm{p}_{1} ; \mathrm{C}_{1} ; \mathrm{p}_{2} ; \mathrm{C}_{2} ; \ldots \mathrm{p}_{n} ; \mathrm{C}_{n}\right]$.
$-L=\left[p ; A ; 1-p\left[p_{1} ; C_{1} ; p_{2} ; C_{2} ; \ldots p_{n} ; C_{n}\right]\right.$].
- A lottery with only one outcome can be written as [1,A] or simply A.

Preference Notation

Let A and B be two possible outcomes:

$A>B$	Outcome A is preferred to B
$A \equiv B$	The agent is indifferent between A and B
$A \geq B$	The agent prefers A to B or is indifferent between them.

Axioms of Utility Theory cont.

- Monotonicity
$A>B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B]$
$\geq[q, A ; 1-q, B])$
- Decomposability
[p,A; 1-p,[q,B; 1-q,C]] \equiv [p,A; (1-p)q,B; (1-p)(1-q),C]

If Preference Structure Obeys Axioms Can be Mapped into a Lottery

Maximum Expected Utility

 PrincipleTheorem: The utility of a lottery is the sum of probabilities of each outcome times the utility of that outcome:
$\mathrm{U}\left(\left[\mathrm{p}_{1}, \mathrm{~S}_{1} ; \mathrm{p}_{2}, \mathrm{~S}_{2} ; \ldots ; \mathrm{p}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}\right]\right)=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{U}\left(\mathrm{S}_{\mathrm{i}}\right)$
Q. Does the existence of a utility function that captures the agent's preference structure imply that a rational agent must act by maximizing expected utility?

Risk-Averter's Curve

Decreasing marginal utility for money. Will buy affordable insurance. Will only take gambles with substantial positive expected monetary payoff.

Expected Monetary Value (EMV)

Example: You can take a $\$ 1,000,000$ prize or gamble on it by flipping a coin. If you gamble, you will either triple the prize or loose it.
EMV (expected monetary value) of the lottery is $\$ 1,500,000$, but does it have higher utility?

Bernoulli's 1738 St. Petersburg Paradox: Toss a coin until it comes up heads. If it happens after n times, you receive 2^{n} dollars.

$$
E M V(S t . P .)=\sum_{i} 1 /\left(2^{i}\right) 2^{i}=i n f .
$$

How much should you pay to participate in this game?

Utility Curves

- Risk-neutral agents (linear curve).
- Regardless of the attitude towards risk, the utility function can always be approximated by a straight line over a small range of monetary outcome.
- The certainty equivalent of a lottery.
- Example: Most people will accept about $\$ 400$ in lieu of a gamble that gives $\$ 1000$ half the times and $\$ 0$ the other half.

Is Human Judgment Rational?

- Choose between lotteries A and B, and then between C and D:
$\begin{array}{ll}\text { A: } 80 \% \text { chance of } \$ 4000 & \text { C: } 20 \% \text { chance of } \$ 4000 \\ \text { B: } 100 \% \text { chance of } \$ 3000 & \text { D: } 25 \% \text { chance of } \$ 3000\end{array}$
- The majority of the subjects choose B over A and C over D. But if $U(\$ m)=m$, we get:
$0.8 \mathrm{U}(\$ 4000)<\mathrm{U}(\$ 3000)$ and
$0.2 \mathrm{U}(\$ 4000)>0.25 \mathrm{U}(\$ 3000)$
...contradicts the axioms.
$[.8,4000, .2,0]<[1,3000, .0,0],[.25,3000, .75,0]>[.2,4000, .8,0]$
- Is decision theory compatible with human judgment under uncertainty?
- Does it outperform human judgment in micro/macro worlds?
- Are people "experts" in reasoning under uncertainty? How well do they perform? What kind of heuristics do they use?
- The impact of automated techniques for reasoning under uncertainty on our capability in future forecasting, policy formation, etc.

Utility in the Medical Domain

Multi-Attribute Utility Functions

- Why multi-attribute?
- Example: evaluating a new job offer (salary, commute time, quality of life, etc.)
- $U(a, b, c, \ldots)=f[f 1(a), f 2(b) \ldots .$.$] where f$ is a simple function such as addition
- f=+, In case of mutual preference independence which occurs when it is always preferable to increase the value of an attribute given all other attributes are fixed
- Dominance (strict dominance vs. stochastic dominance).
- For every point
- Probablistic view

Strict Dominance

Strict dominance occurs if an option is of lower value on all attributes than some other option

[^1]
Stochastic Dominance

(a)

(b)

Figure 16.4 Stochastic dominance. (a) S_{1} stochastically dominates S_{2} on cost. (b) Cumulative distributions for the negative cost of S_{1} and S_{2}.

```
P(S1 \geqU1) \geqP(S2 \geqU1)
```


The value of information

- Example 1: You consider buying a program to manage your finances that costs $\$ 100$. There is a prior probability of 0.7 that the program is suitable in which case it will have a positive effect on your work worth $\$ 500$. There is a probability of 0.3 that the program is not suitable in which case it will have no effect.
- What is the value of knowing whether the program is suitable before buying it?

