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Mid Term ExamMid Term Exam

• November 2 -- Tuesday; in class

• Open book but no computers

• Covering only material through  chapter
14.5

– No material on utility theory or decision trees

• Style of questions

– Mix of Short essay and Technique

– Homework 3 is a good example
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3SAT Phase Transition3SAT Phase Transition

20--variable formulas !

40--variable formulas +

50--variable formulas  !
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• Easy -- Sastifiable problems where many solutions

• Hard -- Sastifiable problems where few solutions

• Easy -- Few Satisfiable problems

• Assumes concurrent search in the satisfiable space and the non-satisfiable
space ( negation of proposition)

• Phase transition where 50% satisfiable and 50% non-satisfiable

More clauses for the
same number of
variables more
constraints
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OutlineOutline

• Review of Homework 1

• Making decisions under uncertainty using
utility theory. --chapter 16

– The value of information.

• Decision Trees
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Review of Homework #1Review of Homework #1

1. [25%] Consistency, Monotonicity, Admissibility: (AIMA2 4.7):

Prove that if a heuristic is consistent (i.e. monotonic), it must be

admissible. Construct and demonstrate an admissible heuristic

that is not consistent.

2. [25%] Would bi-directional A* search be a good idea?

If so, under what conditions would it be applicable, when not?

Describe the algorithm's workings, and space time requirement.
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Review of Homework #1 contReview of Homework #1 cont

3. [25%] Island-Based Search

Island-Based search is a technique where instead of finding a path directly to the goal, one first identifies

an "island" that is a node more or less halfway between the initial node and the goal node. The

search then proceeds as follows: first an attempt is made to find an acceptable path to the goal that

passes through this island. (This first step actuall then has two sub-parts: One first finds a path

from start node to island and next searches for a path from island to goal.) If no acceptable path

through an "island" can be found, we simply solve the original problem instead. It is assumed that

search can only be performed forward here (i.e. towards the goal) unlike bidirectional search.

a) Assume that the time needed to search a tree with branching factor b and depth d is k*b^d, (k is

some arbitrary constant to maintain generality), that the time required to identify a suitable island

is c, and the probability that the island is on an acceptable (not neccessarily optimal) path to the

goal is p. Find the conditions on p and c such that the average (expected) time required by the

island-driven approach will be less than the time needed by breadth-first search

b) Give an example of a search-problem where island-driven search is likely to save time.

c) Discuss some possible extensions to the island search paradigm and their potential risks and benefits.
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Review of Homework #1 contReview of Homework #1 cont

4. [25%] Heuristic Selection Selection

Suppose your A* search agent has several admissible & monotone heuristics, (h(n)), available to it

which vary greatly in both the cost/time to generate a score and the fidelity of the h(n) score. The

'better' heuristics are more accurate (i.e. they underestimate by less) but they incur a much larger

computational cost (e.g. the evaluation function generates and searches the almost entire space)

a) Describe in detail the decision procedure that your agent would use to select among these heuristics at

each step in its search to minimize overall search time (or rather computational effort) to a

(optimal?) solution, rather than focusing on the effective branching factor or number of nodes

expanded.

Your decision procedure should take into account the following parameters. Heuristic computation time,

node generation time, and number of nodes generated (i.e. the effective branching factor that that

heuristic makes for A* on the space), and whatever else you think is necessary. Be explicit about

any additional assumptions you make about the space.

b) Does switching between admissible heuristics lead to an admissible heuristic?
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Making Simple One-Shot DecisionsMaking Simple One-Shot Decisions

• Combining Beliefs and Desires
Under Uncertainty

• Basis of Utility Theory
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Maximum Expected Utility (MEU)Maximum Expected Utility (MEU)

• The MEU principle says that a rational agent

should choose an action that maximizes its

expected utility in the current state (E)

EU("|E) = maxA !i P(Resulti(A)|Do(A),E) U(Resulti(A))

• Why isn’t the MEU principle all we need in
order to build “intelligent agents”?
– Is it Difficult to Computer P,E or U ?
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MEU Computational DifficultiesMEU Computational Difficulties

– Knowing the current state of the world requires
perception, learning, knowledge representation and
inference.

– Computing P(*) requires a complete causal model of the
world.

– Computing the utility of a state often requires search or
planning (distinguish between explicit and implicit utility)

• Calculation of Utility of a particular state may require us to look
at what utilities could be achieved from that state

– All of the above can be computationally intractable,
hence one needs to distinguish between “perfect
rationality” and “resource-bounded rationality” or
“bounded-optimality”.

– Also Need to consider more than one action (one-shot
decisions versus sequential decisions).
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The Foundation of Utility TheoryThe Foundation of Utility Theory

• Why make decisions based on average or
expected utility?

• Why can one assume that utility functions
exist?

• Can an agent act rationally by expressing
preferences between states without giving
them numeric values?

