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OutlineOutline

• Approximate inference techniques -- chapter

14.4&14.5

• Alternative approaches to uncertain reasoning

(will do later)

– Dempster-shafer

– Fuzzy-Logic

– Truth-maintenance
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Mid Term ExamMid Term Exam

• November 2 -- Tuesday; in class

• Open book but no computers

• Covering only material through  chapter 14.5

– No material on utility theory or decision trees

• Style of questions

– Mix of Short essay and Technique

– Homework 3 is a good example
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Inference in Multiply Connected BNsInference in Multiply Connected BNs

• Clustering methods transform the network into a

probabilistically equivalent polytree.

– Also called Join tree algorithms

• Conditioning methods instantiate certain variables

and evaluate a polytree for each possible

instantiation.

• Stochastic simulation approximate the beliefs by

generating a large number of concrete models that

are consistent with the evidence and CPTs.
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Example of Multiply Connected BNExample of Multiply Connected BN

Cloudy

Sprinkler Rain

Wet Grass

C P(S)

T .10

F .50

C P(R)

T .80

F .20

P(C)=.5

S R P(W)

T T .99

T F .90

F T .90

F F .00
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Clustering MethodsClustering Methods

• Creating meganodes until the
network becomes a polytree.

• Most effective approach for exact
evaluation of multiply connected
BNs.

• The tricky part is choosing the right
meganodes.

• Q.  What happens to the NP-
hardness of the inference problem?
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Clustering ExampleClustering Example

Cloudy

Spr+Rain

Wet Grass

        P(S+R)

C TT   TF  FT   FF

T .08  .02  .72  .18

F .10  .40  .10  .40

P(C)=.5

S+R P(W)

T T .99

T F .90

F T .90

F F .00

Cloudy

Sprinkler Rain

Wet Grass

How do you still answer

P(Rain=True / Wet Grass=False)  ?

What the disadvantages?
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Cutset Conditioning MethodsCutset Conditioning Methods

• Once a variable is instantiated it can be
duplicated and thus “break” a cycle.

• A cutset is a set of variables whose
instantiation makes the graph a
polytree.

• Each polytree’s likelihood is used as a
weight when combining the results.

• Bounded cutset conditioning is an
anytime version.
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Networks Created by InstantiationNetworks Created by Instantiation

Cloudy+

Sprinkler Rain

Wet Grass

Cloudy+

Cloudy-

Sprinkler Rain

Wet Grass

Cloudy-

• Eliminate Cloudy from BN; Sum(Cloudy+,Cloud-)

C P(S)

T .10

F .50

P(S)=.1

P(S)=.5

C P(R)

T .80

F .20

P(R)=.8

P(R)=.2

Cloudy

Sprinkler Rain

Wet Grass
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Stochastic SimulationStochastic Simulation

Direct Sampling

• Assign each root node a value based on
prior probability.

• Assign all other nodes a NULL “value”.

• Pick a node X with no value, but whose
parents have values, and randomly
assign a value to X

– using P(X|Parents(X)) as the distribution.
Repeat until there is no such X.

• After N trials, P(X|E) can be estimated by
occurrences(X and E) / occurrences(E).
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Stochastic Simulation cont.Stochastic Simulation cont.

• Problem with very unlikely events.

• Likelihood weighting can be used

to fix problem.

• Likelihood weighting converges

much faster than logic sampling

and works well for very large

networks.
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The MCMC AlgorithmThe MCMC Algorithm

• MCMC generates each event by making a random
change to the preceding event.

– It is therefore helpful to think of the network being in a particular
current state specifying a value for every variable.

• The next state is generated by randomly sampling a
value for one of the nonevidence variables Xi,
conditioned on the current values of the variables in
the Markov blanket of Xi.