The Value of Information cont.

Example 2: Suppose an oil company is hoping to buy one of n blocks of ocean drilling rights.

- Exactly one block contains oil worth C dollars.
- The price of each block is C / n dollars.
- If the company is risk-neutral, it will be indifferent between buying a block or not.-- WHY?
- A seismologist offers the company a survey indicating whether block \#3 contains oil.
- How much should the company be willing to pay for the information?
- Expected utility given information
$-\left[0.7^{*}(500-100)+0.3(0)\right]$
- Expected utility not given information $-[0.7(500-100)+0.3(0-100)]$
- Value of Information
$-\left[0.7^{*}(500-100)+0.3(0)\right]-[0.7(500-100)+0.3(0-$ 100)] $=280-250=\$ 30$

The Value of Information cont.

- What can the company do with the information?
- Case 1: block \#3 contains oil ($p=1 / n$).

Company will buy it and make a profit of:

$$
C-C / n=(n-1) C / n \text { dollars. }
$$

- Case 2: block \#3 contains no oil ($p=(n-1) / n$).

Company will buy different block and make:
$C /(n-1)-C / n=C /(n(n-1))$ dollars.

- Now, the overall expected profit is C / n.
- Q. What is the value of information?

Value of Perfect Information

- The general case: We assume that exact evidence can be obtained about the value of some random variable E_{j}.
- The agent's current knowledge is E.
- The value of the current best action α is defined by:

$$
\begin{gathered}
E U(\alpha \mid E)=\max _{A} \sum_{i} P\left(\operatorname{Resesult}_{i}(\mathrm{~A}) \mid \operatorname{Do}(\mathrm{A}), \mathrm{E}\right) \\
\mathrm{E})(\mathrm{A}))
\end{gathered}
$$

Properties of the Value of Information

- In general:

$$
\mathrm{VPI}_{\mathrm{E}}\left(\mathrm{E}_{\mathrm{j}}, \mathrm{E}_{\mathrm{k}}\right) \neq \mathrm{VPI}_{\mathrm{E}}\left(\mathrm{E}_{\mathrm{j}}\right)+\mathrm{VPI}_{\mathrm{E}}\left(\mathrm{E}_{\mathrm{k}}\right)
$$

- But the order is not important:

$$
\begin{aligned}
& \operatorname{VPI}_{E}\left(\mathrm{E}_{\mathrm{j}}, \mathrm{E}_{\mathrm{k}}\right)= \\
& \operatorname{VPI}_{\mathrm{E}}\left(\mathrm{E}_{\mathrm{j}}\right)+\operatorname{VPI}_{\mathrm{E}, \mathrm{E}_{\mathrm{j}}}\left(\mathrm{E}_{\mathrm{k}}\right)=\operatorname{VPI}_{\mathrm{E}}\left(\mathrm{E}_{\mathrm{k}}\right)+ \\
& \operatorname{VPI}_{\mathrm{E}, \mathrm{E}_{\mathrm{k}}}\left(\mathrm{E}_{\mathrm{j}}\right)
\end{aligned}
$$

- What about the value of imperfect information?

VPI cont.

- With the information, the value of the new best action will be: $\mathrm{EU}\left(\alpha_{\mathrm{Ej}} \mid \mathrm{E}, \mathrm{E}_{\mathrm{j}}\right)=$ $\max _{A} \sum_{i} P\left(\operatorname{Result}_{i}(\mathrm{~A}) \mid \operatorname{Do}(\mathrm{A}), \mathrm{E}_{\mathrm{E}} \mathrm{E}_{\mathrm{j}}\right) \mathrm{U}\left(\operatorname{Result}_{i}(\mathrm{~A})\right)$
- But E_{j} is a random variable whose value is currently unknown, so we must average over all possible values e_{jk} using our current belief: VPI ${ }_{E}\left(\mathrm{E}_{\mathrm{j}}\right)=$ $\left(\sum_{k} P\left(E_{j}=e_{j k} \mid E\right) E U\left(\alpha_{\mathrm{e}_{\mathrm{j} k}} \mid E, E_{j}=e_{j k}\right)\right)-E U(\alpha \mid E)$

Value of Information

Utility Distributions for Actions A_{1} and A_{2} over the range of the random variable E_{j}

- Decision Trees and Networks
- Markov Decision Processes (MDPs)
- Non-Probablistic Ways of Reasoning about Uncertainty

[^0]: b) Does switching between admissible heuristics lead to an admissible heuristic?

[^1]: $U(B) \geq U(A)$ since $U(B(X 1, X 2)) \geq U(A(X 1, X 2))$