• Can every preference structure be
captured by assigning a single number to
every state?
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Constraints on RationalConstraints on Rational

PreferencesPreferences
The MEU principle can be derived from a more

basic set of assumptions.

• Lotteries are used to describe scenarios of choice

with probabilistic outcomes.

– Key to the idea of formalizing preference structures and relating

them to MEU

• Different outcomes correspond to different prizes.
– L = [p;A; 1-p,B].

• Can have any number of outcomes, an outcome of a
lottery can be another lottery.
– L = [p1;C1; p2;C2 ;  ….  pn;Cn].

– L = [p;A; 1-p [p1;C1; p2;C2 ;  ….  pn;Cn]].

• A lottery with only one outcome can be written as
[1,A] or simply A.
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Preference NotationPreference Notation

Let A and B be two possible outcomes:

A > B Outcome A is preferred to B

A $ B The agent is indifferent
between A and B

A % B The agent prefers A to B or
is indifferent between them.
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Axioms of Utility TheoryAxioms of Utility Theory

• Orderability (the agent know what it wants)

(A > B) & (B > A) & (A $ B)

• Transitivity

(A > B) ' (B > C) (  (A > C)

• Continuity

A > B > C  (  )p [p,A; 1-p,C] $ B

• Substitutability

A $ B ( (*p) [p,A; 1-p,C] $ [p,B; 1-p,C]
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Axioms of Utility Theory cont.Axioms of Utility Theory cont.

• Monotonicity
     A > B ( (p " q # [p,A; 1-p,B]

% [q,A; 1-q,B])

• Decomposability
[p,A;  1-p,[q,B; 1-q,C]]  $  

[p,A;  (1-p)q,B;  (1-p)(1-q),C]

If Preference Structure Obeys Axioms
Can be Mapped into a Lottery
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The Utility PrincipleThe Utility Principle

Theorem:  If an agent's preferences obey
the axioms of utility theory, then there exists
a real-valued function U that operates on
states such that:

U(A) > U(B)  #  A > B;  and

U(A) = U(B)  #  A $ B
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Maximum Expected UtilityMaximum Expected Utility

PrinciplePrinciple

Theorem:  The utility of a lottery is the
sum of probabilities of each outcome
times the utility of that outcome:

U([p1,S1; p2,S2; ...; pn,Sn]) = !i pi U(Si)

Q. Does the existence of a utility function that
captures the agent's preference structure imply
that a rational agent must act by maximizing
expected utility?
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Expected Monetary Value (EMV)Expected Monetary Value (EMV)

Example: You can take a $1,000,000 prize or
gamble on it by flipping a coin.  If you gamble,
you will either triple the prize or loose it.

EMV (expected monetary value) of the lottery is
$1,500,000, but does it have higher utility?

Bernoulli's 1738 St. Petersburg Paradox: Toss a
coin until it comes up heads.  If it happens after
n times, you receive 2n dollars.

EMV(St. P.) = !i  1/(2i) 2i = inf.

How much should you pay to participate in this
game?
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Risk-AverterRisk-Averter’’s Curves Curve

Decreasing marginal utility for money.  Will buy
affordable insurance.  Will only take gambles with
substantial positive expected monetary payoff.

m(money)

U(m)

U($m) = m

U( large $m) << m
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Risk-SeekerRisk-Seeker’’s Curves Curve

Increasing marginal utility for money.  Will not buy
insurance.  Will sometimes participate in unfavorable
gamble having negative expected monetary payoff.

m

U(m)
U($m) = m

U( large $m) >> m
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Utility CurvesUtility Curves

• Risk-neutral agents (linear curve).

• Regardless of the attitude towards risk, the
utility function can always be approximated
by a straight line over a small range of
monetary outcome.

• The certainty equivalent of a lottery.

– Example:  Most people will accept about
$400 in lieu of a gamble that gives $1000
half the times and $0 the other half.
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Human Judgment underHuman Judgment under

UncertaintyUncertainty

• Is decision theory compatible with human
judgment under uncertainty?

• Does it outperform human judgment in
micro/macro worlds?

• Are people “experts” in reasoning under
uncertainty?  How well do they perform?  What
kind of heuristics do they use?

• The impact of automated techniques for
reasoning under uncertainty on our capability in
future forecasting, policy formation, etc.
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Is Human Judgment Rational?Is Human Judgment Rational?

• Choose between lotteries A and B, and then
between C and D:

A: 80% chance of $4000      C: 20% chance of $4000

B: 100% chance of $3000      D: 25% chance of $3000

• The majority of the subjects choose B over A and
C over D.  But if U($m) = m, we get:

0.8 U($4000) < U($3000)   and

0.2 U($4000) > 0.25 U($3000)

...contradicts the axioms.