– MCMC therefore wanders randomly around the state space—the
space of possible complete assignments—flipping one variable
at a time but keeping the evidence variables fixed.
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Example of Likelihood WeightyExample of Likelihood Weighty

P(WetGrass/Rain)

• Choose a value for Cloudy with prior P(Cloudy)
= 0.5. Assume we choose cloudy = false.

• Choose a value for Sprinkler. We see that
P(Sprinkler !¬ Cloudy) = 0.5, so we randomly
choose a value given that distribution. Assume
we choose Sprinkler =True.

• Look at Rain. This is an evidence variable that
has been set to True, so we look at the table to
see that P(Rain !¬ Cloudy) = 0.2. This run
therefore counts as 0.2 of a complete run.

Cloudy

Sprinkler Rain

Wet Grass
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Example of Likelihood WeightyExample of Likelihood Weighty

contcont’’dd

• Look at WetGrass. Choose randomly with
P(WetGrass!Sprinkler "Rain) =0.99; assume we
choose WetGrass = True.

• We now have completed a run with likelihood 0.2
that says WetGrass = True  given Rain = True. The
next run will result in a different likelihood, and
(possibly) a different value for WetGrass. We
continue until we have accumulated enough runs,
and then add up the evidence for each value,
weighted by the likelihood score.

Likelihood weighting usually converges much faster
than logic sampling

Still takes a long time to reach accurate probabilities
for unlikely events
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Summary of a Belief NetworksSummary of a Belief Networks

• Conditional independence information is a vital and

robust way to structure information about an

uncertain domain.

• Belief networks are a natural way to represent

conditional independence information.

– The links between nodes represent the qualitative aspects of

the domain, and the conditional probability tables represent the

quantitative aspects.

• A belief network is a complete representation for

the joint probability distribution for the domain, but

is often exponentially smaller in size.
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Summary of a Belief Networks,Summary of a Belief Networks,

contcont’’dd

• Inference in belief networks means computing the

probability distribution of a set of query variables,

given a set of evidence variables.

• Belief networks can reason causally, diagnostically,

in mixed mode, or intercausally. No other uncertain

reasoning mechanism can handle all these modes.

• The complexity of belief network inference depends

on the network structure. In polytrees (singly

connected networks), the computation time is linear

in the size of the network.
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Summary of a Belief Networks, contSummary of a Belief Networks, cont’’dd

• There are various inference techniques for

general belief networks, all of which have

exponential complexity in the worst case.

–  In real domains, the local structure tends to make things

more feasible, but care is needed to construct a tractable

network with more than a hundred nodes.

• It is also possible to use approximation

techniques, including stochastic simulation, to get

an estimate of the true probabilities with less

computation.
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Making Simple One-Shot DecisionsMaking Simple One-Shot Decisions

• Combining Beliefs and Desires
Under Uncertainty

• Basis of Utility Theory
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Maximum Expected Utility (MEU)Maximum Expected Utility (MEU)

• The MEU principle says that a rational agent

should choose an action that maximizes its

expected utility in the current state (E)

EU(#|E) = maxA !i P(Resulti(A)|Do(A),E) U(Resulti(A))

• Why isn’t the MEU principle all we need in

order to build “intelligent agents”?
– Is it Difficult to Computer P,E or U ?
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MEU Computational DifficultiesMEU Computational Difficulties

– Knowing the current state of the world requires
perception, learning, knowledge representation and
inference.

– Computing P(*) requires a complete causal model of the
world.

– Computing the utility of a state often requires search or
planning (distinguish between explicit and implicit utility)

• Calculation of Utility of a particular state may require us to look
at what utilities could be achieved from that state

– All of the above can be computationally intractable,
hence one needs to distinguish between “perfect
rationality” and “resource-bounded rationality” or
“bounded-optimality”.

– Also Need to consider more than one action (one-shot
decisions versus sequential decisions).



21V. Lesser CS683 F2004

Next LectureNext Lecture

• Making decisions under uncertainty using

utility theory. --chapter 16

– The value of information.

• Decision Trees