[.8,4000,.2,0]<[1,3000,.0,0], [.25,3000,.75,0]>[.2,4000,.8,0]
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Utility Scales and Utility AssessmentUtility Scales and Utility Assessment

• Utility functions are not unique (for a given
preference structure):  U'(S) = a + b U(S)

• Normalized utility:
–  U+  =  0  =  Utility(worst possible

catastrophe)

–  U+ =  1  =  Utility(best possible prize)

• Can find the utility of a state S by adjusting
the probability p of a standard lottery:
[p,U+; 1-p,U+] that makes the agent
indifferent between S and the lottery.
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Utility in the Medical DomainUtility in the Medical Domain

• Several standard “currencies” are used.

• Micromort - a one in a million chance of
immediate death

1 micromort = $20 (in 1980 dollars)...

• QALY - (Quality-Adjusted Life Year) a year
in good health with no infirmities

• These measures are useful for decision
making with small incremental risks and
rewards.
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Multi-Attribute Utility FunctionsMulti-Attribute Utility Functions

• Why multi-attribute?

– Example: evaluating a new job offer (salary,
commute time, quality of life, etc.)

– U(a,b,c,…)= f[f1(a),f2(b)…..] where f is a simple
function such as addition

• f=+, In case of mutual preference independence which
occurs when it  is always preferable to increase the
value of an attribute given all other attributes are fixed

• Dominance (strict dominance vs. stochastic
dominance).

– For every point

– Probablistic view

27V. Lesser CS683 F2004

Strict DominanceStrict Dominance

Strict dominance occurs if an option is of lower value on all attributes than some other option

U(B) ! U(A) since U( B(X1,X2) ) ! U (A(X1,X2))
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Stochastic DominanceStochastic Dominance

P(S1 ! U1) !  P(S2 ! U1)
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The value of informationThe value of information

• Example 1:  You consider buying a program to
manage your finances that costs $100.  There is
a prior probability of 0.7 that the program is
suitable in which case it will have a positive effect
on your work worth $500.  There is a probability
of 0.3 that the program is not suitable in which
case it will have no effect.

• What is the value of knowing whether the
program is suitable before buying it?
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Example 1 AnswerExample 1 Answer

• Expected utility given information

– [0.7*(500-100)+0.3(0)]

• Expected utility not given information

– [0.7(500-100)+0.3(0-100)]

• Value of Information

– [0.7*(500-100)+0.3(0)] - [0.7(500-100)+0.3(0-
100)]  =  280 - 250 = $30
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The Value of Information cont.The Value of Information cont.

Example 2:  Suppose an oil company is hoping to
buy one of n blocks of ocean drilling rights.

• Exactly one block contains oil worth C dollars.

• The price of each block is C/n dollars.

• If the company is risk-neutral, it will be indifferent
between buying a block or not.-- WHY?

• A seismologist offers the company a survey
indicating whether block #3 contains oil.

• How much should the company be willing to pay
for the information?
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The Value of Information cont.The Value of Information cont.

• What can the company do with the information?

• Case 1: block #3 contains oil (p=1/n).

Company will buy it and make a profit of:

C - C/n = (n-1) C/n dollars.

• Case 2: block #3 contains no oil (p=(n-1)/n).

Company will buy different block and make:

C/(n-1) - C/n = C/(n (n-1)) dollars.

• Now, the overall expected profit is C/n.

• Q.  What is the value of information?
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Value of Perfect InformationValue of Perfect Information

• The general case:  We assume that
exact evidence can be obtained about
the value of some random variable Ej.

• The agent's current knowledge is E.

• The value of the current best action " is

defined by:

EU("|E) = maxA !i P(Resulti(A)|Do(A),E)

U(Resulti(A))
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VPI cont.VPI cont.

• With the information, the value of the new
best action will be:  EU("Ej|E,Ej) =

maxA !i P(Resulti(A) | Do(A),E,Ej) U(Resulti(A))

• But Ej is a random variable whose value is
currently unknown, so we must average over
all possible values ejk using our current
belief:  VPIE (Ej) =

(!k P(Ej=ejk | E) EU("ejk | E, Ej = ejk) ) - EU(" | E)
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Properties of the Value ofProperties of the Value of

InformationInformation

• In general:

VPIE(Ej,Ek)  , VPIE(Ej) + VPIE(Ek)

• But the order is not important:

VPIE(Ej,Ek)  =

 VPIE(Ej) + VPIE,Ej
(Ek)  =  VPIE(Ek) +

VPIE,Ek
(Ej)

• What about the value of imperfect
information?
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Value of InformationValue of Information

Utility Distributions for Actions A1and A2 over the range
of the random variable Ej

U2(Ej=a1) U1(Ej=a1)
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Next LectureNext Lecture

• Decision Trees and Networks

• Markov Decision Processes (MDPs)

• Non-Probablistic Ways of Reasoning about
Uncertainty


